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PIATETSKI-SHAPIRO MEETS CHEBOTAREV

YILDIRIM AKBAL AND AHMET MUHTAR GÜLOĞLU

Abstract. Let K be a finite Galois extension of the field Q of ratio-
nal numbers. We prove an asymptotic formula for the number of the
Piatetski-Shapiro primes not exceeding a given quantity for which the
associated Frobenius class of automorphisms coincide with any given
conjugacy class in the Galois group of K/Q. In particular, this shows that
there are infinitely many Piatetski-Shapiro primes of the form a2 + nb2

for any given natural number n.

1. Introduction

In 1953 Ilya Piatetski-Shapiro proved in [12] an analog of the prime

number theorem for primes of the form bncc, where bxc = max{n ∈ N :

n 6 x}, n runs through positive integers and c > 0 is fixed. He showed that

such primes constitute a thin subset of the primes; more precisely, that the

number πc(x) of these primes not exceeding a given number x is asymptotic

to x1/c/ log x, provided that c ∈ (1, 12/11). Since then, the admissible range

of c has been extended by many authors and the result is currently known

for c ∈ (1, 2817/2426) (cf. [13]).

A related question is to determine the asymptotic behavior of a particular

subset of these primes; for example, those belonging to a given arithmetic

progression, or those of the form a2 + nb2. The former was considered by

Leitmann and Wolke (cf. [8]) in 1974, and it has been used in a recent paper

by Roger et al. (cf. [1]) to show the existence of infinitely many Carmichael

numbers that are products of the Piateski-Shapiro primes.

For both of the aforementioned examples, the problem can be inter-

preted as counting the Piatetski-Shapiro primes that belong to a particular

Chebotarev class of some number field (see Theorem 1 and the remark fol-

lowing Theorem 2). Motivated by this observation, we study in this paper

the following more general problem:
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ber theorem, exponential sums over ideals, generalized Vaughan’s identity, van der Cor-
put’s Method, Vinogradov’s method.
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Take a finite Galois extension K/Q and a conjugacy class C in the Galois

group G = Gal(K/Q). Put

π(K,C) = {p prime : gcd(p,∆K) = 1; [K/Q, p] = C}

where ∆K is the discriminant of K, and the Artin symbol [K/Q, p] is defined

as the conjugacy class of the Frobenius automorphism associated with any

prime ideal P of K above p. Recall that the Frobenius automorphism is the

generator of the decomposition group of P, which is the cyclic subgroup

of automorphisms of G that fixes P. The Chebotarev Density Theorem as

given by Lemma 5 below states that the natural density of primes in π(K,C)

is |C|/|G|; that is,

π(K,C, x) ∼ |C|
|G|

li(x) (x→∞)

where π(K,C, x) = #{p 6 x : p ∈ π(K,C)} and li(x) =
∫ x

2
(log t)−1dt is the

logarithmic integral.

Our intent in this paper is to find an asymptotic formula for the number

of the Piatetski-Shapiro primes that belong to π(K,C). To this end, we

define the counting function

πc(K,C, x) = #{p 6 x : p ∈ π(K,C); p = bncc for some n ∈ N}.

The first result we prove in this direction is for abelian extensions K/Q. By

the Kronecker-Weber Theorem this problem easily reduces to counting the

Piatetski-Shapiro primes in an arithmetic progression, which was handled

in [8] as we have mentioned above. We do, however, reprove their theorem

here in a slightly different manner following a more recent method given in

[4, §4.6] that utilizes Vaughan’s identity.

Before stating our first result, we recall that the conductor f of an abelian

extension K/Q is the modulus of the smallest ray class field K f containing

K.

Theorem 1. Let K/Q be an abelian extension of conductor f. Take any

automorphism σ in the Galois group G = Gal(K/Q). Then, there exists

an absolute constant D > 0 and a constant x0(f) such that for any fixed

c ∈ (1, 12/11) and x > x0(f), we have

πc(K, {σ}, x) =
1

c|G|
li(x1/c) +O

(
x1/c exp(−D

√
log x)

)
where the implied constant depends only on c.

Next, we consider a non-abelian Galois extension K/Q. Given a conju-

gacy class C in G, take any representative σ ∈ C and put dL = [G : 〈σ〉] =
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[L : Q], where L is the fixed field corresponding to the cyclic subgroup 〈σ〉
of G generated by σ. Note that dL > 2. As in the abelian case, we obtain

a similar asymptotic formula, only this time the range of c depends on the

size of dL (not on L, hence σ). This is due to the nature of an exponential

sum that appears in the estimate of one of the error terms. In this case, we

prove the following result:

Theorem 2. Let K, C, G and dL be as defined above. Then, there exists an

absolute constant D > 0, and a constant x0 which depends on the degree dK

and the discriminant ∆K of K such that for x > x0 and for c that satisfies

1 < c < 1 +

{
(2dL+1dL + 1)−1 if dL 6 10,(
6(dL

3 + dL
2) log(125dL)− 1

)−1
otherwise,

we have

πc(K,C, x) =
|C|
c|G|

li(x1/c) +O(x1/c exp
(
−D|∆K |−1/2(log x)1/2)

)
where the implied constant depends on c, the degree dL and the discriminant

∆L of the intermediate field L defined above.

The asymptotic formula above follows from the effective version of the

Chebotarev density theorem (see Lemma 5) coupled with an adaptation of

the method in [4, §4.6] to our case using an analog of Vaughan’s identity for

number fields (see Lemma 10). The main difference from [4, §4.6] here is that

one has to deal with the estimate of an exponential sum that runs over the

integral ideals of L (see §2.3, §2.7) and most of the paper is devoted to the

estimate of this sum. The main idea in a nutshell to handle the exponential

sum in §2.3 is to split it into ray classes, then choose an integral basis for

each class, and finally use van der Corput’s method for small values of dL,

and Vinogradov’s Method for the rest on one of the integer variables.

As an application, we consider the ring class field Ln of the order Z[
√
−n]

in the imaginary quadratic field K = Q(
√
−n) where n is a positive integer.

It follows from [3, Lemma 9.3] that Ln is a Galois extension of Q with

Galois group isomorphic to Gal(Ln/K) o (Z/2Z), where the non-trivial

element of Z/2Z acts on Gal(Ln/K) by sending σ to its inverse σ−1. For

example, Gal(L27/Q) ' S3 is non-abelian, while Gal(L3/Q) is abelian since

L3 = Q(
√
−3). In any case, we have from [3, Theorem 9.4] that if p is an

odd prime not dividing n then p = a2 + nb2 for some integers a, b if and

only if p splits completely in Ln, which occurs exactly when [Ln/Q, p] is the

identity automorphism 1G of G = Gal(Ln/Q). Therefore, as a corollary of

the theorems above we see that the number of Piatetski-Shapiro primes up
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to x that are of the form a2 +nb2 is asymptotic to (c|G|)−1li(x1/c) as x→∞
for any c in the range given by the relevant Theorem above depending on

whether Ln/Q is abelian. Note that by [3, Lemma 9.3], Ln/Q is abelian only

if [Ln : K] 6 2. On the other hand, [Ln : K] is the class number h(Z[
√
−n])

of the order Z[
√
−n], which by [3, Theorem 7.24] is an integral multiple

of h(K). Since it is also known that there are only finitely many n such

that h(K) 6 2, we conclude that for all but finitely many n > 0, Ln/Q is

non-abelian.

Remark 3. Adapting the most recent methods that have been used for the

classical Piatetski-Shapiro problem it may be possible to obtain a slightly

larger range for c in both Theorems 1 and 2, although we have not attempted

to do so for the sake of simplicity.

Remark 4. If one assumes GRH for the Dedekind zeta function of K, then

the best one can show with our methods is that the asymptotic formula

πc(K,C, x) =
|C|
c|G|

li(x1/c) +O(x1/c−ε(c))

holds for sufficiently large x and with an ε(c) > 0 that approaches zero as c

tends to the upper limit of its range given in Theorems 1 and 2. Note that

it is also possible to give an explicit expression for ε(c), but requires some

extra work. One can also get an error of the form O(x1/c−ε) for a fixed small

ε > 0 at the expense of a smaller range for c.

1.1. Preliminaries and Notation. We use Vinogradov’s notation f � g

to mean that |f(x)| 6 Cg(x), where g is a positive function and C > 0 is a

constant. Similarly, we define f � g to mean |f | > Cg and f � g to mean

both f � g and f � g.

We write e(z) for exp(2πiz).

For any finite field extension L/Q, we shall write ∆L for its absolute

discriminant and dL for its degree [L : Q] = r1 +2r2, where r1 is the number

of real embeddings of L. We denote the ring of integers of L by OL and the

absolute norm of an ideal a is denoted by Na.

The letter p always denotes an ordinary prime number. Similarly, we use

the letters p, P for prime ideals.

Preliminaries. Here we state some of the auxiliary lemmas that shall be

needed for the proof of Theorem 2.

Lemma 5 (Chebotarev density theorem). Let K/Q be a Galois extension

and C a conjugacy class in the Galois group G. If dK > 1, there exists an



PIATETSKI-SHAPIRO MEETS CHEBOTAREV 5

absolute, effectively computable constant D and a constant x0 = x0(dK ,∆K)

such that if x > x0, then

π(K,C, x) =
|C|
|G|

li(x) +O
(
x exp(−D|∆K |−1/2

√
log x)

)
where the implied constant is absolute. Furthermore, if GRH holds for the

Dedekind zeta function of K, then for x > 2,∣∣∣∣π(K,C, x)− |C|
|G|

li(x)

∣∣∣∣ 6 c1

(
|C|
|G|

x1/2 log(|∆K |xdK ) + log |∆K |
)

where c1 is an effectively computable positive absolute constant.

Proof. The result immediately follows by combining [7, Theorems 1.1, 1.3

and 1.4]. �

We refer to [2, Lemma 2] for the following result.

Lemma 6. Let L/Q be a finite extension of degree dL and discriminant

∆L. For each ideal a of L, there exists a basis α1, . . . , αdL such that for any

embedding τ of L,

(1.1) A−dL+1
1 (Na)1/(2dL) 6 |ταj| 6 A1(Na)1/dL

where A1 = dL
dL|∆L|1/2.

For the proof of the next lemma, see for example [6, Theorem 11.8].

Lemma 7. Let L be a finite extension and U be a nonzero ideal in the ring

of integers OL. There exists an element α 6= 0 in U such that

N(αU−1) 6
dL!

dL
dL

(
4

π

)r2
|∆L|1/2,

where 2r2 is the number of complex embeddings of L.

2. Proof of Theorem 2

We start with the observation that the expression
⌊
−pδ

⌋
−
⌊
−(p+ 1)δ

⌋
is either 0 or 1, where δ = 1/c, and the latter holds exactly when p = bncc
for some n ∈ N. Using this characterization and the identity⌊

−pδ
⌋
−
⌊
−(p+ 1)δ

⌋
= (p+ 1)δ − pδ + ψ

(
−(p+ 1)δ

)
− ψ(−pδ)

= δpδ−1 +O(pδ−2) + ψ
(
−(p+ 1)δ

)
− ψ(−pδ),

where ψ(x) = x− bxc − 1/2, we obtain

πc(K,C, x) =
∑
p6x

p∈π(K,C)

δpδ−1 +
∑
p6x

p∈π(K,C)

(
ψ
(
−(p+ 1)δ

)
− ψ(−pδ)

)
+O(log x).
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Using partial summation, it follows from Lemma 5 that for x > x0 =

x0(dK , |∆K |),∑
p6x

p∈π(K,C)

δpδ−1 =
|C|
c|G|

li(x1/c) +O(x1/c exp(−D|∆K |−1/2
√

log x)

where the implied constant is absolute.

The rest of this section deals with the estimate of the sum involving ψ.

For any function f(x), we put F (f, x) = f
(
−(x+ 1)δ

)
− f(−xδ). Using

dyadic division yields∑
p6x

p∈π(K,C)

F (ψ, p) =
∑

16N<x
N=2k

∑
N<p6N1

p∈π(K,C)

F (ψ, p)

where N1 = min(x, 2N). By Vaaler’s theorem (see, e.g., [4, Appendix]) we

can approximate ψ(x) with the function

ψ∗(x) =
∑

16|h|6H

ahe(hx), (ah � h−1)

where the error estimate ψ(x)−ψ∗(x)� ∆(x) holds for some non-negative

function ∆ given by

∆(x) =
∑
|h|<H

b(h)e(hx), (b(h)� H−1).

Using the definition of ∆, it follows from [4, p. 48] that∑
N<p6N1

p∈π(K,C)

F (ψ − ψ∗, p)�
∑

N<n6N1

∆(−nδ)� NH−1 +N δ/2H1/2.

Thus, taking

(2.1) H = N1−δ+ε

yields ∑
p∈π(K,C,x)

F (ψ − ψ∗, p)� xδ exp(−D|∆K |−1/2
√

log x)

provided that 1 < c < 2 and ε > 0 is sufficiently small, both of which are

assumed in what follows.

Having dealt with the error term, we now turn to the sum involving ψ∗.

Using partial summation we obtain∑
N<p6N1

p∈π(K,C)

F (ψ∗, p)� 1

logN
max

N ′∈(N,N1]

∣∣∣∣∣ ∑
N<n6N ′
n∈〈π(K,C)〉

F (ψ∗, n)Λ(n)

∣∣∣∣∣+O(
√
N)
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where 〈π(K,C)〉 denotes the set of integers whose prime factors belong to

π(K,C). Recalling the definition of ψ∗ above we derive that∑
N<n6N ′
n∈〈π(K,C)〉

F (ψ∗, n)Λ(n) =
∑

16|h|6H

ah
∑

N<n6N ′
n∈〈π(K,C)〉

F (e(hx), n)Λ(n)

�
∑

16h6H

h−1

∣∣∣∣∣ ∑
N<n6N ′
n∈〈π(K,C)〉

e(hnδ)φh(n)Λ(n)

∣∣∣∣∣,
where φh(x) = 1− e

(
h
(
(x+ 1)δ − xδ

))
. Using the bounds

φh(x)� hxδ−1, φ′h(x)� hxδ−2,

and partial summation we see that the inner sum above is

� hN δ−1 max
N ′∈(N,N1]

∣∣∣∣∣ ∑
N<n6N ′
n∈〈π(K,C)〉

e(hnδ)Λ(n)

∣∣∣∣∣.
Thus, to finish the proof of Theorem 2 it is enough to show that∑

h

∣∣∣∣∣ ∑
N<n6N ′
n∈〈π(K,C)〉

e(hnδ)Λ(n)

∣∣∣∣∣� N exp(−D|∆K |−1/2
√

logN).

Lemma 8. Take a representative σ ∈ C. Let L be the fixed field of the cyclic

group 〈σ〉 generated by σ. Then, for N ′ 6 N1 6 2N ,∑
N<n6N ′
n∈〈π(K,C)〉

e(hnδ)Λ(n)

=
|C|
|G|

∑
ψ

ψ(σ)
∑
a⊆OL

N<Na6N ′

ψ([K/L, a])ΛL(a)e
(
h(Na)δ

)
+O(

√
N)

where the first summation is taken over all characters of Gal(K/L) and the

second is over powers of prime ideals of L that are unramified in K.

Proof. Since K/L is abelian we obtain by the orthogonality of characters of

Gal(K/L), the expression∑
ψ

ψ(σ)
∑
a⊆OL

N<Na6N ′

ψ([K/L, a])ΛL(a)e
(
h(Na)δ

)
equals

ordG(σ)
∑
a⊆OL

N<Na6N ′
[K/L,a]=σ

ΛL(a)e
(
h(Na)δ

)
.
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Removing prime ideals p of L with deg p > 1 and powers of prime ideals pk

with k > 1, the last sum can be written as∑
N<Np6N ′

[K/L,p]=σ
Np is prime

e
(
h(Np)δ

)
logNp +O(

√
N),

or ∑
N<p6N ′

( ∑
p⊆OL

[K/L,p]=σ
Np=p

1

)
e
(
hpδ
)

log p+O(
√
N).

If p is a prime that is unramified in K and p is a prime ideal of L above p

satisfying [K/L, p] = σ, then p remains prime in K and

[K/L, p] = σ and Np = p⇐⇒ [K/Q, pOK ] = σ.

In particular, [K/Q, p] = C. Furthermore, the number of prime ideals P

of K above such a prime p with [K/Q,P] = σ equals [CG(σ) : 〈σ〉], where

CG(σ) is the centralizer of σ in G. The result now follows by observing that

|CG(σ)| = |G|/|C| and noting that∑
N<n6N ′
n∈〈π(K,C)〉

e(hnδ)Λ(n) =
∑

p∈π(K,C)
N<p6N ′

e(hpδ) log p+O(
√
N).

�

Remark 9. From now on we shall write χ(a) for the composition Ψ([K/L, a]).

Note that since K/L is abelian, χ is a character of the ray class group J f/P f

(see, e.g., [10, p. 525]) where f is the conductor of the extension K/L. Fur-

thermore, we shall require that χ(a) = 0 whenever a is not coprime to f.

This way, we can assume that the inner sum in the lemma above runs over

all integral ideals of L.

Our current objective is to prove that∑
h

∣∣∣∣∣ ∑
a⊆OL

N<Na6N ′

χ(a)ΛL(a)e
(
h(Na)δ

) ∣∣∣∣∣� N exp(−D|∆K |−1/2
√

logN).

We start with an analog of Vaughan’s identity for number fields.

Lemma 10. Let u, v > 1. For any ideal a ⊆ OL with Na > u,

ΛL(a) =
∑
bc=a
Nb6v

µL(b) logNc

−
∑
bcd=a

Nb6v,Nc6u

µL(b)ΛL(c)−
∑
ce=a

Nc>u,Ne>v

ΛL(c)
∑
bd=e
Nb6v

µL(b)
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where

µL(a) =

{
(−1)k, if a = p1 · · · pk,

0, otherwise,

and

ΛL(a) =

{
logNp, if a = pk for some k > 1,

0, otherwise.

Proof. We use the identity

ΛL(a) =
∑
bc=a

µL(b) logNc

and then follow the argument preceding [5, proposition 13.4]. Finally, note

that ∑
bcd=a

Nb>v,Nc>u

µL(b)ΛL(c) =
∑
ce=a
Nc>u

ΛL(c)
∑
bd=e
Nb>v

µL(b)

=
∑
ce=a

Nc>u,Ne>v

ΛL(c)

(∑
bd=e

µL(b)−
∑
bd=e
Nb6v

µL(b)

)

= −
∑
ce=a

Nc>u,Ne>v

ΛL(c)
∑
bd=e
Nb6v

µL(b).

�

We assume from now on that u < N . It follows from Lemma 10 that∑
a⊆OL

N<Na6N ′

χ(a)ΛL(a)e(h(Na)δ) = S1 + S2 + S3

where

S1 = −
∑
a⊆OL

N<Na6N ′

χ(a)e(h(Na)δ)
∑
ce=a

Nc>u,Ne>v

ΛL(c)
∑
bd=e
Nb6v

µL(b),

S2 =
∑
a⊆OL

N<Na6N ′

χ(a)e(h(Na)δ)
∑
bc=a
Nb6v

µL(b) logNc,

S3 = −
∑
a⊆OL

N<Na6N ′

χ(a)e(h(Na)δ)
∑
bcd=a

Nb6v,Nc6u

µL(b)ΛL(c).

2.1. Estimate of S1. We first need an auxiliary result.
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Lemma 11. Let X, Y be positive integers and

α(m) = −
∑
c⊆OL
Nc=m

χ(c)ΛL(c),

β(n) =
∑
e⊆OL
Ne=n

χ(e)
∑
bd=e
Nb6v

µL(b).
(2.2)

Then,∑
X<m62X

|α(m)|2 � X log2dL−1X,
∑

Y <n62Y

|β(n)|2 � Y (log Y )4dL
2

.

Proof. By Cauchy-Schwartz inequality

∑
Y <n62Y

|β(n)|2 6
∑

Y 6n62Y

(∑
e⊆OL
Ne=n

1

) ∑
e⊆OL
Ne=n

(∑
bd=e
Nb6v

µL(b)

)2

6
∑

Y 6n62Y

g(n)

where g(n) is the multiplicative function defined by

g(n) =

(∑
e⊆OL
Ne=n

1

) ∑
e⊆OL
Ne=n

τ 2(e)

and τ(e) is the number of integral ideals of L that divide e. Note that for

any prime p > 2, g(p) 6 4dL
2, while for k > 1 we see that the number of

ideals e with Ne = pk is bounded by(
dL + k − 1
dL − 1

)
= e

∑k
m=1 log

(
1+

dL−1

m

)
6 e

∑k
m=1

dL−1

m 6 (ek)dL−1

and τ 2(e) 6 (k + 1)2 6 4k2. Thus, g(pk) 6 4edL−1kdL+1. It follows that

log

(
1 +

g(p)

p
+
g(p2)

p2
+ · · ·

)
= log

(
1 +

g(p)

p

)
+O(1/p2)

6
4dL

2

p
+O(1/p2)

where the implied constant depends on dL. Therefore,

∑
Y 6n62Y

g(n) 6 2Y
∑

Y 6n62Y

g(n)

n
6 2Y e

∑
p62Y log

(
1+

g(p)
p

+
g(p2)

p2
+···

)

6 2Y eO(1)+4dL
2∑

p62Y
1
p �dL Y (log Y )4dL

2

.
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As for the other sum, we obtain∑
X<m62X

|α(m)|2 6
∑

X6m62X

∑
c⊆OL
Nc=m

1 ·
∑
c⊆OL
Nc=m

(ΛL(c))2

=
∑

X6m62X

(Λ(m))2

(∑
c⊆OL
Nc=m

1

)2

�dL (logX)2
∑

X6pk62X

k2(dL−1)

� (logX)2dL
∑

X6pk62X

1� X(logX)2dL−1,

as claimed. �

We are now ready to estimate S1. First, rewrite S1 as

S1 = −
∑
c,e

Ne>v;Nc>u
N6N(ce)6N ′

χ(e)

(∑
bd=e
Nb6v

µL(b)

)
χ(c)ΛL(c)e(h(Nce)δ)

=
∑∑
n,m

n>v;m>u
N<nm6N ′

α(m)β(n)e(h(nm)δ)

where α(m) and β(n) are given by (2.2). Let

(2.3) u = v = N δ−1+η

and split the ranges of m and n into � log2N subintervals of the form

[X, 2X] and [Y, 2Y ] such that N/4 6 XY 6 2N , v < X, Y < N ′/v. Sum-

ming over h 6 H we conclude from Lemma 11 and [4, Lemma 4.13] with the

exponent pair (k, l) = (1/2, 1/2) that the contribution of each subinterval

is

�
(
H7/6N δ/6+5/6 min(X−1/6, Y −1/6) +HN1/2 max(X, Y )1/2

)
· (logN)2dL

2+dL+1/2

�
(
N2−1/12−δ +N5/2−3δ/2−η/2

)
N8ε/6.

Finally, summing over X and Y we conclude that the estimate∑
h

|S1| � N exp(−D|∆K |−1/2
√

logN)

holds provided that

(2.4) 1− δ < min
( 1

12
,
η

3

)
,

and ε > 0 is sufficiently small, both of which we shall assume in what

follows.
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2.2. Estimate of S3. We rewrite S3 as S4 + S5 where

S4 = −
∑
e

Ne6v

χ(e)

( ∑
bc=e

Nb6v,Nc6u

µL(b)ΛL(c)

) ∑
d

N<N(de)6N ′

χ(d)e
(
h(N(de))δ

)

� logN
∑
e

Ne6v

∣∣∣∣∣ ∑
d

N<N(de)6N ′

χ(d)e
(
h(N(de))δ

) ∣∣∣∣∣,
and

S5 = −
∑∑

d,e
v<Ne6v2

N<N(de)6N ′

χ(d)χ(e)

( ∑
bc=e

Nb6v,Nc6u

µL(b)ΛL(c)

)
e
(
h(N(de))δ

)

=
∑∑
n,m

v<m6v2

N<nm6N ′

α(m)β(n)e
(
h(nm)δ

)

with

α(m) =
∑
e

Ne=m

χ(e)

( ∑
bc=e

Nb6v,Nc6u

µL(b)ΛL(c)

)

β(n) =
∑
d

Nd=n

χ(d).

To estimate S5 we split the ranges of m and n as we did for S1 with the

only difference that we now have v < X 6 v2 and N/v2 < Y < N ′/v in

addition to N/4 6 XY 6 2N . Furthermore, an analog of Lemma 11 can

easily be established for the coefficients α(m) and β(n) and will be omitted

here. Using [4, Lemma 4.13] once again we see that the estimate∑
h6H

|S5| �
(
N2−δ−1/12 +N2−δv−1/2 +N3/2−δv

)
N2ε

� N exp(−D|∆K |−1/2
√

logN)

holds if we assume (2.4), that ε > 0 is sufficiently small and that

(2.5) 3η 6 1.

Finally, we note that S4 can be estimated exactly the same way that

S2 will be handled in the next section. It does not impose any further

restrictions on the range of δ than S2 does, thus we skip it.

2.3. Estimate of S2. We rewrite S2 as

S2 =
∑
d

Nd6v

χ(d)µL(d)
∑
c

N/Nd<Nc6N ′/Nd

χ(c)e
(
h(Ncd)δ

)
logNc
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and start with the estimate of

S =
∑
c

N/Nd<Nc6N ′/Nd

χ(c)e
(
h(Ncd)δ

)
Recall that χ is a ray class character of modulus f. Splitting S into ray

classes K we obtain S =
∑

K χ(K)SK where

SK =
∑
c∈K

N/Nd<Nc6N ′/Nd

e
(
h(Ncd)δ

)
.

Since there are only finitely many classes it is enough to consider a fixed

class K. Let b be an integral ideal in the inverse class K−1. Any integral

ideal c ∈ K is given by αb−1 for some α ∈ b ∩ Lf,1, where

Lf,1 := {x ∈ L∗ : x ≡ 1 mod f, and x is totally positive}.

Thus, we have

SK =
∑
αa

α∈b∩Lf,1

P dL<N(αOL)6(P ′)dL

e
(
h(N(αad))δ

)

where a = b−1,

(2.6) P =

(
N

N(ad)

)1/dL

and P ′ =

(
N ′

N(ad)

)1/dL

.

Since f and b are coprime ideals, we can find an α0 ∈ b such that α0 ≡
1 mod f. Hence, the condition that α ∈ b∩Lf,1 is equivalent to the conditions

that α ≡ α0 mod fb and that α is totally positive.

Define a linear transformation T from L to the Minkowski space LR :=

{(zτ ) ∈ LC : zτ = zτ} by

Tα = (τ1α, . . . , τdLα)

where LC :=
∏

τ C and τ1, . . . , τdL are the embeddings of L with the first r1

embeddings being real and the first r1 + r2 corresponding to the different

archimedean valuations of L.

Note that α, β ∈ b∩Lf,1 generate the same ideal if and only if they differ

by a unit u ∈ O∗L ∩ Lf,1. Since O∗L ∩ Lf,1 is of finite index in O∗L, its free

part is of rank r = r1 + r2 − 1. Let ξ1, . . . , ξr be a system of fundamental

units for O∗L ∩ Lf,1 and E the invertible r × r matrix whose rows are given

by `(Tξ1), . . . , `(Tξr) where ` : L∗C =
∏

τ C∗ → Rr is defined by

`(z1, . . . , zdL) = (log |z1|, . . . , log |zr|).

If L contains exactly ω roots of unity, then for any t ∈ R∗, `(T (tα)) =

`(T (tβ)) holds for exactly ω associates α of a given β ∈ L∗. Thus, in order
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to pick a representative α ∈ b ∩ Lf,1 for the ideal αa ∈ K that is unique

up to multiplication by roots of unity in L, we impose the condition that

`(Tα)E−1 ∈ [0, 1)r. At this point, we define the set

Γ0 := {z ∈ L∗C : 1 < Nz 6 N ′/N ; `(z)E−1 ∈ [0, 1)r; z1, . . . , zr1 > 0}

where norm Nz = N(z1, . . . , zdL) :=
∏

i zi. Recalling the definition of SK

above and noting that NTα = NL/Q(α) for α ∈ L∗, we see that

ωSK =
∑

α∈α0+fb
Tα∈PΓ0

e
(
h(N(αad))δ

)
.

Fix a Z-basis {α1, . . . , αdL} for the integral ideal fb that satisfies (1.1)

and let M be the invertible matrix whose rows are given by Tα1, . . . , TαdL .

Since for α ∈ α0 + fb, Tα can be written as Tα0 + nM for some unique

n ∈ ZdL , we see that ωSK =
∑

n∈ZdL f(n), where f : RdL → R is given by

f(x) =

{
e
(
D(N(x0 + xM))δ

)
if x0 + xM ∈ PΓ0,

0 otherwise,

x0 = Tα0, and D = h (N(ad))δ. Partitioning RdL into a disjoint union of

translates B of [0, Y )dL , where Y > 1 is an integer to be chosen later, we

obtain ∑
n∈ZdL

f(n) =
∑
B

∑
n∈B∩ZdL

f(n).

Note that the condition `(z)E−1 ∈ [0, 1)r in the definition of Γ0 above im-

plies the existence of positive constants c1 = c1(dL,∆L) and c2 = c2(dL,∆L)

such that for any α ∈ L∗ with Tα ∈ PΓ0 and any embedding τ of L, we

have

c1P < |τα| < c2P.

Let R be the region {(z1, . . . , zdL) ∈ LR : c1P < |zi| < c2P}. Suppose that

f is not identically zero on B ∩ ZdL for some B. If x0 + BM is partially

contained in R then it must be intersecting the boundary of R. Thus, we see

that the contribution of such B to the sum
∑

n f(n) is O(Y P dL−1). For the

rest of the boxes B for which f(B∩ZdL) 6≡ 0, we necessarily have that x0 +

BM ⊆ R. From now on, we assume that B is such a box. By the arguments

in §2.7, there exist constants C1 = C1(k, dL,∆L), C2 = C2(k, dL,∆L) and

a matrix U ∈ SL(dL,Z) such that for N > C1, 1 6 Y 6 C2P and any

x = (x1, . . . , xdL) ∈ BU−1, we have

(2.7)

∣∣∣∣ ∂k∂xk1 gU(x)

∣∣∣∣ � P δdL−k and
∂λi
∂x1

(x)� P−1
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where gU is given by (2.13), λi’s are determined by the condition `(x0 +

xUM) = (λ1(x), . . . , λr(x))E, and the implied constants depend on k (only

if relevant) and on dL and ∆L. After a change of variable we obtain

(2.8)
∑

n∈B∩ZdL

f(n) =
∑

n∈BU−1∩ZdL

f(nU) =
∑

. . .
∑

(n2,...,ndL )∈ZdL

∑
n1∈Z

n∈BU−1∩ZdL

f(nU)

where n = (n1, . . . , ndL). Since f(B ∩ ZdL) 6≡ 0 there is at least one tuple

(n2, . . . , ndL) such that f(nU) 6≡ 0 for n1 ∈ Z and n ∈ BU−1 ∩ ZdL . Fix

such a tuple. It follows from (2.7) with k = 1 that both λi’s and the norm

function are monotonic and thus there is an interval I = I(n2, . . . , ndL) of

length at most O(Y ) such that the function f(x;n2, . . . , ndL) 6= 0 for x ∈ I.

We are now ready to estimate (2.8). We shall do so in what follows using

different methods according to the size of the degree dL of the extension

L/Q.

2.4. Vinogradov’s Method - Large degree. Assume that dL > 11. It

follows from (2.7) that there exist positive constants C3 = C3(dL,∆L) and

C4 = C4(dL,∆L) such that

1

A0

6

∣∣∣∣ ∂dL+1

∂xdL+1
1

(DgU(x))

∣∣∣∣ 6 C4

A0

,

where

A0 =
P dL(1−δ)+1

C3D
=

N1−δ+1/dL

C3h (N(ad))1+1/dL
.

Using (2.1) and (2.3) we see that

N1/dL−ε−(1+1/dL)(η+δ−1)

C3 (N(a))1+1/dL
< A0 6

P dL(1−δ)+1

C3 (N(a))δ
.

Therefore, assuming that η < 1/(1+dL) and ε is sufficiently small it follows

from Lemma 7 that for sufficiently large N , we have A0 > 1. Put ρ =

1/(3dL
2 log(125dL)) and take

(2.9) Y = A
1/((2+2/dL)(1−ρ))
0 .

Using equation (2.4), the upper bound for A0 above and the inequality

(1 + 1/dL)(1− ρ) > 1, we obtain for sufficiently large N that

(2.10) A
1/(2+2/dL)
0 < Y 6 min (C2P,A0) .

If the interval I in (2.8) satisfies

A
1/(2+2/dL)
0 � |I|,



16 Y. AKBAL AND A. M. GÜLOĞLU

we derive from (2.10) and [15, Theorem 2a, p. 109] that∑
n1∈I

n∈BU−1∩ZdL

e (DgU(n))� |I|1−ρ � Y 1−ρ.

For smaller intervals I, trivially estimating the sum yields a contribution�
Y 1−ρ due to the choice of Y in (2.9). Since the number of tuples (n2, . . . , ndL) ∈
ZdL−1 such that n ∈ BU−1 ∩ ZdL is O(Y dL−1) we obtain∑

n∈B∩ZdL

f(n)� Y dL−ρ.

Therefore, the contribution to the sum in (2.8) of those B for which f(B ∩
ZdL) 6≡ 0 and x0 + BM ⊆ R is � P dLY −ρ, and this is already larger than

the contribution from the rest of the boxes B.

Using (2.6) and partial summation and then summing over the ray classes

K we see that the sum∑
c

N/Nd<Nc6N ′/Nd

χ(c)e
(
h(Ncd)δ

)
logNc

� N

Nd

(
N1−δ+1/dL

h(Nd)1+1/dL

)− ρ
(2+2/dL)(1−ρ)

logN

= N
1− ρ(1−δ+1/dL)

(2+2/dL)(1−ρ) (Nd)
ρ

2(1−ρ)−1h
ρ

(2+2/dL)(1−ρ) logN.

Finally, summing over ideals d with Nd 6 v using the fact that
∑

Nd6x 1� x

(see for example [6, Statement 2.15]) and then summing over h with h 6 H

we obtain from (2.1) and (2.3) that∑
h6H

|S2| � N
1− ρ(1−δ+1/dL)

(2+2/dL)(1−ρ)v
ρ

2(1−ρ)H
1+ ρ

(2+2/dL)(1−ρ) logN � N1+q+2ε

where

q =
1

2(1− ρ)

(
− ρ

dL + 1
+ (1− δ)(2− 3ρ) + ρη

)
.

Thus, assuming (2.4) and choosing

(2.11)
η

3
=

ρ

2(dL + 1)
=

1

6(dL + 1)dL
2 log(125dL)

we see that both (2.5) and the inequality q < 0 hold. We conclude that for

sufficiently large N and sufficiently small ε > 0,∑
h6H

|S2| � N exp(−D|∆K |−1/2
√

logN)

provided that dL > 11.
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2.5. Van Der Corput’s Method - Small degree. By [4, Theorem 2.8]

and (2.7) we obtain∑
n1

n∈BU−1∩ZdL

e (DgU(n))� Y λ1/(2k+2−2) + Y 1−1/2k+1

+ Y 1−1/2k−1+1/22kλ−1/2k+1

where λ := DP dLδ−(k+2). Note that this bound is no better than the trivial

estimate unless λ < 1. Therefore, we shall require that η < 1/(dL+1). With

this assumption, we obtain that for k > dL− 1, for sufficiently large N and

sufficiently small ε > 0, both of the inequalities k+2 > dLδ and λ < 1 hold,

since by (2.1), (2.3) and (2.4) we have

λ = DP dLδ−(k+2) =
h(N(ad))δ

(N/(Nad))(k+2−dLδ)/dL
� HN δ

(N/v)(k+2)/dL

� N
1+ k+2

dL
(η+δ−2)+ε

.

We derive as before that the contribution from the boxes B for which

f(B ∩ ZdL) 6≡ 0 and x0 +BM ⊆ R is

� P dL
(
λ1/(2k+2−2) + Y −1/2k+1

+ Y −1/2k−1+1/22kλ−1/2k+1
)
,

while that from the rest of the boxes B is O(Y P dL−1). Combining these

estimates yields the bound SK � P dL
(
λ1/(2k+2−2) +G(Y )

)
, where

G(Y ) = Y −1/2k+1

+ Y −1/2k−1+1/22kλ−1/2k+1

+ Y P−1.

Using [4, Lemma 2.4] it follows that for some Y ∈ [1, C2P ],

G(Y )� P−1/(1+2k+1) +
(
P−1/2k−1+1/22kλ−1/2k+1

)1/(1+1/2k−1−1/22k)

+ P−1 + P−1/2k+1

+ λ−1/2k+1

P−1/2k−1+1/22k

� P−1/(1+2k+1) +
(
P−1/2k−1+1/22kλ−1/2k+1

)1/(1+1/2k−1−1/22k)

.

Note that in order to have P−1/2k−1+1/22kλ−1/2k+1
< 1 one needs that k <

dL + 2, which can be seen using (2.1), (2.3), (2.4), (2.6) and that η <

1/(dL + 1). Using equation (2.6), the fact that λ = DP dLδ−(k+2) and partial

summation we derive that the sum

(logN)−1
∑
c

N/Nd<Nc6N ′/Nd

χ(c)e
(
h(Ncd)δ

)
logNc
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is

� h1/(2k+2−2)N(d)
k+2

dL(2k+2−2)
−1
N

1+
dLδ−(k+2)

dL(2k+2−2)

+N
1+

1+2k−1(k−2−dLδ)
dL(22k+2k+1−1) (Nd)

− 1+2k−1(k−2)

dL(22k+2k+1−1)
−1
h
− 1

2k+1+4−21−k

+ (N/Nd)
1− 1

dL(1+2k+1) .

Summing over ideals d with Nd 6 v, and then over h 6 H we see that

(logN)−1
∑

h6H |S2| is

� H1+1/(2k+2−2)v
k+2

dL(2k+2−2)N
1+

dLδ−(k+2)

dL(2k+2−2) +HN
1− 1

dL(1+2k+1)v
1

dL(1+2k+1)

+N
1+

1+2k−1(k−2−dLδ)
dL(22k+2k+1−1) H

1− 1

2k+1+4−21−k

� N1+q1(k)+2ε +N1+q2(k)+ε +N1+q3(k)+ε

where, assuming (2.5), it follows that the exponents qi(k) satisfy

q1(k) = (1− δ)
(

1 +
1

2k+2 − 2

)
+ (δ − 1 + η)

k + 2

dL(2k+2 − 2)

+
dLδ − (k + 2)

dL(2k+2 − 2)

<
1

dL(2k+2 − 2)

(η
3

(
dL(2k+2 − 2) + 2k + 4

)
+ dL − k − 2

)
,

q2(k) = 1− δ − 1

dL(1 + 2k+1)
+ (δ − 1 + η)

1

dL(1 + 2k+1)

<
1

dL(1 + 2k+1)

(η
3

(
dL(1 + 2k+1) + 2

)
− 1
)
,

and

q3(k) =
1 + 2k−1(k − 2− dLδ)
dL(22k + 2k+1 − 1)

+ (1− δ)
(

1− 1

2k+1 + 4− 21−k

)
<

1 + 2k−1(k − 2− dL)

dL(22k + 2k+1 − 1)
+
η

3
.

Thus, for sufficiently small ε, the estimate∑
h

|S2| � N exp(−D|∆K |−1/2
√

logN)

holds provided that for 1 6 dL − 1 6 k 6 dL + 1,

(2.12)
η

3
= min

(
1

3(dL + 1) + ε
,

k + 2− dL
dL(2k+2 − 2) + 2k + 4

,

1

dL(1 + 2k+1) + 2
,
2k−1(dL + 2− k)− 1

dL(22k + 2k+1 − 1)

)
.
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2.6. Conclusion of Theorem 2. Upon comparing (2.11) and (2.12) we

conclude that for 2 6 dL < 11, the maximum value for η/3 (hence the widest

range for δ) is obtained via Van Der Corput’s Method when k = dL − 1 is

substituted into the function

k + 2− dL
dL(2k+2 − 2) + 2k + 4

,

while for dL > 11 one needs to use Vinogradov’s method; in this case, we

obtain
η

3
=

1

6(dL + 1)dL
2 log(125dL)

.

With the above choice of η, the claimed range for c in Theorem 2 follows

easily from (2.4).

Remark 12. To estimate S2, one may also use [14, Lemma 6.12] for dL > 7,

but the result is worse than what we have already obtained.

2.7. Derivative of the Norm Function. In this section we prove some

auxiliary Lemmas used in the estimate of S2.

Lemma 13. Let V ∈ GL(dL,R), n ∈ ZdL and x,u ∈ RdL. Put

(2.13) gV (x) = |N(x0 + xVM)|δ, g̃u(t) = |N(x0 + nM + tuM)|δ.

Then, for any k > 1,

∂kgV
∂xk1

∣∣∣
x=nV −1

=
dk

dtk
g̃V1(0)(2.14)

=
∑
· · ·
∑

i1,...,ik
16ij6dL

Di1 . . . DikF (x0 + nM)vi1 · · · vik

where F (z1, . . . , zdL) =
∏dL

i=1 z
δ
i , Di = ∂

∂zi
, vi is the ith component of the

vector V1M and V1 is the first row of V .

Proof. The result easily follows by induction and chain rule for derivatives.

�

Lemma 14. Given a ∈ R, there exists v = v(a) ∈ RdL and a positive

constant c̃1 = c̃1(k, dL,∆L) such that for any k > 1,∣∣∣∣ dkdtk g̃(0)

∣∣∣∣ > c̃1P
δdL−k

where g̃(t) = |N(a + tvM)|δ.

Proof. Assume first that L has no real embeddings and that the first two co-

ordinates in LR correspond to conjugate embeddings. Write a = (a1, a2, . . . , adL)
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and take v(a) =
(
a1
|a1| ,

a2
|a2| , 0, . . . , 0

)
M−1. Note that a1 = a2 since a ∈ LR.

Using Lemma 13 with V1 = v and x0 + nM = a we see that

dk

dtk
g̃(0) =

∑
i1,...,ik

16ij6dL

Di1 . . . DikF (a)vi1 . . . vik

=
k∑
j=0

k!

j!(k − j)!
Dj

1D
k−j
2 F (a)

(
a1

|a1|

)j (
a2

|a2|

)k−j
=
k!F (a)

|a1|k
∑
j

(
δ
j

)(
δ

k − j

)
=
k!F (a)

|a1|k

(
2δ
k

)

where
(
δ
j

)
is the coefficient of xj in the Taylor series expansion of (1 + x)δ

and the last equality follows by writing (1 + x)2δ = (1 + x)δ · (1 + x)δ

in two ways as series and comparing the coefficients of xk. Since a ∈ R,

c1P < |ai| < c2P for each i. We thus obtain

∣∣∣∣ dkdtk g̃(0)

∣∣∣∣ > cδdL1 c−k2 P δdL−kk!

∣∣∣∣ (2δ
k

) ∣∣∣∣.
If L has at least one real embedding, take v = (1, 0, . . . , 0)M−1. In this

case, Lemma 13 gives

∣∣∣∣ dkdtk g̃(0)

∣∣∣∣ =
∣∣δ(δ − 1) · · · (δ − k + 1)F (a)a−k1

∣∣ > cδdL1 c−k2 P δdL−kk!

∣∣∣∣ (δk
) ∣∣∣∣.

Since δ ∈ (1/2, 1) and is fixed, we obtain the claimed lower bound. �

Lemma 15. Given a = x0 +nM ∈ R where n ∈ ZdL, there exists a matrix

U ∈ SL(dL,Z) such that for any k > 1,

∂kgU(nU−1)

∂xk1
� P δdL−k,

∂λi(nU
−1)

∂x1

� P−1 (i = 1, . . . , r)

where gU is given by (2.14) and the implied constants depend on dL and ∆L,

with the first one also depending on k.

Proof. Using Lemma 14 we find a vector ṽ = (ṽ1, . . . , ṽdL) ∈ RdL . Put

v = ṽM = (v1, . . . , vdL). Suppose that for some Q > 0, there exists ũ =

(ũ1, . . . , ũdL) ∈ ZdL such that |ũi−Qṽi| < 1. Put u = ũM and w = u−Qv =
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(w1, . . . , wdL). By Lemma 13 we see that

dk

dtk
g̃ũ(0) =

∑
i1,...,ik

16ij6dL

Di1 . . . DikF (a)
k∏
l=1

(Qvil + wil)

=
∑
i1,...,ik

16ij6dL

Di1 . . . DikF (a)
(
Qkvi1 · · · vik +

k∑
l=1

Qk−lAl(v,w)
)

= Qk d
k

dtk
g̃ṽ(0) +

k∑
l=1

Qk−l
∑
i1,...,ik

16ij6dL

Di1 . . . DikF (a)Al(v,w).

Let’s write Di1 . . . DikF (a) by grouping the same indices as Dl1
j1
. . . Dlr

jr
F (a)

with ji’s distinct and
∑

i li = k. Since a ∈ R, c1P < |ai| < c2P for each i.

Thus, we have

|Dl1
j1
. . . Dlr

jr
F (a)| = |F (a)|

∏
i

|δ(δ − 1) · · · (δ − li + 1)|
|ai|li

6 (c2P )δdL
∏
i

|δ(δ − 1) · · · (δ − li + 1)|
(c1P )li

6 c3P
δdL−k

for some constant c3 = c3(k, dL,∆L) > 0. Owing to the way ṽ is constructed

in Lemma 14, each |vi| 6 1. Furthermore, each wi is bounded only in terms

of dL and ∆L. Therefore, there exists a constant c4 = c4(k, dL,∆L) such

that |Al(v,w)| 6 c4. We thus conclude from Lemma 14 that∣∣∣∣ dkdtk g̃ũ(0)

∣∣∣∣ > Qk

∣∣∣∣ dkdtk g̃ṽ(0)

∣∣∣∣− k∑
l=1

Qk−l

∣∣∣∣∣ ∑
i1,...,ik

16ij6dL

Di1 . . . DikF (a)Al(v,w)

∣∣∣∣∣
> P δdL−k

(
c̃1Q

k − Ck−1Q
k−1 − . . .− C1Q− C0

)
for some constants Ci = Ci(k, dL,∆L) > 0.

Next, letGU(x) = `(x0+xUM)E−1. Note that λi(x) is the ith coordinate

of this function. Writing a = (a1, . . . , adL) and u = (u1, . . . , udL) we derive

that

∂GU(x)

∂x1

∣∣∣
x=nU−1

=
(

Re
(u1

a1

)
, . . . ,Re

(ur
ar

))
E−1

where Re(z) denotes the real part of z. Recalling that ui = Qvi + wi we

conclude as before that∣∣∣∣∂λi(nU−1)

∂x1

∣∣∣∣ > P−1(C̃1Q− C̃0)

for some positive constants C̃1 and C̃0 that depend only on dL and ∆L.
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It follows that there exists a constant Q0 = Q0(k, dL,∆L) > 0 such that

both polynomials in Q above are positive for Q > Q0. If all the components

of ṽ are equal we fix some Q > Q0 and let ũ1 = dQṽ1e and ũi = bQṽ1c ( if

any ũi turns out to be zero, we can instead choose all ũi = 1). Otherwise, find

the first index i0 such that |ṽi0 | = maxi |ṽi| and choose Q = (p− 1/2)/|ṽi0|,
where p is the smallest prime > Q0|ṽi0|. Choose ũi0 = ±p depending on

the sign of ṽi0 , and the rest of the ũj’s as either the ceiling or the floor of

Qṽj so that 0 < |ũj| < |ũi0 | = p for j 6= i0. In either case, we can find a

vector ũ ∈ ZdL that satisfies |ũi−Qṽi| < 1 and that gcd(ũ1, . . . , ũdL) = 1. It

follows from [11, Corollary II.1] that ũ then can be completed to a matrix

U ∈ SL(dL,Z) with ũ as the first row. Thus, the claimed lower bound

follows by noting that

∂kgU(nU−1)

∂xk1
=

dk

dtk
g̃ũ(0)� P δdL−k.

�

Suppose now that x0 +nM ∈ PΓ0 for some n ∈ B∩ZdL . It follows from

Lemma 15 with a = x0 + nM that there exists a matrix U such that the

inequality ∣∣∣∣ ∂k∂xk1 gU(x)

∣∣∣∣ > c3P
δdL−k

holds for some positive constant c3 = c3(k, dL,∆L) where x = nU−1. If x′

is any other point in BU−1 it follows from the Mean Value Theorem for

integrals, Lemma 13 and the fact that x0 +BM ⊆ R that

∂k

∂xk1
gU(x)− ∂k

∂xk1
gU(x′) =

∫ 1

0

d

dt

(
∂k

∂xk1
gU (tx + (1− t)x′)

)
dt

� Y P δdL−k−1

where the implied constant, say c4, depends on k, dL, and ∆L. In particular,

it does not depend on the choice of x′ ∈ BU−1. Thus, for any point x′ ∈
BU−1, the lower bound ∣∣∣∣ ∂k∂xk1 gU(x′)

∣∣∣∣ > c3

2
P δdL−k

holds provided that 1 6 Y 6 c3P/(2c4). This condition imposes a further

restriction on N ; namely, that N2−δ−η > Na(2c4/c3)dL . Assuming η < 1/dL

and that Na is bounded (follows from Lemma 7), it follows that for suffi-

ciently large N , and all x′ ∈ BU−1,

∂k

∂xk1
gU(x′) � P δdL−k
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where the implied constants depend only on k, dL and ∆L provided 1 6

Y � P . Using the same argument we can also show that λi’s are monotonic

in the first variable on BU−1.

3. Proof of Theorem 1

By the definition of the conductor (cf. [10, Ch. VI - 6.3 and 6.4]), K f/K

is the smallest ray class field containing the abelian extension K/Q. Fur-

thermore, every ray class field over Q corresponds to a cyclotomic extension.

In particular, it follows from [10, Proposition 6.7] that there is an integer q

such that f = (q) and K f is the qth cyclotomic extension of Q.

Fix σ0 ∈ G and put A0 = {σ ∈ Gal(L/Q) : σ|K = σ0}, where σ|K is the

restriction of σ to K. Then, it follows from [6, Ch. 3, Property 2.4] that

the set π(K, {σ0}) is the disjoint union of the sets π(L, {σ}) for σ ∈ A0.

Therefore, we conclude that

πc(K, {σ0}, x) =
∑
σ∈A0

πc(L, {σ}, x).

Since each σ ∈ A0 corresponds to some aσ ∈
(
Z/qZ

)∗
, we have πc(L, {σ}, x) =

πc(x; q, aσ), where the latter counts the Piatetski-Shapiro primes not exceed-

ing x that are congruent to aσ modulo q.

By [9, Corollary 11.21] there exists an absolute constant D > 0 and a

constant x0(f) such that for x > x0(f), we have∑
p6x

p≡aσ mod q

(
(p+ 1)δ − pδ

)
=

δ

ϕ(q)
li(xδ) +O

(
xδ exp(−D

√
log x)

)
where the implied constant is absolute. Furthermore, as in the proof of

Theorem 2, choosing H = N1−δ+ε we derive that the difference

πc(x; q, aσ)−
∑
p6x

p≡aσ mod q

(
(p+ 1)δ − pδ

)
is

�
∑

16N<x
N=2k

N δ−1
∑
h6H

max
N ′∈(N,N1]

∣∣∣∣∣ ∑
N<n6N ′

n≡aσ mod q

e(hnδ)Λ(n)

∣∣∣∣∣+ xδ exp(−D
√

log x)

where D is the same constant above. Thus, to finish the proof it suffices to

show that for any N ′ ∈ (N,N1],∑
h6H

∣∣∣∣∣ ∑
N<n6N ′

n≡aσ mod q

e(hnδ)Λ(n)

∣∣∣∣∣� N exp(−D
√

logN).
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Using Vaughan’s identity (see, e.g., [5, Proposition 13.4]) and assuming that

v = u < N we obtain ∑
N<n6N ′

n≡aσ mod q

e(hnδ)Λ(n) = S1 + S2 + S3

where

S1 = −
∑

N<n6N ′
n≡aσ mod q

e(hnδ)
∑
n=cd
c,d>v

Λ(c)
∑
d=ab
b6v

µ(b),

S2 =
∑

N<n6N ′
n≡aσ mod q

e(hnδ)
∑
n=ab
b6v

µ(b) log a,

and

S3 = −
∑

N<n6N ′
n≡aσ mod q

e(hnδ)
∑
n=abc
b,c6v

µ(b)Λ(c).

Using Dirichlet characters χ modulo q we obtain

S1 = − 1

ϕ(q)

∑
χ mod q

χ(aσ)
∑

N<cd6N ′
c,d>v

χ(d)

(∑
d=ab
b6v

µ(b)

)
χ(c)Λ(c)e(h(cd)δ),

where ϕ is Euler’s totient function. By [4, Lemma 4.13] we conclude as in

the non-abelian case that

N−4ε/3
∑
h

|S1| � N2−1/12−δ +N2−δv−1/2.

For S2, we use additive characters modulo q to obtain

S2 =
1

q

q−1∑
k=0

e(−kaσ/q)
∑
b6v

µ(b)
∑
a

N/b<a6N ′/b

e(f(a)) log a,

where f(x) = hbδxδ + kbx/q. Since |f ′′(x)| � hb2N δ−2 for N/b < x 6 N ′/b

we conclude from [4, Theorem 2.2] that∑
a

N/b<a6N ′/b

e(h(ab)δ + kab/q)� N δ/2h1/2 + h−1/2b−1N1−δ/2.

Using partial summation and then summing over b 6 v followed by h 6 H

we obtain∑
h

|S2| �
(
N δ/2H3/2v +H1/2N1−δ/2

)
log2N � N3/2−δ+2εv.
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Write S3 as −S4 − S5, where

S4 =
∑
d6v

∑
d=bc

µ(b)Λ(c)
∑

N/d<a6N ′/d
ad≡aσ mod q

e(h(ad)δ)

� logN
∑
d6v

∣∣∣∣∣ ∑
N/d<a6N ′/d
ad≡aσ mod q

e(h(ad)δ)

∣∣∣∣∣,
and

S5 =
∑

N<ad6N ′
ad≡aσ mod q
u<d6v2

e(h(ad)δ)
∑
d=bc
b,c6v

µ(b)Λ(c).

Applying [4, Lemma 4.13] once again we conclude as we did for S1 above

that

N−4ε/3
∑
h

|S5| � N2−δ−1/12 +N2−δv−1/2 +N3/2−δv.

Finally, we note that S4 can be handled exactly the same way as S2.

Choosing v = N δ−1/2−3ε with a sufficiently small ε and combining all the

estimates obtained above we see that∑
h6H

∣∣∣∣∣ ∑
N<n6N ′

n≡aσ mod q

e(hnδ)Λ(n)

∣∣∣∣∣� N exp(−D
√

logN),

as desired, provided that c ∈ (1, 12/11).

The proof of Theorem 1 is thus completed by noting that the number of

elements in A0 equals |Gal(L/K)| = ϕ(q)|∆K |−1.
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