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WARING’S PROBLEM WITH PIATETSKI-SHAPIRO NUMBERS

YILDIRIM AKBAL AND AHMET M. GÜLOĞLU

Abstract. In this paper, we investigate in various ways the representation of a
large natural number as a sum of a fixed power of Piatetski-Shapiro numbers, thereby
establishing a variant of the Hilbert–Waring problem with numbers from a sparse
sequence.

§1. Introduction. In 1770, Waring asserted (cf. [14]) without proof that every
natural number is the sum of at most four squares, nine cubes, 19 biquadrates,
and so on. His assertion was proved in 1909 by Hilbert [6], whose proof implies,
for each k > 2, the existence of the least number g(k) such that every natural
number is the sum of at most g(k) positive kth powers (the exact value of
g(k) is now known for any given k). A subsequent problem to which many
mathematicians have contributed is that of determining the least number G(k)
such that every sufficiently large integer can be represented as the sum of at
most G(k) kth powers of positive integers. It is known that G(2) = 4 (Lagrange,
1770) and G(4) = 16 [2]. As for other values of k, however, there are only upper
bounds available, the trivial one being G(k)6 g(k). Over the years, these bounds
have been progressively improved, and today there are considerably smaller
upper bounds than g(k) for large values of k.

In this work, motivated by the latter problem, we establish a variant of the
Hilbert–Waring theorem with numbers from the set Ac of Piatetski-Shapiro†
numbers defined by

Ac = {bmc
c : m ∈ N} (c > 1).

More precisely, we study the problem of representing every sufficiently large
integer N in the form

N = nk
1 + · · · + nk

s , with n1, . . . , ns ∈ Ac; ni > 1, (1)

for a fixed k > 2 and c > 1. In this setting it is natural to ask for the smallest
number of summands s = Gk(c) that would be needed for a given c. Indeed, for
k = 1, this has been done by several authors (see [1, 3, 8, 10, 11]). Unfortunately,
for k > 2, we cannot adapt the methods used therein for an arbitrary c > 1.
Instead, given s = s(k), we ask for the largest interval I ⊂ (1,∞) such that
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for any fixed c ∈ I , (1) holds for every large integer N . Our first result in this
direction is established by studying the number of such representations.

THEOREM 1. For k = 2, 3, 4, set t = t (k) = 2k−1, and for k > 4, let t be
any integer such that the inequality∫ 1

0

∣∣∣∣∑
n6X

e2π iαnk
∣∣∣∣2t

dα < C X2t−k+ε (2)

holds for some constant C = C(ε, k, t). Then, for any integer s > 2t , the
number of representations Rc(N ) of a positive integer N as in (1) satisfies the
asymptotic relation

Rc(N ) ∼
0(1+ 1/(ck))s

0(s/(ck))
S(N )N s/(ck)−1 (N →∞),

where S(N ) is the singular series in the classical Waring problem, provided c
is a fixed number satisfying 1 < c < 1+ (s − 2t)/dk(s) with

dk(s) =


3s + 4 if k = 2,
15s if k = 3,
95s + 199 if k = 4,
2tν0 + s(ν0 − 1) if k > 5,

(3)

where ν0 = ν0(k) in the last row is given by (12).

By [12, Theorems 4.3 and 4.6] the singular series satisfies S(N ) � 1 for the
values of s given in Theorem 1, which implies the existence of representations
for all sufficiently large integers, as desired.

Remark 1. For 2 6 k 6 4, the smallest exponent satisfying (2) is t = 2k−1,
and is a result of Hua’s inequality. For larger values of k, one can take, for
example, t = ds1(k)/2e or t = ds3(k)/2e, where si (k) is given by [19, Lemmas
10.2 and 10.4]. In particular, these results imply that (2) holds with t = k2

−k−4
for k > 6 and 2t > 2k2

− k4/3
+ O(k) for large k (cf. [19, Corollaries 1.6 and

1.7]). Lemmas 10.3 and 10.6 of [18] give further refinements of these results, and
Theorems 1.3, 1.4 and Corollary 10.5 provide their corresponding upper bounds.
It is worth mentioning that these refinements imply that for sufficiently large k, s
in Theorem 1 can be taken as small as 1.543k2. In fact, these new results provide
the smallest known values for t when k is small as well. For example, for k = 5,
t = 14 beats the exponent t = 16 provided by Hua’s inequality.

Theorem 1 is established via the Hardy–Littlewood circle method. As in the
classical case, we show in Lemma 8 that major arcs determine the asymptotic
behavior. In §3.2, minor arcs are shown to contribute negligibly in comparison
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provided the sequence determined by Ac is not too sparse. This is done by
combining upper bound estimates for the supremum

sup
α∈m

∣∣∣∣ ∑
16n6P
n∈Ac

e2π iαnk
∣∣∣∣, (4)

and the integral ∫
m

∣∣∣∣ ∑
16n6P
n∈Ac

e2π iαnk
∣∣∣∣2t

dα (5)

over the minor arcs m. The exponential sum in (4) is approximated in Lemma 5
by the weighted sum ∑

n6P

c−1n1/c−1e2π iαnk
.

The error in the approximation is handled by the van der Corput method (see
Lemma 2) for k = 2 and 3, which works only for these two cases. For larger k,
after a shifting argument is used in Lemma 5 we apply Weyl-type inequalities
given by Lemmas 3 and 4. As for the integral in (5), looking at the main term
in the asymptotic relation, one would ideally expect it to be bounded by a
constant multiple of P2t/c−k , or even P2t/c−k−ε for some small ε > 0 (at least
for c not too large). Unfortunately, we are currently unable to achieve either
of these bounds. Instead, we use an analog of Hua’s inequality in Lemma 10 for
2 6 k 6 4, which provides a slight saving over Hua’s original inequality, thereby
yielding a relatively wider range for admissible c. For k > 4, we use the estimate
in (2). In either case, using these estimates in place of (5) comes at the cost of
undesirable restrictions on the range of c, leading to (3) in Theorem 1.

Another way to estimate (5) worth mentioning proceeds by showing that it is
bounded by Pk(k−1)/2 times the number of solutions to the system of equations

n j
1 + · · · + n j

t = n j
t+1 + · · · + n j

2t , j = 1, . . . , k, (6)

with each ni ∈ Ac∩[1, P]. As part of a rather general conjecture (the restriction
conjecture), it is claimed that for t > 1

2 k(k + 1), the number of solutions to (6)
is bounded by a constant multiple of P t (1+1/c)−k(k+1)/2 for any c > 1. Wooley
has very recently announced‡ that the conjectured upper bound for (6) holds for
t > k(k − 1). Although this would imply the stronger bound P(1+1/c)t−k+ε for
(5), the exponent t = k(k − 1) in this case is not small enough (in comparison
to those in Remark 1) to produce as large of a range for c as Theorem 1 claims.
Hence, this method proves to be weaker unless a different argument making
genuine use of minor arcs can be applied to relate (5) to (6), such as the one
in the proof of [17, Theorem 2.1] that uses the definition of minor arcs and
translation invariance of integers. In fact, it is this result that ultimately leads

‡ At the Analytic Number Theory Workshop held at the University of Oxford during September 28–
October 3, 2014.
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to the improvements mentioned in Remark 1. Unfortunately, since the set Ac
does not enjoy this property (translation invariance), we are currently unable to
adapt this technique.

In the next theorem, we show that the lower bound demands on the number of
variables can be significantly reduced for large k by requiring only the existence
of representations for all large N , which in turn increases the admissible range
of c.

THEOREM 2. To every sufficiently large k, there corresponds a positive
integer t0(k) satisfying

t0 6
k
2

(
log k + log log k + 2+ O

(
log log k

log k

))
(7)

such that, for s > 1 and t > t0 + 1, every sufficiently large integer can be
represented as in (1) using s + 2t variables from Ac provided

1 < c < 1+
s

2t (2ν0 − 1)+ s(ν0 − 1)
. (8)

Remark 2. It is assumed that 2t of the variables in Theorem 2 are smooth.
This in turn allows the use of smooth Weyl sums (which provide an extra
saving of order log k/k compared to ordinary Weyl sums) and their mean values,
which are combined in Lemma 11 to yield (7), reducing the number of variables
significantly. Unfortunately, since we cannot obtain an estimate for the quantities

sup
α∈m

∣∣∣∣ ∑
16n6P
n∈Ac

n smooth

e2π iαnk
∣∣∣∣ and

∫
m

∣∣∣∣ ∑
16n6P
n∈Ac

n smooth

e2π iαnk
∣∣∣∣2t

dα

that is as strong as the one for smooth Weyl sums, when estimating them we
are forced to remove the condition that n be in Ac, losing dependency on the
sequence. As a result, the only saving on the range of c comes from the reduction
on the number of variables; that is, we cannot currently do better than (8). In
particular, taking s = 2 and t = t0 + 1 gives an interval for c of length

1
t0(2ν0 − 1)+ ν0 − 1

∼
2

27k3 log k
(k →∞).

In the theorem below, instead of all sufficiently large integers, we require that
almost all integers be represented by (1).

THEOREM 3. For sufficiently large k, there is an integer t0(k) > 0 satisfying
(7) such that, for s > 1 and t > d(t0 + 1)/2e, almost all integers can be
represented as in (1) using s + 2t variables from Ac provided (8) holds.

As a final remark, we would like to mention two relevant research problems.
One is to consider whether the range of c can be dramatically improved in the
theorems above for almost all c. The other is to establish a Waring–Goldbach
type of result using primes in Ac, which we shall leave to another paper.
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§2. Preliminaries and Notation.

Notation. Throughout the paper, we assume that k, m, and n are natural
numbers with k > 2, and p denotes a prime number. We write n ∼ N to mean
that N < n 6 2N . Furthermore, c > 1 is a fixed real number and we put δ = 1/c.

For any subset S of integers and a real number x , S(x) denotes the subset
S ∩ [1, x] of S , and #S(x) the number of elements of S(x).

Given a real number x , we write e(x) = e2π ix , {x} for the fractional part of
x , bxc for the greatest integer not exceeding x , and dxe for the least integer not
smaller than x .

For any function f , we put

1 f (x) = f (−(x + 1)δ)− f (−xδ) (x > 0).

We recall that for functions F and real non-negative G the statements F � G
and F = O(G) are equivalent to the statement that the inequality |F | 6 αG
holds for some constant α > 0. If F > 0 also, then F � G is equivalent to
G � F . We also write F � G to indicate that F � G and G � F . In what
follows, any implied constants in the symbols � and O may depend on the
parameters c, ε, k, s, t , but are absolute otherwise. In a slight departure from
convention, we shall frequently use ε (not ε) to mean a small positive number,
possibly a different one each time.

2.1. Preliminaries. The characteristic function of the set Ac is given by

b−nδc − b−(n + 1)δc =

{
1 if n ∈ Ac,

0 otherwise.
(9)

Putting ψ(x) = x − bxc − 1/2, we obtain

b−nδc − b−(n + 1)δc = (n + 1)δ − nδ +1ψ(n)
= δnδ−1

+ O(nδ−2)+1ψ(n). (10)

The following result due to Vaaler gives an approximation to ψ(x) (see, for
example, [4, Appendix]).

LEMMA 1. There exists a trigonometric polynomial

ψ∗(x) =
∑

16|h|6H

ahe(hx) (ah � |h|−1)

such that for any real x,

|ψ(x)− ψ∗(x)| 6
∑
|h|<H

bhe(hx) (bh � H−1).

Next, we state three lemmas needed for exponential sum estimates. The
proofs of first two can be found in [4, Theorem 2.8] and [12, Lemma 2.3],
respectively.
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LEMMA 2. Let q be a positive integer. Suppose that f is a real-valued
function with q + 2 continuous derivatives on some interval I . Suppose also
that for some λ > 0 and for some α > 1,

λ 6 | f (q+2)(x)| 6 αλ

on I . Let Q = 2q . Then∑
n∈I

e( f (n))� |I |(α2λ)1/(4Q−2)
+|I |1−1/(2Q)α1/(2Q)

+|I |1−2/Q+1/Q2
λ−1/(2Q)

where the implied constant is absolute.

LEMMA 3 (Weyl’s inequality). Let k be an integer with k > 2, α1, . . . ,

αk ∈ R. Suppose that there exist a ∈ Z and q ∈ N with (a, q) = 1 such that
|αk − a/q| 6 q−2. Then∑

x6X

e(α1x + · · · + αk xk)� X1+ε(q−1
+ X−1

+ q X−k)2
1−k
.

LEMMA 4. Let k be an integer with k > 4, and let α1, . . . , αk ∈ R. Suppose
that there exists a natural number j with 2 6 j 6 k such that, for some a ∈ Z
and q ∈ N with (a, q) = 1, one has |α j − a/q| 6 q−2 and q 6 X j . Then there
exists a σ(k) such that∑

x6X

e(α1x + · · · + αk xk)� X1+ε(q−1
+ X−1

+ q X− j )σ(k).

Remark 3. According to [19, Theorem 11.1], the exponent σ(k) in Lemma 4
can be taken such that σ(k)−1

= 2k(k − 2). This is improved, for k > 3, in [18,
Corollary 1.2] to σ(k)−1

= 2(k2
− 3k+ 3). Better yet, [20, Theorem 1.2] claims

that one can take σ(k)−1
= 2(k2

− 3k + 2).

LEMMA 5. For δ < 1,∑
n∈Ac(P)

e(αnk) =
∑
n6P

δnδ−1e(αnk)+ O(Pθ(k))

holds uniformly for α ∈ R, where

θ(k) =



δ

2
+

3
8

if k = 2 and c <
4
3
,

7δ
15
+

1
2

if k = 3 and c <
16
15
,

(δ + 1)(ν0 − 1)
2ν0 − 1

if k > 4 and c <
ν0

ν0 − 1
,

(11)
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and

ν0(k) =



2k(k + 2) if k = 4, 5,

3k + 2
kσ(3k/2)

if 2 | k, k > 6,

3k + 1
(k − 1)σ ((3k − 1)/2)

if 2 - k, k > 7,

(12)

in which σ(k) can be taken to be any of the exponents in Remark 3.

Proof. By (9) and (10),∑
n∈Ac(P)

e(αnk) =
∑
n6P

δnδ−1e(αnk)+
∑
n6P

e(αnk)1ψ(n)+ O(log P).

In order to bound the middle term on the right, we divide the range of summation
[1, P] into dyadic intervals of the form (N , 2N ]. Applying Lemma 1 on each
such interval, it is easy to show that (cf. [4, §4.6])∑

n∼N

e(αnk)1ψ(n)� A(N )+ B(N ),

where

A(N ) = H−1
N

∑
|h|<HN

∣∣∣∣∑
n∼N

e(hnδ)
∣∣∣∣

and

B(N ) = N δ−1
∑

16|h|6HN

max
N<N ′62N

∣∣∣∣ ∑
N<n6N ′

e(αnk
+ hnδ)

∣∣∣∣. (13)

Using the exponent pair (1/2, 1/2) (cf. [4, Ch. 3]), we obtain the estimate∑
n∼N

e(hnδ)� |h|1/2 N δ/2
+ |h|−1 N 1−δ (h 6= 0).

From now on, we shall write

HN = N 1−δ+ν

and choose ν optimally. Thus, we have obtained so far that

A(N )� N H−1
N + H1/2

N N δ/2
+ H−1

N log HN N 1−δ
� N δ−ν

+ N (1+ν)/2.

It remains to estimate B(N ). Put

f (x) = αxk
+ hxδ.



WARING’S PROBLEM WITH PIATETSKI-SHAPIRO NUMBERS 531

For x ∼ N ,
| f (k+1)(x)| � |h|N δ−k−1

= λ,

say. For k = 2 and c < 4/3, we choose ν = 1
2 (δ−3/4) and apply Lemma 2 with

q = 1. In this case, we obtain

B(N )� N δ−1
∑

h

(N 1/2+δ/6
|h|1/6 + N 3/4

+ N 1−δ/4
|h|−1/4)

� N 3/4+ν
= N δ−ν .

The case k = 3 follows similarly. In either case, combining the estimates for
A(N ) and B(N ) and summing over N 6 P yields the desired estimate.

Assume that k > 4 and N � 1, and put M = N (|h|N δ)−1/(k0+1), where
k0 > k + 1 is an integer to be chosen optimally. For each positive integer m with
m 6 M , ∑

N<n6N ′
e( f (n)) =

∑
N<n6N ′

e( f (n + m))+ O(M).

Thus, summing over m ∈ [1,M],∑
N<n6N ′

e( f (n))�
1
M

∑
N<n6N ′

∣∣∣∣ ∑
m6M

e( f (n + m))
∣∣∣∣+ M.

Let R j (x) = (1 + x)δ − F j (x), where F j (x) =
∑

06i6 j
(
δ
i

)
x i is the j th Taylor

polynomial of (1+ x)δ . Then, taking x = m/n,

f (n + m) = α(n + m)k + hnδ(Fk0(m/n)+ Rk0(m/n))
= Pk0(m)+ hnδRk0(m/n)

where Pk0(x) is a polynomial of degree k0 whose (k + 1)th coefficient is, say,
ck+1, where

ck+1 = hnδ−k−1
(

δ

k + 1

)
.

Noting that R′k0
(x) � |x |k0 uniformly for |x | 6 M/N , we derive by partial

integration that∑
m6M

e( f (n + m))� (1+ |h|N δ(M/N )k0+1︸ ︷︷ ︸
61

) max
M ′6M

∣∣∣∣ ∑
16m′6M ′

e(Pk0(m
′))

∣∣∣∣.
Note that∑

16m′6M ′
e(Pk0(m

′)) =

∫ 1

0

∑
16m6M

e(Pk0(m)+ γm)
∑

16m′6M ′
e(−γm′) dγ

� sup
γ∈[0,1)

∣∣∣∣ ∑
16m6M

e(Pk0(m)+ γm)
∣∣∣∣ log M.
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By conjugating the last sum above if necessary, one can assume that ck+1 > 0.
Note that ck+1 has the rational approximation |ck+1 − 1/q| 6 q−2, where
q = b1/ck+1c. Furthermore, for n ∼ N , we have q � N k+1−δ

|h|−1, and the
inequalities

q−1 < N−1 < M−1
� q M−k−1

� (|h|N δ)(k−k0)/(1+k0) < 1

hold. Thus, for k = 4 and k = 5 taking k0 = k + 1 and applying Lemma 3, and
for larger k applying Lemma 4, we derive that∑

16m6M

e(Pk0(m)+ γm)� M1+ε(|h|N δ)−ν
−1
0

uniformly for any γ ∈ [0, 1), where ν0 = 2k(k + 2) for k = 4, 5, and

ν0 =
1+ k0

k0 − k
σ(k0)

−1

for k > 6. Inserting this bound above then yields∑
N<n6N ′

e( f (n))� M + N 1+ε(|h|N δ)−ν
−1
0 � N 1+ε(|h|N δ)−ν

−1
0 ,

since by definition of ν0 the second term clearly dominates. This leads to the
estimate

B(N ) = N δ−1
∑

16|h|6HN

N 1+ε(|h|N δ)−ν
−1
0 � N ε+(1+ν)(1−ν−1

0 ).

It is not too hard to check that for k > 6, choosing

k0 = k0(k) =

{
3k/2 if 2 | k, k > 6,
(3k − 1)/2 if 2 - k, k > 7,

gives the optimal value for ν0 for any choice of σ(k) in Remark 3. Choosing

ν =
ν0(δ − 1)+ 1

2ν0 − 1

yields under the assumption c < ν0/(ν0 − 1) that A(N ) + B(N ) � N δ−ν .
Finally, summing over N 6 P , we obtain the desired result. �

§3. Proof of Theorem 1. Let Rc(N ) denote the number of representations of
a positive integer N as in (1) for a fixed k > 2 and c > 1. Then

Rc(N ) =
∫
U

S(α)se(−αN ) dα,

where U is any interval of unit length and

S(α) =
∑

n∈Ac(P)

e(αnk) with P = bN 1/k
c.
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3.1. Major arcs.

Definition 1. For fixed η ∈ (0, 1), define

Mη(a, q) = {α ∈ R : |α − a/q| 6 q−1 Pη−k
}.

Let Mη be the union of all Mη(a, q) where a, q are coprime integers such that
1 6 a 6 q 6 Pη. Note that the sets Mη(a, q) are pairwise disjoint and are
contained in Uη = (Pη−k, 1+ Pη−k

].

We recall the following familiar quantities from the classical Waring’s
problem

S(a, b; q) =
q∑

m=1

e
(

amk
+ bm
q

)
, S(a, q) = S(a, 0; q).

By [12, Lemmas 4.1, 4.2] the estimates

S(a, b, q)� q1/2+ε gcd(b, q) and S(a, q)� q1−1/k (14)

hold for gcd(a, q) = 1.

LEMMA 6. For α ∈Mη(a, q) with gcd(a, q) = 1 and 1 6 a 6 q 6 Pη,

Tδ(α) = v(α − a/q)+ O(q1/2+2ε),

where
Tδ(α) =

∑
n6P

δnδ−1e(αnk), v(z) = q−1S(a, q)I (z),

and

I (z) =
∫ N 1/k

0
δxδ−1e(zxk) dx .

Proof. Let β = α − a/q and write

Tδ(α) = q−1
q∑

−q/2<b6q/2

S(a, b; q)F(b)

where
F(b) =

∑
n6P

δnδ−1e(βnk
− bn/q).

Assume that β 6= 0. Then, for b = 0, we use [7, Lemma 8.8] to get

F(0) =
∫ P

0
δxδ−1e(βxk) dx + O(1) = I (β)+ O(1).

For b 6= 0, and sufficiently large P ,

θ 6 |kβxk−1
− b/q| 6 1− θ,

where θ = (2|b| − 1)/(2q). Thus, it follows from [7, Corollary 8.11] that
F(b) � q/|b|. The result then follows upon combining these estimates with
those given by equation (14). �
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LEMMA 7. Given ν ∈ (0, 1), uniformly for α ∈Mη(a, q) with gcd(a, q) = 1
and 1 6 a 6 q 6 Pη, we have

S(α)− v(α − a/q)� Pδ−ν + P(1+η+3ν)/2+ε,

provided that δ > max(η, ν).

Proof. It follows from the proof of Lemma 5 that

S(α)− Tδ(α)� Pδ−ν + P(1+ν)/2 +
∑

N=2l6P

B(N ), (15)

where B(N ) is given by (13). As we did in the proof of the previous lemma, we
can write∑

N<n6N ′
e(hnδ + αnk) = q−1

∑
−q/2<b6q/2

S(a, b; q)
∑

N<n6N ′
e(gb(n)),

where gb(n) = βnk
+ hnδ − bn/q . Since δ > η, the inequality

k(k − 1)Pη−δq−1 < δ(1− δ)/2

holds for sufficiently large P . Therefore, for n ∼ N and α ∈Mη(a, q),

2δ−2

2
δ(1− δ)|h|N δ−2 6 |g′′b (n)| 6

3
2
δ(1− δ)|h|N δ−2.

Using Lemma 2 (with q = 0 and λ = |h|N δ−2) then yields∑
N<n6N ′

e(hnδ + αnk)� q1/2+2ε(Nλ1/2
+ λ−1/2).

Thus, using the above estimate in (13) and recalling that q 6 Pη, we derive that∑
N

B(N )� q1/2+2ε
∑

N

N δ−1
∑

h

(N δ/2
|h|1/2 + |h|−1/2 N 1−δ/2)

� q1/2+2ε
∑

N

N δ−1(N δ/2+(3/2)(1−δ+ν)
+ N 1−δ/2+(1/2)(1−δ+ν))

� q1/2+2εP(1+3ν)/2

� P(1+η+3ν)/2+ε.

Finally, inserting this estimate into (15) and using Lemma 6, the result
follows. �

Before the next lemma we define

Sm(q) =
∑

16a6q
(a,q)=1

(q−1S(a, q))se(−ma/q) (s ∈ N,m ∈ Z)

and
S(m) =

∑
q>1

Sm(q).
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LEMMA 8. Assume that s > max(5, k + 2). If c satisfies

1 < c < 1+min
(

s − k − 1
k

,
1− η(1+ 10/s)
1+ η(1+ 10/s)

)
, (16)

then there is a small positive ρ = ρ(c, s, k) such that, uniformly for 1 6 m 6N ,∫
Mη

S(α)se(−αm) dα = S(m)mδs/k−10(1+ δ/k)s

0(sδ/k)
+ O(N δs/k−1−ρ).

Proof. Given c satisfying (16), there exists an ε = ε(δ) > 0 such that the
inequality

δ >
1+ η(1+ 10/s)+ 7ε

2
holds. Taking ν = 2η/s + ε, we see that the inequalities

δ >
1+ η + 5ν

2
+ ε > η > ν

also hold. Thus, by Lemma 7,

S(α)− v(α − a/q)� Pδ−ν,

uniformly for α ∈Mη(a, q) with (a, q) = 1 and 1 6 a 6 q 6 Pη, so that

S(α)s − v(α − a/q)s � Ps(δ−ν)
+ Pδ−ν |v(α − a/q)|s−1.

Therefore, for any m ∈ Z, the contribution from∑
q6Pη

∑
a6q

(a,q)=1

∫
Mη(a,q)

(S(α)s − v(α − a/q)s)e(−αm) dα

is

� Pδs−k−ε
+ Pδ−ν

∑
q6Pη

∑
a6q

(a,q)=1

|q−1S(a, q)|s−1
∫
|β|6Pη−k/q

|I (β)|s−1 dβ.

The estimate I (β) � min(N δ/k, |β|−δ/k), together with [12, Lemma 4.9],
implies that for s > max(5, k + 2) and δ > k/(s − 1), the last term is
� Pδs−k−2η/s .

Substituting β = α − a/q into the integral in∑
q6Pη

∑
a6q

(a,q)=1

∫
Mη(a,q)

v(α − a/q)se(−αm) dα
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yields ∑
q6Pη

Sm(q)
∫
|β|6Pη−k/q

I (β)se(−βm) dβ.

It follows from [12, Lemma 4.8] that extending the range of the last integral to
R introduces an error

�

∑
q6Pη
|Sm(q)|

∫
β>Pη−k/q

β−δs/k dβ

� |m|εPδs−k+η(ε−1/k+max(0,1/k+1−δs/k)).

Furthermore, by the same lemma,∫
R

I (β)se(−βm) dβ ·
∑

q>Pη
Sm(q)� |m|εPδs−k+η(ε−1/k).

We have shown so far that for some small ρ = ρ(δ, s, k) > 0 and 1 6 m 6 N ,∫
Mη

S(α)se(−αm) dα = S(m)
∫
R

I (β)se(−βm)dβ + O(N δs/k−1−ρ).

It remains to evaluate the integral above. By making the change of variable
yN = xk in I (β), and then substituting γ = βN , we obtain∫
R

I (β)se(−mβ) dβ = (δk−1)sN δs/k−1
∫
R

(∫ 1

0
xδ/k−1e(γ x) dx

)s

e(−γ θ) dγ,

where θ = mN−1 6 1. The integral on the right can be written as

= lim
λ→∞

∫
[0,1]s

(x1 · · · xs)
δ/k−1

(∫ λ

−λ

e(γ (x1 + · · · + xs − θ)) dγ
)

dx1 · · · dxs

= lim
λ→∞

∫
R
φ(u)

(∫ λ

−λ

e(γ (u − θ)) dγ
)

du,

where

φ(u) =
∫
· · ·

∫
x1,...,xs−1∈[0,1]
u−16

∑
xi6u

(x1 · · · xs−1(u − x1 − · · · − xs−1))
δ/k−1 dx1 · · · dxs−1.

By the Fourier integral theorem (cf. [15, §9.7])

lim
λ→∞

∫
R
φ(u)

(∫ λ

−λ

e(γ (u − θ)) dγ
)

du = φ(θ).

Upon substituting xi = θyi , φ(θ) is given by

θ δs/k−1
∫
· · ·

∫
y1,...,ys−1∈[0,θ−1

]

06
∑

yi61

(y1 · · · ys−1(1− y1 − · · · − ys−1))
δ/k−1 dy1 · · · dys−1.
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Thus, using Dirichlet’s integral (see, for example, [15, §12.5]),

φ(θ) = θ δs/k−1 0(δ/k)s−1

0((s − 1)δ/k)

∫ 1

0
(1− x)δ/k−1x (s−1)δ/k−1 dx

= θ δs/k−1 0(δ/k)s−1

0((s − 1)δ/k)
0(δ/k)0((s − 1)δ/k)

0(sδ/k)

= θ δs/k−10(δ/k)s

0(sδ/k)
.

Inserting this above and using s0(s) = 0(1+ s), we have∫
R

I (β)se(−mβ) dβ = mδs/k−10(1+ δ/k)s

0(sδ/k)
,

and the claimed result follows. �

3.2. Minor arcs. Put mη = Uη\Mη. Recall that from the proof of Lemma 5,

S(α) = Tδ(α)+
∑
n6P

e(αnk)1ψ(n)+ O(log P),

By partial summation,∑
B<n6P

δnδ−1e(αnk)� Bδ−1 max
B<P ′6P

∣∣∣∣ ∑
B<n6P ′

e(αnk)

∣∣∣∣
� Bδ−1 sup

γ∈[0,1]

∣∣∣∣ ∑
16n6P

e(αnk
+ γ n)

∣∣∣∣ log P.

Given α ∈ mη, Dirichlet’s approximation yields coprime integers a, q with

1 6 a 6 q 6 Pk−η, |α − a/q| 6 q−1 Pη−k .

Since α ∈ mη, by definition q > Pη. By Lemma 3 the estimate∑
n6P

e(αnk
+ γ n)� P1−η21−k

+ε

holds for k > 2, and uniformly for γ ∈ [0, 1). Choosing B = P1−η21−k
yields

the bound

Tδ(α)� Bδ + Bδ−1 P1+ε−η21−k
� Pδ(1−η21−k)+ε. (17)

If, instead of Lemma 3, we use Lemma 4, then

Tδ(α)� Pδ(1−ησ(k))+ε (18)

uniformly for α ∈ mη, which will be used in the proof of Theorem 2 and 3.
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3.2.1. Small k. We start with an analog of Hua’s inequality. For any
arithmetic function f , we define

(1y f )(n) := f (n + y)− f (n),
(1yv,...,y1 f )(n) := (1yv1yv−1,...,y1 f )(n) (v > 1),

and
Sv(y1, . . . , yv; f ) =

∑′

n

e(α(1yv,...,y1 f )(n)),

where 6′ indicates that the sum runs over n such that n +
∑
ξi yi ∈ Ac(P) for

all 2v v-tuples (ξ1, . . . , ξv) with ξi = 0, 1.

LEMMA 9. For any k > 1, and v > 1,

|S(α)|2
v

� P2v−v(1−δ)−1
+ P2v−v−1 Re

∑
· · ·

∑
16yi6P
i=1,...,v

Sv(y1, . . . , yv; nk).

Proof. For any arithmetic function f ,∣∣∣∣ ∑
n∈Ac(P)

e(α f (n))
∣∣∣∣2 = 2 Re

∑
16y6P

S1(y; f )+ O(Pδ).

Thus, the result follows for v = 1 upon taking f (n) = nk . Assuming that the
result holds for a certain v > 1, we obtain, by the Cauchy–Schwarz inequality,

|S(α)|2
v+1
� P2(2v−v(1−δ)−1)

+ P2(2v−v−1)
∣∣∣∣∑ · · ·

∑
y1,...,yv6P

Sv(y1, . . . , yv; nk)

∣∣∣∣2
� P2v+1

−2v(1−δ)−2
+ P2v+1

−(v+1)−1
∑
· · ·

∑
y1,...,yv6P

|Sv(y1, . . . , yv; nk)|2.

The result follows upon noting that

|Sv(y1, . . . , yv; nk)|2 = 2 Re
∑

16yv+16P

Sv+1(y1, . . . , yv, yv+1; nk)+ R,

where
R �

∑
n,n+yi∈Ac(P)

i=1,...,v

1,

and hence ∑
y1,...,yv6P

R � (#Ac(2P))v+1
� Pδ(v+1).
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LEMMA 10. For any fixed ε > 0 and 1 6 v 6 k,

Iv :=
∫ 1

0
|S(α)|2

v

dα � P2v−v+(δ−1)(v2
−v+2)/2+ε.

Proof. The result holds for v = 1, as I1 = #Ac(P)� Pδ . Assuming that the
result holds for a certain 1 6 v < k, we derive from Lemma 9 that

Iv+1� P2v−v−1
∑

y16P

· · ·

∑
yv6P

∫ 1

0
Sv(y1, . . . , yv; nk)|S(α)|2

v

dα

+ P2v−v(1−δ)−1 Iv.

The integral above, together with the sums over y1, . . . , yv , counts the solutions
of

(1yv,...,y1 xk)(n)+ nk
1 + · · · + nk

2v−1 · · · − mk
1 − mk

2 · · · − mk
2v−1 = 0,

where ni ,mi ∈ Ac(P). Since each yi divides (1yv,...,y1 xk)(n) and since this
function is strictly increasing, we see that for any given 2v-tuples of ni and mi ,
there are at most Pε choices for the yi , and at most one choice of n such that the
above equation holds. We thus conclude that

Iv+1� P2v−v(1−δ)−1 Iv + P2v−v−1+δ2v+ε

� P2v−v(1−δ)−1+2v−v+(δ−1)(v2
−v+2)/2+ε

+ P2v−v−1+δ2v+ε

� P2v+1
−(v+1)+(δ−1)((v+1)2−(v+1)+2)/2+ε,

where the last estimate follows as δ < 1. The bound for Ik is obtained by
inserting v = k − 1 above. �

We are now ready to prove Theorem 1 in the case 2 6 k 6 4. By Lemma 5
and equation (17),

sup
α∈mη
|S(α)| � Pθ(k) + Pδ(1−η21−k)+ε,

provided c satisfies the condition given by (11). Writing θ(k) = akδ + bk and
applying Lemma 10, we derive that for s > 2k ,∫

mη

|S(α)|s dα 6 sup
α∈mη
|S(α)|s−2k

∫ 1

0
|S(α)|2

k
dα � Pδs−k−ρ (19)

for some small ρ > 0, provided c satisfies (11) and 1 < c < 1+∆(s) with

∆(s) = (s − 2k)min
(
η21−k

2k −3k
,

1− ak − bk

(s − 2k)bk + 2k −3k

)
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and 3k = (k2
− k + 2)/2. Choosing

η =
2k−1(1− ak − bk)(2k

−3k)

2k −3k + bk(s − 2k)

balances the quantities in the definition of∆(s) and yields the range given by (3).
Furthermore, with this choice of η and assuming that 1 < c < 1+∆(s), one can
easily check for 2 6 k 6 4 that both (11) and (16) hold. Therefore, Theorem 1
follows upon combining Lemma 8 and the minor arc estimate (19) in the case
2 6 k 6 4.

3.2.2. Large k. Assume that k > 5. Recall that

S(α) = Tδ(α)+
∑
n6P

e(αnk)1ψ(n)+ O(log P).

Combining Lemma 5, (17) and (18), we obtain, for α ∈ mη,

S(α)� Pδ(1−ηλ(k))+ε + Pθ(k),

where λ(5) = 2−4 and λ(k) = σ(k) for k > 6, provided that c satisfies (3).
Choosing η = 1/4, we see that the second term dominates. By considering the
underlying Diophantine equations, we note that∫ 1

0
|S(α)|2t dα 6

∫ 1

0
|T1(α)|

2t dα.

Therefore, assuming that (2) holds for some t , we derive that∫
mη

|S(α)|s 6 sup
α∈mη
|S(α)|s−2t

∫ 1

0
|T1(α)|

2t dα � Pδs−k−ρ

for some ρ > 0, provided that (3) holds. Note that this condition on c implies
the one in (3), which in turn implies (16) with our choice of η. Therefore, taking
m = N in Lemma 8 completes the proof of Theorem 1.

§4. Proof of Theorem 2. Let AR denote the set of R-smooth numbers,

AR = {n ∈ N : p | n ⇒ p 6 R},

and set Ac,R = AR ∩Ac. Let Rc(N ) denote the number of representations of a
positive integer N as

N = nk
1 + · · · + nk

s + mk
1 + · · · + mk

2t ,

where n1, . . . , ns ∈ Ac and m1, . . . ,m2t ∈ Ac,R , so that

Rc(N ) =
∫
U

S(α)sU (α)2t e(−αN ) dα,
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where U is any unit interval and

S(α) =
∑

n∈Ac(P)

e(αnk), U (α) =
∑

n∈Ac,R(P)

e(αnk).

Using Definition 1 (see §3.1), we define the major arcs Mη with η = 1/4, fix
the unit interval Uη, set mη = Uη\Mη and define the corresponding integrals

Rmη(N ) =
∫
mη

S(α)sU (α)2t e(−αN ) dα

and
RMη

(N ) =
∫
Mη

S(α)sU (α)2t e(−αN ) dα.

Here, the choice 1/4 for η is not crucial.

LEMMA 11. There is a positive integer k0 such that whenever k > k0, one can
find an integer t0(k) > 0 satisfying (7) and a κ(k) > 0 such that for 2 6 R 6 Pκ ,
and for any real number t with t > t0(k),∫ 1

0
|T (α)|2|V (α)|2t dα � P2+2t−k,

where

T (α) = T1(α) =
∑

16n6P

e(αnk), V (α) =
∑

n∈AR(P)

e(αnk).

Proof. Let us denote the integral to be estimated by L . Let m denote the set
of real numbers α such that whenever a ∈ Z, q ∈ N, (a, q) = 1, and |α−a/q| 6
q−1 P1−k , one has q > P . Then, when κ1 = κ1(ε, k) is a sufficiently small
positive number and 2 6 R 6 Pκ1 , we have by [16, Theorem 1.1]

sup
α∈m
|V (α)| �ε,k P1−σk+ε,

where, when k is large, σ−1
k = k(log k+O(log log k)). Thus, following the proof

of [16, Theorem 5.1] and the remark that follows it, we conclude that∫
m
|T (α)|2|V (α)|2t dα � P2+2t−k−ρ

for some small positive ρ and R 6 Pκ2 for a sufficiently small κ2, whenever
t > t0 = v + d1v+1/(2σk)e, where

v = b1
2 k(log k + log log k + 1)c and 1v+1 6 1/log k.

This gives the desired upper bound for t0.
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Using the classical major arc estimate∫
M
|T (α)|v dα � Pv−k (v > 2k + 1)

together with Hölder’s inequality, we obtain

L � P2+2t−k
+ L2t/(2+2t)

(∫
M
|T (α)|2+2t dα

)2/(2+2t)

� P2+2t−k
+ L2t/(2+2t)(P2+2t−k)2/(2+2t),

for sufficiently large k, from which one can derive the claimed upper bound
for L . �

LEMMA 12. Let t0, k0 and κ be as in Lemma 11. Assume that k > k0, s > 1,
and t > t0 + 1. If c satisfies (8), then there is a small number ρ depending on c
and k such that

Rmη(N )� N δ(s+2t)/k−1−ρ .

Proof. We have

Rmη(N ) 6 sup
α∈mη
|S(α)|s

∫
mη

|U (α)|2t dα.

By replacing the integral above by one over [0, 1] and interpreting the result in
terms of the underlying Diophantine equation and then using Lemma 11, we see
that ∫

mη

|U (α)|2t dα 6
∫ 1

0
|T (α)|2|V (α)|2t−2 dα � P2t−k

whenever t > t0 + 1. For α ∈ mη, equation (18) and Lemma 5 yield

S(α)� Pδ(1−ησ(k))+ε + P(δ+1)((ν0−1)/(2ν0−1))+ε.

By our choice of η, we see that the second term dominates so that

Rmη(N )� Ps(δ+1)((ν0−1)/(2ν0−1))+ε+2t−k .

This implies that Rmη(N ) � P(s+2t)δ−k−ρ for some ρ > 0 provided c satisfies
(8), thereby establishing the claimed result. �

Next, we deal with RMη
(N ) using the pruning method in [13, §5]. Let

N(a, q) = {α : |α − a/q| 6 q−1W P−k
}.

We shall assume in what follows that W is a suitable power of log P . Put N
for the union of the N(a, q) for 1 6 a 6 q 6 W with (a, q) = 1. Note that
N(a, q) ⊂Mη(a, q) and N ⊂Mη.

Write RMη
= RN + RMη\N, where

RMη\N(N ) =
∫
Mη\N

S(α)sU (α)2t e(−αN ) dα.
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LEMMA 13. Assume that s > 2 and t > t0+1, where t0 is given by Lemma 11.
If c satisfies (8) and (16) (in which s is to be replaced by 2+ 2t), then

RMη\N(N )� P(2t+s)δ−k W−λ

for some λ > 0.

Proof. For any c satisfying (16), there exists an ε = ε(c) > 0 such that for
any α ∈Mη(a, q),

|S(α)|2+2t
� |v(α − a/q)|2+2t

+ Pδ(2+2t)−2η−ε .

This implies, upon using [12, Lemma 4.9], that∫
M
|S(α)|2+2t dα� P(2t+2)δ−k−ε

+P(2+2t)δ−k W−λ� P(2+2t)δ−k W−λ (20)

for some λ > 0 if M =Mη\N, and for λ = 0 if M =Mη. Put

L =
∫ 1

0
|S(α)|2|U (α)|2t dα.

By Hölder’s inequality and Lemma 12,

L � P(2+2t)δ−k−ρ
+

(∫
Mη

|S(α)|2+2t dα
)2/(2+2t)(∫

Mη

|U (α)|2+2t dα
)2t/(2+2t)

.

Extending the range of the last integral to [0, 1] and interpreting the result in
terms of the underlying Diophantine equation, we see that it is bounded by L .
We thus conclude that L � P(2+2t)δ−k . By the trivial estimate S(α) � Pδ ,
together with Hölder’s inequality and (20), we derive that

RMη\N(N )� P(s−2)δ
(∫

Mη\N
|S(α)|2+2t dα

)2/(2+2t)

L2t/(2+2t)

� P(s+2t)δ−k W−λ
′

for some positive λ′, which proves the claim. �

LEMMA 14. For any c ∈ (1, 8/7), there is a κ(c) > 0 such that for each
α ∈ N(a, q), where 1 6 a 6 q 6 W with (a, q) = 1, and R = Pκ

′

with
0 < κ ′ 6 κ(c), we have

U (α) = w(α − a/q)+ O
(

W Pδ

log P

)
where w(z) = q−1S(a, q)J (z), with

J (z) =
∫ N 1/k

R
δxδ−1e(zxk)ρ

(
log x
log R

)
dx,

in which ρ is Dickman’s function.
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Proof. Write

U (α) =
∑

n∈AR(P)

e(αnk)(δnδ−1
+1ψ(n)+ O(nδ−2)).

Put β = α − a/q . Then

∑
n∈AR(P)

δnδ−1e(αnk) =

q∑
r=1

e(ark/q)
∑

R<n∈AR(P)
n≡r mod q

δnδ−1e(βnk)+ O(Rδ).

For R < x 6 P , ∣∣∣∣ ∑
n∈AR(x)

n≡r mod q

1−
1
q

#AR(x)
∣∣∣∣ 6 E(x),

where E(x) is the number of integers 1 6 n 6 x that are coprime with primes
not exceeding R. By [5, Theorem 2.2],

E(x)� x
∏
p<R

(1− 1/p)�
x

log R
.

Also (cf. [12, Lemma 5.3])

#AR(x) = xρ
(

log x
log R

)
+ O

(
x

log x

)
,

uniformly for R 6 x 6 Rλ for any fixed λ > 1. Thus, applying partial integration,

∑
R<n∈AR(P)
n≡r mod q

δnδ−1e(βnk) =

∫ P

R
δxδ−1e(βxk) d(q−1#AR(x)+ O(E(x)))

= q−1
∫ P

R
δxδ−1e(βxk)ρ

(
log x
log R

)
dx + O

(
W Pδ

log P

)
,

which gives the stated main term.
As in the proof of Lemma 5,∑
n∈AR(P)

e(αnk)1ψ(n)�
∑

q P1/3<N=2l6P

(A(N )+ B(N ))+ O(Pδ/log P),

where

A(N )� N H−1
N + H1/2

N N δ/2,

B(N ) = N δ−1
∑

16|h|6HN

max
N<N ′62N

∣∣∣∣ ∑
N<n6N ′

n∈AR

e(αnk
+ hnδ)

∣∣∣∣.
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Put β = α − a/q , and note that∑
N<n6N ′

n∈AR
n≡r mod q

e(βnk
+ hnδ)� (1+ |β|N k) max

N<N ′62N

∣∣∣∣ ∑
N<n6N ′

n∈AR
n≡r mod q

e(hnδ)
∣∣∣∣.

Suppose that gcd(r, q) = d . Using Dirichlet characters modulo q/d ,∑
N<n6N ′

n∈AR
n≡r mod q

e(hnδ) = ϕ(q/d)−1
∑

χ mod q/d

χ(dr−1)
∑

M<n6M ′
n∈AR

χ(n)e(Dnδ),

where D = hdδ , M = N/d , and M ′ = N ′/d . Suppose that R 6 P1/3 and K is a
number satisfying R 6 K < M . Note that this is possible since P1/3 < M 6 P .
By [13, Lemma 10.1] it follows that∑

M<n6M ′
n∈AR

χ(n)e(Dnδ) =
∑
p6R

∑
K/p<v6K
P−(v)>p
v∈AR

∑
u

M<uvp6M ′
u∈Ap

χ(puv)e(Dpδuδvδ),

where P−(n) denotes the smallest prime factor of n. The sums over u and v may
be split into� log2 M bilinear sums of the form

Sp(X, Y ) =
∑
v∼X

∑
u∼Y

aubve(Dpδuδvδ) (|au |, |bv| 6 1)

with

K/p 6 X 6 K , M/pK 6 Y 6 M ′/K , XY � M/p.

Using the method in the proof of [4, Lemma 4.13] with exponent pair (1/2, 1/2),
it follows that

Sp(X, Y ) log−1 M �
M1−δ/2

pD1/2 +
M

p1/2K 1/2 +
D1/6 Mδ/6+2/3K 1/6

p2/3 .

We sum over X , Y , and p and then choose

K = M1/2−δ/4 R1/4 D−1/4, R = Pκ
′

,

where κ ′ > 0 is taken sufficiently small so as to have R 6 K < M . Recalling
the definitions of M and D, we derive that for 1 6 r 6 q with (r, q) = d ,∑

N<n6N ′
n∈AR

n≡r mod q

e(hnδ)� (h−1/2d−1 N 1−δ/2
+ P3κ ′/8d−3/4 N 3/4+δ/8h1/8) log4 N .
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Summing over such r with (r, q) = d and then over the positive divisors d of q ,
we arrive at∑

N<n6N ′
n∈AR

e(hnδ + αnk)� W (h−1/2 N 1−δ/2
+ P3κ ′/8 N 3/4+δ/8h1/8) log4 N .

Therefore,

B(N )� W (H1/2 N δ/2
+ P3κ ′/8 N−1/4+9δ/8 H9/8) log4 N .

Choosing HN = N 1−δ log2 N and summing over N = 2l with q P1/3 < N 6 P ,
we conclude that for fixed c ∈ (1, 8/7), there is a sufficiently small κ(c) > 0
such that for κ ′ 6 κ(c),∑

n∈AR(P)

e(αnk)1ψ(n)� Pδ/log P,

which completes the proof. �

LEMMA 15. For any c ∈ (1, 2), and any α ∈ N(a, q), 1 6 a 6 q 6 W with
(a, q) = 1,

S(α) = v(α − a/q)+ O
(

Pδ

log P

)
.

Proof. This follows easily by modifying Lemma 7 and is therefore
omitted. �

LEMMA 16. Assume that s + 2t > 2k, c ∈ (1, 8/7), and κ = κ(c) is given
Lemma 14. Let R = Pκ

′

with 0 < κ ′ 6 κ such that W 6 (log P)λ 6 R 6 Pκ .
There exist positive constants A, B such that for any 1 6 m 6 N ,

RN(m) = S(m)I(m)+ O
(

P(s+2t)δ−k
(

W A

log P
+W−B

))
,

where

I(m) =
∫
R

I (β)s J (β)2t e(−βm) dβ, S(m) =
∑
q>1

Sm(q).

Proof. Combining Lemmas 14 and 15 and using the trivial estimates I, J �
Pδ , |S(a, q)| 6 q , we obtain for any α ∈ N(a, q), where 1 6 a 6 q 6 W with
(a, q) = 1,

S(α)sU (α)2t
= v(α − a/q)sw(α − a/q)2t

+ O
(

P(2t+s)δW
log P

)
,
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which yields for any m ∈ N,

RN(m) =
∑
q6W

Sm(q)
∫
|β|6W P−k/q

I (β)s J (β)2t e(−βm) dβ

+ O
(

P(2t+s)δ−k W 3

log P

)
,

where
Sm(q) =

∑
16a6q
(a,q)=1

(q−1S(a, q))s+2t e(−ma/q).

Using the bound (14) for q−1S(a, q) in completing the integral to R and then
the sum over q to S(m) produces the claimed error terms under the conditions
stated in the lemma. Thus, the result follows. �

Taking m = N in Lemma 16, combining it with Lemma 13 and choosing W
appropriately, we derive that

RMη
(N ) = S(N )I(N )+ O

(
P(s+2t)δ−k

(log P)λ

)
(21)

for some positive number λ, whenever c satisfies (16), s > 1, and t > t0 + 1 for
k > k0. We assume that k is large enough to have s + 2t > 4k, in which case
S(N )� 1.

Next, we shall prove that I(N )� P(s+2t)δ−k . Making the change of variable
yN = xk in I (β) and J (β), and then substituting γ = βN in I(m), we see that

I(m) = (δ/k)s+2tN (s+2t)δ/k−1 lim
λ→∞

∫
R
φ(u)

(∫ λ

−λ

e(γ (u − mN−1)) dγ
)

du,

where

φ(u) =
∫
· · ·

∫
y1,...,y2t∈[θ,1]

y2t+1,...,y2t+s−1∈[0,1]
u−16

∑
yi6u

F(y1, . . . , y2t+s−1, u −6i yi ) dy1 · · · dy2t+s−1

with

F(y1, . . . , y2t+s) =

2t+s∏
i=1

yδ/k−1
i

2t∏
i=1

ρ

(
log(N yi )

log R

)
and θ = Rk/N . By the Fourier integral theorem, the limit above equals
φ(mN−1) so that

I(m) = (δ/k)s+2tN (s+2t)δ/k−1φ(mN−1). (22)
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Since ρ is decreasing, positive and R = Pκ for a suitable κ > 0,

ρ

(
log(N y)

log R

)
> ρ(k/κ) > 0

for y ∈ [θ, 1]. Therefore, taking m = N , we conclude that

I(N )� N (s+2t)δ/k−1.

We are now ready to prove Theorem 2. We first observe that the condition (8)
on c implies the one in (16) for our choice of η. Thus, upon combining Lemma 12
with (21), we obtain under the above assumptions that

Rc(N )� N (s+2t)δ/k−1

for sufficiently large integers N , as desired.

§5. Proof of Theorem 3. Given N ∈ N, consider

Rc(n) =
∫
U

S(α)sU (α)2t e(−αn) dα (1 6 n 6 N )

where S(α) and U (α) are defined in §4. Using the same Mη, Uη, mη, and N
in §4, we write Rc(n) = RMη\N + Rmη(n) + RN(n). By Bessel’s inequality it
follows that∑

n6N
|Rc(n)− RN(n)|2

6
∫
mη

|S(α)|2s
|U (α)|4t dα +

∫
Mη\N

|S(α)|2s
|U (α)|4t dα. (23)

Assume that t > d(t0 + 1)/2e, where t0 is defined in Lemma 11, s > 1, and c
satisfies (8) and (16) (where s is to be replaced by 2 + 2t). Following the proof
of Lemma 13, we obtain∫

Mη\N
|S(α)|2s

|U (α)|4t
� N 2δ(s+2t)/k−1(logN )−2C (24)

for some constant C > 0. Furthermore, arguing as in Lemma 12, we conclude
that ∫

mη

|S(α)|2s
|U (α)|4t dα� P2s(δ+1)(ν0−1)/(2ν0−1)+4t−k+ε

�N 2δ(s+2t)/k−1(logN )−2C . (25)

By Lemma 16, there exists a constant C1 such that

RN(n) = S(n)I(n)+ O
(N δ(s+2t)/k−1

(logN )C1

)
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for all 1 6 n 6 N . Furthermore, for large n 6 N , one can prove using (22) that

I(n)� nδ(s+2t)/k−1.

Therefore, combining last two results, we conclude that there is a sufficiently
small constant C2 > 0 such that for N /(logN )C2 < n 6 N ,

RN(n)�
N δ(s+2t)/k−1

(logN )C/2
. (26)

Finally, let E be the exceptional set of integers that cannot be represented as
a sum of s + 2t positive kth powers of members of Ac. Combining equations
(23)–(26), we conclude that #E(N ) = o(N ), thereby proving Theorem 3 under
the conditions stated on the relevant parameters.
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