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Impurity coupled to an artificial magnetic field in a Fermi gas in a ring trap
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The dynamics of a single impurity interacting with a many-particle background is one of the central problems
of condensed-matter physics. Recent progress in ultracold-atom experiments makes it possible to control this
dynamics by coupling an artificial gauge field specifically to the impurity. In this paper, we consider a narrow
toroidal trap in which a Fermi gas is interacting with a single atom. We show that an external magnetic field
coupled to the impurity is a versatile tool to probe the impurity dynamics. Using a Bethe ansatz, we calculate the
eigenstates and corresponding energies exactly as a function of the flux through the trap. Adiabatic change of flux
connects the ground state to excited states due to flux quantization. For repulsive interactions, the impurity disturbs
the Fermi sea by dragging the fermions whose momentum matches the flux. This drag transfers momentum from
the impurity to the background and increases the effective mass. The effective mass saturates to the total mass of
the system for infinitely repulsive interactions. For attractive interactions, the drag again increases the effective
mass which quickly saturates to twice the mass of a single particle as a dimer of the impurity and one fermion is
formed. For excited states with momentum comparable to number of particles, effective mass shows a resonant
behavior. We argue that standard tools in cold-atom experiments can be used to test these predictions.
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I. INTRODUCTION

Ultracold-atom systems are effectively used as a test bed
for condensed-matter models. They are preferred because of
the high degree of control in experiments such as tunable
interactions, impurities, and direct measurements by optical
techniques. Certain theoretical models of condensed matter
such as resonant interactions [1] or a bosonic Mott transition
[2] have been realized for the first time using cold atoms. Many
models of one-dimensional systems have been realized using
two-dimensional optical lattices to form narrow tubes [3–5].

One of the powerful theoretical tools to describe one-
dimensional systems is the Bethe ansatz (BA). The BA solution
has been generalized to many integrable models, e.g., systems
with multiple components, different statistics, or spin [6–10].
This exact solution method has been employed to explain
experimental data in a number of instances [4,11]. However,
as BA methods are restricted to one dimension, they have
not been used to describe systems where an external artificial
gauge field is present.

In one dimension, such an external magnetic field can
be disregarded by using a gauge transformation, unless the
one-dimensional system closes onto itself. Thus, if the particles
are confined to a ring as opposed to a tube, the artificial
magnetic field will significantly affect the physics. Such rings,
in the form of toroidal traps, have been realized experimentally
[12–19], although none of these experiments have included an
artificial gauge field so far.

In this work, we consider such a toroidal trap containing
noninteracting fermions and describe the behavior of a single
charged impurity interacting with background atoms (Fig. 1).
We argue that an artificial magnetic field coupling to the
impurity is an efficient way to probe the polaron state forming
due to the interactions. Artificial magnetic fields are created
by coupling light to the internal states of the atoms [20–22].
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Hence, they are highly specific to the internal state, making
it possible to create effective magnetic fields coupling only to
one type of atom.

The charged particle is expected to drag the uncharged
fermions along with itself around the ring. Because of the
interactions between the impurity and the background atoms,
a collective excitation, usually called a polaron, is formed [23].
This excitation will couple to the external magnetic field with
the charge of the impurity particle; however, its mass will criti-
cally depend on the interaction strength. The amount of angular
momentum carried by the impurity and the uncharged fermions
also depends on the total external flux through the ring. By
changing the artificial magnetic field strength, it is possible to
access excited states of the system adiabatically. We show that
an artificial magnetic field coupling specifically to the impurity
would be a very effective tool to probe polaron physics.

We describe this system exactly using a Bethe ansatz (BA)
solution for contact interactions, which are justified for cold
atoms as the dominant scattering is s wave. For strongly attrac-
tive interactions, the impurity forms a bound state with one of
the background fermions and the physics reduces to the motion
of a dimer with twice the mass of the particle. In the other limit
of infinitely repulsive interaction, effective mass saturates to
total particle number. We calculate the energy and momentum
distributions, total transferred momentum, and the effective
mass for all interaction strengths. We believe these results can
be experimentally checked with state-of-the-art toroidal traps
and techniques for artificial gauge field generation.

The paper is organized as follows. In the next section, we
define the model, introduce the notation, and review earlier
studies. In Sec. III, we solve the system for two particles
and then generalize to any particle number using the BA.
Section IV contains the analytical solution of the BA equations
in certain limits and a comparison with numerical solutions.
We present our results for several quantities such as energy,
angular momentum, and effective mass of the charged particle.
We give our conclusions along with a brief discussion of
possible experiments in Sec. V.
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FIG. 1. (Color online) A simple illustration of the system. N − 1
uncharged fermions (light gray) and a single charged impurity (dark
gray) are trapped on a ring. The impurity is interacting with the
fermions via a δ-function interaction. An artificial magnetic field
couples exclusively to the impurity. The dynamics of the system
depends on the interaction strength between particles and the total
flux through the ring β = qRA

�
.

II. THE MODEL

The first quantized Hamiltonian for one charged particle
among N − 1 uncharged fermions under a magnetic field reads

H = 1

2m

(
�

i

∂

∂x1
− qA

)2

− �
2

2m

N∑
j=2

∂2

∂x2
j

+ 2c

N∑
j=2

δ(x1 − xj ). (1)

All particles are assumed to be on a ring of radius R, 0 �
xi � 2πR. The position of the charged particle is x1 and A is
the vector potential in the symmetric gauge. The Hamiltonian
can be made dimensionless by using x̃j = xj

R
, Ẽ = E 2mR2

�2 ,
c̃ = c 2mR

�2 , and β = qRA

�
. β is the total magnetic flux through

the ring in units of flux quantum q/h. Dropping the tildes,

H =
(

− i
∂

∂x1
− β

)2
−

N∑
j=2

∂2

∂x2
j

+ 2c

N∑
j=2

δ(x1 − xj ). (2)

The effect of the magnetic field can be shifted to the boundary
conditions by a gauge transformation [24]. Namely, when the
first particle makes a full circle around the ring, the wave
function gains a phase factor of eiβ2π where the periodic
boundary conditions (PBCs) for the uncharged particles
remain unaffected by the gauging process,

H → e−iβx1Heiβx1 . (3)

Apart from the twisted BCs, the δ-function interaction can
be handled as a two-sided boundary condition (BC) between
two different regions of N-particle space corresponding to
different permutations of particles. The discontinuity relation
at the boundary x1 = xj (which is obtained by passing to the
center of mass and relative coordinates and then integrating

the Hamiltonian) is

(∂j − ∂1)ψ
∣∣
x1<xj

− (∂j − ∂1)ψ
∣∣
xj <x1

= 2cψ
∣∣
xj =x1

, j �= 1.

(4)

In the past, this one-dimensional problem of two-
component fermions has been studied by using the BA. First,
the one-spin deviate problem in a Fermi sea was solved by
McGuire [9], and Flicker and Lieb [25] solved the two-spin
deviate problem. Yang [8] elegantly derived the BA equations
for the general M down-spins among N up-spins. Twisted
BCs have been used throughout the BA literature as a way to
probe ground-state properties. However, with the possibility of
optically inducing artificial magnetic fields, it is important to
calculate the properties of the system at finite flux as opposed to
infinitesimal values near zero. It is also necessary to consider
cases where different components in the system experience
different gauge fields.

Our calculation takes both of these constraints into account
and allows us to exactly study the dynamics resulting from
the dragging effect of the charged particle on the uncharged
particles. The resulting polaron physics has attracted great
interest in the context of cold atoms over the last few years
[23,26].

III. THE ANSATZ

As the interactions are reduced to BCs, the wave function
for a given permutation of the particles is a superposition of
plane waves. As the collisions of equal-mass particles in one
dimension conserve magnitudes of the incoming momenta,
the interacting problem is integrable. Hence, in a given region,
only a finite number of plane waves are needed to construct
the wave function. To make our notation clear, we first start
with the case of one charged particle with one neutral particle.

A. N = 2 particles

For two particles, we have 2! = 2 regions and the wave
function in these regions is expressed as follows:

�12(x1,x2) = (12)12e
i(k1x1+k2x2) + (21)12e

i(k2x1+k1x2),
(5)

�21(x1,x2) = (12)21e
i(k1x1+k2x2) + (21)21e

i(k2x1+k1x2),

where we use parentheses with a subscript to indicate the
coefficients of the plane waves. In this notation, numbers in
the parentheses indicate the order in which the wave vectors
k1,k2 are distributed to the coordinates in the exponent and the
subscript indices indicate the ordering of the particles on the
ring, i.e., �12 means x1 < x2. At x1 = x2, the wave functions
in the two regions should be equal, whereas their derivative
should obey Eq. (4). Equating the coefficients of each plane
wave on both sides, we obtain the following:

BCs at x1 = x2,

(12)21 + (21)21 = (12)12 + (21)12, (6)

(12)21 − (21)21 = (12)12

(
1 + 2

s12

)
+ (21)12

(
−1 + 2

s12

)
,

(7)
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where s12 = i(k1 − k2)/c. Combined BCs give

(
(12)
(21)

)
21

=
(

1 + 1
s12

1
s12

−1
s12

1 − 1
s12

)(
(12)
(21)

)
12

. (8)

Allowed values for k1,k2 are found by applying the PBCs. The
PBC for one of the particles gives the BA equation.

BCs at 2π ,
as x2 : 0 → 2π, �21(x2 = 0) = �12(x2 = 2π ),

(12)21 = (12)12e
ik22π , (21)21 = (21)12e

ik12π ; (9)

as x1 : 0 → 2π, �12(x1 = 0) = eiβ2π�21(x1 = 2π ),

(12)12 = (12)21e
i(k1+β)2π , (21)12 = (21)21e

i(k2+β)2π .

(10)

Combining the two BCs at 2π , we obtain another constraint
k1 + k2 + β = n, for n ∈ Z. This is a reflection of the total
angular momentum conservation in the system. Equations (8)
and (10) have nontrivial solutions only when the determinant
below vanishes,∣∣∣∣∣

1 + 1
s12

− e−i(k1+β)2π 1
s12

−1
s12

1 − 1
s12

− e−i(k2+β)2π

∣∣∣∣∣ = 0. (11)

The solution of this determinant gives the BA equation,

α = c

2
cot

[π

2
(α + n − β)

]
+ c

2
cot

[π

2
(α − n + β)

]
,

(12)

where the energy is E = (n−β)2+α2

2 for α = k2 − k1. For the
two-particle case, this problem can also be solved exactly
without using the BA [27],

c = α

{
cos[π (n − β)]

sin(πα)
− cot(πα)

}
. (13)
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FIG. 2. (Color online) Energy of the lowest three states vs inter-
action strength for N = 2 particles, for zero total angular momentum.
Only scattering states are displayed. Energy is calculated by three
different methods. Lines are from the Eq. (13) direct analytical
solution without employing the BA, which is algebraically the same
with the two-particle BA calculation [Eq. (12)]. Diamonds are from
the general N -particle BA calculation [Eq. (21)].

These two equations analytically reproduce each other and the
numerical results match perfectly (Fig. 2).

Extension of this method to N particles is straightforward,
although cumbersome.

B. N − 1 fermions, one charged particle

The distinguishable charged particle is denoted again by x1

and the wave function is defined in N ! regions corresponding
to different permutations [9]. In each one of these regions,
the wave function consists of N ! plane waves in its most
general form without imposing the antisymmetry between the
fermions. As a total, we have N ! × N ! coefficients:

�123... = (123 . . .)123...e
i(k1x1+k2x2+k3x3+··· ) + (213 . . .)123...e

i(k2x1+k1x2+k3x3+··· ) + · · · ,

�213... = (123 . . .)213...e
i(k1x1+k2x2+k3x3+··· ) + (213 . . .)213...e

i(k2x1+k1x2+k3x3+··· ) + · · · ,

�132... = (123 . . .)132...e
i(k1x1+k2x2+k3x3+··· ) + (213 . . .)132...e

i(k2x1+k1x2+k3x3+··· ) + · · · ,

...
... (14)

where k1,k2, . . . ,kN are distinct wave numbers. BCs at x1 = x2 are not affected by the addition of other fermions at the end of
the sequence: (

(123 . . .)
(213 . . .)

)
213...

=
(

1 + 1
s12

1
s12

−1
s12

1 − 1
s12

)(
(123 . . .)
(213 . . .)

)
123...

. (15)

BCs at 2π follow the same logic: as x2 : 0 →
2π, �213...N (x2 = 0) = �13...N2(x2 = 2π ), yielding

(123 . . .)213...N = (123 . . .)13...N2e
ik22π ,

(213 . . .)213...N = (213 . . .)13...N2e
ik12π . (16)

The number of independent coefficients decreases consider-
ably by requiring antisymmetry upon exchange of fermions.
Every coefficient of a plane wave in the region x1 < x3 < x2 <

· · · < xN is identical to the coefficient of the same plane wave
in the region x1 < x2 < x3 < · · · < xN . This can be shown
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F. NUR ÜNAL, B. HETÉNYI, AND M. Ö. OKTEL PHYSICAL REVIEW A 91, 053625 (2015)

by noticing that at x2 = x3, the wave functions must vanish,
requiring, e.g., (123 . . .)123...N = −(132 . . .)123...N . Fermionic
antisymmetry also relates the wave function in separate
regions, �123...N = −�132...N . As a result, the coefficients only
depend on the position of the charged particle in the order. We
can move indistinguishable fermions through one another at
will and the N ! regions reduce to N regions.

After this simplification, it is easy to combine the BC at a
δ function with the overall PBC,

(
(123 . . .)
(213 . . .)

)
213...N

=
⎛
⎝1 + 1

s12

1
s12

−1
s12

1 − 1
s12

⎞
⎠(

(123 . . .)
(213 . . .)

)
123...N

=
⎛
⎝eik22π (123 . . .)123...N

eik12π (213 . . .)123...N

⎞
⎠. (17)

The determinant can only vanish if k1 and k2 satisfy

k1 − c

2
cot πk1 = k2 − c

2
cot πk2. (18)

The same procedure can be applied to any pair of wave
numbers ki,kj . Thus, all the wave numbers must satisfy

k1− c

2
cot πk1 = k2 − c

2
cot πk2 = k3− c

2
cot πk3 = · · · = λ,

where λ is a real constant. This form is equivalent to the usual
BA equations [7].

Hence, the N wave numbers which define an eigenstate
must be chosen as N distinct roots of the equation,

k − λ = c

2
cot πk. (19)

However, there is another constraint. Applying PBCs sequen-
tially on all particles restricts λ:

as x1 : 0 → 2π, �123...N (x1 = 0) = eiβ2π�23...N1(x1 = 2π ),

(123)123 = (123)231e
i(β+k1)2π ,

as x2 : 0 → 2π, (123)231 = (123)312e
ik22π ,

as x3 : 0 → 2π, (123)312 = (123)123e
ik32π ,

...
...

In combination,

(123 . . .)123...N = ei(k1+k2+···+kN+β)2π (123 . . . N)123...N , (20)

reflecting angular momentum conservation; the sum of all of
the wave numbers plus the flux must be an integer on a ring.

In short, the BA equation is solved by finding N roots of a
simple equation subject to the angular momentum constraint,

k − λ = c

2
cot πk,

N∑
j

kj = n − β, n ∈ Z. (21)

So far, our treatment implicitly assumed repulsive interactions.
In that case, all of the wave vectors ki are real. The ansatz can
easily be extended to attractive interactions yielding exactly the
same equations, given by Eq. (21) [28]. However, for negative
c, two of the roots will be complex, as the δ potential in one
dimension has only a single bound state.

IV. SOLUTION OF THE BA EQUATION

The cot πk term in Eq. (21) diverges at every integer k;
thus, regardless of the value of β (or λ), there is a root between
every consecutive integer (Fig. 5). By changing the value of λ,
all roots can be adjusted so that the total angular momentum
constraint is satisfied. All of the eigenstates in this problem
can be labeled identically by choosing N distinct integers
corresponding to the different branches of cot πk and the
total angular momentum n ∈ Z. The energy of an eigenstate
is simply the sum of squares of all wave numbers,

E =
N∑

i=1

k2
i . (22)

For the simplest case of β = 0, the ground state corresponds
to λ = 0 and the total angular momentum n = 0. The roots k

are distributed symmetrically around zero for even N and,
hence, automatically satisfy the total angular momentum
condition. The wave vectors for the ground state are in the
N branches of “cot” from −N/2 to N/2. Excitations above
this ground state can be generated by two procedures. First,
by changing λ, N roots which are on the same branches of cot
can be generated so as to create an eigenfunction with nonzero
total angular momentum (n �= 0). Second, at least one of the
roots can be chosen to reside on a branch that is not occupied
for the ground state. For such a particle-hole excitation, λ must
be adjusted to ensure the total angular momentum constraint.

Inclusion of the magnetic field affects only the total angular
momentum constraint. As that constraint is defined only up to
an integer (n), the problems with values of β differing by an
integer are identical. The eigenstates for flux β which have total
angular momentum n are also eigenstates for flux β + 1 which
have total angular momentum n + 1. This is a restatement of
flux quantization. We can analyze the system by considering
flux values between −1/2 < β < 1/2.

However, in an experimental setting, slowly increasing the
value of the flux through the ring is a useful method to access
excited states. As the flux is increased adiabatically from zero
to one, the ground state evolves to an eigenstate which has its
roots exactly in the same branches as the ground state, but has
a total angular momentum of minus one at zero flux (Fig. 3).
The crossings between different eigenstates do not pose a
problem for adiabatic evolution as only states with different
total angular momentum n can be degenerate in energy.

The BA equation (21) can be very efficiently solved
once the regions for the roots are determined. We used
the Newton-Raphson algorithm to find a solution within a
particular region. As all of the roots depend monotonically on
λ, another Newton-Raphson search is employed to satisfy the
total angular momentum condition. We have found numerical
solutions for systems of up to 10 000 particles with high
accuracy.

Although numerically solving the BA equation is efficient
and accurate, an analytic solution can provide more insight
about the physics of the system. Analytic formulas for energy,
angular momentum, and effective mass also would be desirable
to correspond with experimental observations.

In the limit of strong interactions 1/c � 1 and large particle
number N/c � 1, such an analytic form can be obtained by
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FIG. 3. (Color online) Ground-state energy vs flux β for N =
2 particles with total angular momentum n. Eigenstates for flux β

with total angular momentum n are also eigenstates for flux β + 1
with total angular momentum n + 1. The system can be analyzed by
considering flux values between −1/2 < β < 1/2 for all n. As the
flux is adiabatically increased by one, the system evolves to a higher
excited state which has one more unit of total angular momentum.
As can be observed, the crossings between different eigenstates are
not a problem for adiabatic evolution since only states with different
total angular momentum n are degenerate.

approximating the roots of the BA equation. In this limit,
because the cot diverges quickly near integers, most of the roots
are close to integers. Apart from the few roots near k ∼ λ, the
deviation of the root 
 from an integer s is small [9]. Solving
for this small deviation, we find that the roots occur at

k+
s = s + 1

π
acot

2

c
(s − λ),

k−
s = −s − 1

π
acot

2

c
(s + λ), s = 0,1, . . . ,

N

2
− 1, (23)

where acot is defined in the continuous region (0,π ) for
Eqs. (23) to be accurate guesses. Here we have restricted s

to analyze the ground state and excited states with roots on
the same cot branches. Applying the total angular momentum
condition, we get

n − β =
N/2−1∑

s=0

ks

= 1

π

N/2−1∑
s

[
acot

2

c
(s − λ) − acot

2

c
(s + λ)

]

= c

2π

∫ xF

0
dx [acot(x − b) − acot(x + b)] , (24)

with b = 2λ/c and xF = (N − 1/2)/c. Here the initial as-
sumption of strong interactions and large particle numbers
allows us to approximate the sum by an integral. For the ground
state and the first few excited states, n − β is small compared

to N and the integral can be approximated as

n − β = c

2π

∫ xF +b

xF −b

dx atan x ≈ cb

π
atanxF . (25)

Through this relation b, λ is obtained for any flux value,
allowing us to find expressions for all of the roots in a
self-consistent way.

A. Energy

Using these expressions for the roots, the total energy is

E =
N/2−1∑

s=0

k2
s

=
N/2−1∑

s

(
2s2 + 2s

π

[
acot

2

c
(s − λ) + acot

2

c
(s + λ)

]

+ 1

π2

{[
acot

2

c
(s − λ)

]2

+
[

acot
2

c
(s + λ)

]2})
. (26)

The first term above is the total ground-state energy of N − 1
noninteracting fermions. Interactions result in the second and
third terms which are first- and second-order corrections in our
expansion. When 
’s are small, the third term is negligible. In
this limit, the energy shift due to interactions for c > 0 is


E = cb(n− β) + c2x2
F

4
− c2

4π
{[(xF + b)2 + 1]atan(xF + b)

+ [(xF − b)2 + 1]atan(xF − b) − 2xF }, (27)

with b = π (n − β)

c atan(xF )
.

This approximate form for energy successfully reproduces
numeric results for particle numbers as small as 4 throughout
all of the interaction range. Ground-state energy as a function
of interaction strength is plotted for a typical case in Fig. 4
for 1000 particles at β = 0.2 flux. The deviation between the
numerical and analytical results is too small to observe in this
plot.

For attractive interactions, the δ-function interaction sup-
ports one bound state in one dimension. Corresponding
imaginary wave vectors appear as solutions of the BA equation.
For k = α + iσ with (α,σ ) ∈ R, the BA equation has only
two roots with σ �= 0. The charged particle is bound with
only one of the background fermions. When 1/|c| � 1, the
complex roots are at k = λ ± ic/2 while the rest of the
roots preserve their form of Eqs. (23). If the bound state is
narrow, Pauli repulsion between the fermion in the bound pair
and background fermions decreases the effective interaction.
Within these approximations, we analytically calculate the
total energy for attractive interactions,


E = −c2(b2 + 1)

2
+ cb(n − β) + c2x2

F

4
+ c2

4π

×{[(xF + b)2 + 1]atan(xF + b)

+ [(xF − b)2 + 1]atan(xF − b) − 2xF }, (28)

with b = (n − β)

c
[
1 − 1

π
atan(xF )

] .
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FIG. 4. Ground-state energy vs interaction strength for N = 1000
particles and zero total angular momentum. The numerical solution of
the BA equation (dots) given by Eq. (21) is virtually indistinguishable
from the analytical solution (circles) E = (Fermi energy of N − 1
fermions) +
E. The error between the numerical and analytical
solutions is too small to observe, even in the regimes where the
assumptions for analytical calculation fail.

B. Angular momentum

To understand the physics of the system and correspond
to possible experiments, it is important to calculate other
measurable quantities. In particular, for this system, we are
interested in how the dynamics of the impurity particle
is affected by the fermion background. To this end, it is
instructive to calculate the angular momentum carried by the
impurity L1 and the related effective mass. As the impurity is
interacting with the fermions, this effective mass is not only
the mass of the impurity but also gets a contribution from the
fermions dragged along with it. Such a compound object is
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FIG. 5. (Color online) A representation of the graphical solution
to the BA equation. The cot πk term in Eq. (21) diverges at every
integer k and there is a root between every consecutive integer
independently from λ(β). By changing the value of λ, all roots can be
adjusted so that the total angular momentum constraint is satisfied.

generally called the polaron state or dimer state, especially for
attractive interactions.

As stated above, one of the most interesting physical
quantities in this system is the angular momentum carried by
the charged particle, represented by the operator P̂1 = −i ∂

∂x1
.

As this particle is coupled to the external magnetic field,
P̂1 is the canonical momentum, not the kinetic momentum.
However, canonical momentum is the quantity that is generally
measured by expansion imaging in artificial magnetic field
experiments. The expectation value of 〈P̂1〉 = L1 is easily
obtained by taking the derivative of the total energy with
respect to flux,

L1 = −1

2

∂
E

∂β
. (29)

Using the approximate form for the energy given by
Eq. (27), we obtain

L1 = π (n − β)

atanxF

− c

4atanxF

{(xF + b)atan(xF + b)

− (xF − b)atan(xF − b)}. (30)

This form is valid for positive c and easy to interpret. In the
noninteracting limit, the canonical momentum of the charged
particle is fixed by the external flux. Hence, all of the angular
momentum is carried by the charged particle. As interaction is
turned on, the charged particle drags the background fermions
and transfers some of its angular momentum to them. Stronger
interactions increase the fraction of the transferred angular
momentum and, in the limit of infinitely repulsive interactions,
angular momentum is equally shared by N particles. On the
other hand, for strong attractive interactions, L1 saturates to
half of the angular momentum in the system, proving the
formation of a dimer with one background fermion.

The behavior of L1 is displayed in Figs. 6 and 7 as a function
of c and β. Even for N = 100 particles, the difference between
the numerical calculation of the derivative and the expression
given above is negligible. As a function of interaction strength,
the rapid decrease and eventual saturation of L1 validates the
scenario discussed above. The linear dependence on flux is
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FIG. 6. Angular momentum of the impurity vs interaction
strength for N = 100 particles for (a) attractive and (b) repulsive
interactions from the analytic calculation; numerical solutions pro-
duce the same results. In the noninteracting limit, the impurity carries
all the angular momentum (n − β). L1 saturates to almost zero for
infinitely strong repulsive interactions as the total angular momentum
is shared equally between all particles. The same behavior holds for
excited states. For strongly attractive interactions, L1 saturates to
half the total value, signifying dimer formation with one background
particle. The insets in both figures focus on the weak-interaction limit.
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FIG. 7. (Color online) The angular momentum of the charged
particle vs flux at varying interaction strength for N = 100 particles.
As expected, L1 depends linearly on flux. The slope of the line
decreases with increasing interaction strength, indicating higher
values of effective mass of the impurity.

expected; however, the slope of L1 decreases as the interaction
gets stronger. This slope carries valuable information as it is

related to the effective mass of the composite excitation formed
by the impurity and background fermions.

C. Effective mass

We define the effective mass as

m∗ = 2
∂2
E
∂β2

. (31)

In the noninteracting limit, the effective mass is equal to
m; however, its behavior is very different for attractive and
repulsive interactions. As repulsive interactions are increased,
it gets harder for the impurity to tunnel through the fermions
and the dragged particles increase the effective mass. The
increase in the effective mass saturates only when all of the
particles are moving together with the impurity. Thus, at large
repulsive interaction, the effective mass reaches Nm. For weak
attractive interactions, the first effect is once again the drag in-
creasing the effective mass. However, the attractive δ function
has a single bound state in one dimension. Thus, the impurity
captures one of the background fermions and, as the size of the
bound state gets smaller, Pauli exclusion effectively repels the
other fermions. The effective mass for attractive interactions
increases and reaches 2m for infinitely attractive interaction
where a dimer is formed from the impurity and one fermion.
For attractive interactions, the analytical expression in the
strongly interacting limit is useful to calculate the dimer mass,

∂2
E

∂β2
= 2

1 − atan(xF )
π

− 1[
1 − atan(xF )

π

]2 + 1

2π
[
1 − atan(xF )

π

]2

{
atan(xF + b) + atan(xF − b) + xF + b

1 + (xF + b)2
+ xF − b

1 + (xF − b)2

}
.

(32)

We calculated the effective mass numerically and analytically.
For the ground state, the above scenario is validated by these
calculations (see Fig. 8). The dependence of the effective
mass on the external magnetic field is strongest for small
particle number as this limit is the strongly interacting limit

m
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FIG. 8. (Color online) Effective mass of the impurity vs interac-
tion strength for N = 50 particles and zero total angular momentum
n = 0. (a) For attractive interactions, m∗ saturates to twice the mass
of the impurity due to the formation of a tightly bound pair. Inset:
The behavior around the zero interaction in more detail. For attractive
interaction, the effective mass [given by Eq. (32)] is almost insensitive
to flux change. (b) For repulsive interactions, m∗ converges to N . As
flux β increases, this saturation gets faster. The dependence on the
flux is more prominent for small particle numbers.

in one dimension. As the number of fermions increases, the
effective mass in the ground state has weak dependence on β.
In this case, effective mass is essentially determined locally as
the ability of the impurity particle to complete a full rotation
is hampered.

The utility of an external magnetic field is the access it
provides to excited states through adiabatic pumping. Excited
states in this system are expected to be stable due to angular
momentum conservation. It is thus reasonable to expect
effective mass measurements to be carried out on such states
in a cold-atom setting. For the excited states, with angular
momentum |n| < N/4, the main effect is faster saturation of
the effective mass as c increases. However, for higher excited
states, there is resonant behavior (Fig. 9). Due to the nature
of the BA solution, a state for which all of the roots are
on the cot branches from −N/2 to N/2 can have, at most,
N/2 units of angular momentum. When the total angular
momentum of an excited state is comparable to particle number
N, the sharing of this angular momentum between the impurity
and the background is limited by this constraint. Thus, it is
possible for this system to support negative effective mass if
the external force acted by the magnetic field is overcome by
the back reaction from the fermions. We numerically find this
behavior for both low and high particle number (see Fig. 9).
Experimentally, this effect should be more accessible for a
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FIG. 9. (Color online) Resonant behavior in m∗ for β comparable
to N . When the drag effect applied by the background particles
overcomes the driving force of the magnetic field, m∗ can become
negative. When the second derivative of the energy with respect to
flux becomes zero, m∗ diverges. This divergence does not change the
infinitely strong-interaction limit.

small number of particles as it is easier to pump angular
momentum comparable to particle number.

D. Correlations

Apart from the single-particle properties related to the im-
purity, it is instructive to look at global properties to understand
how the external particle disturbs the one-dimensional Fermi
liquid. A common way to visualize the disturbance in the
Fermi sea is to plot the deviation of the distance between the
BA roots (wave vectors) from one. For an undisturbed Fermi
sea, this deviation is always one. For a weakly interacting
impurity, the deviation is confined to a narrow region in k
space around n − β (see Fig. 10). This is expected as the
impurity carrying n − β units of angular momentum in the
noninteracting limit first starts dragging fermions which are
matched in momentum. As the strength of repulsion increases,
so does the effected region in k space; however, the deviation
gets smaller. For infinitely repulsive interactions, the impurity
becomes indistinguishable from the background fermions
(Fig. 10). For highly excited states where n is comparable
to N, particle-hole excitations complicate this picture similar
to the effect we discussed for the effective mass.

Another important physical property is the two-particle
correlation function. Although for δ-function interactions only
the value of this function at zero determines the interac-
tion energy, its general form is experimentally accessible
through Hanbury-Brown-Twiss [29] type measurements. This
correlation also can be regarded as the real-space form of
the bound state created by the impurity. To calculate the
two-particle correlation function, we need to determine the
coefficients of the plane waves in each region. Following
McGuire [9], we choose the first coefficient in the first region
x1 < x2 < · · · < xN ,

(123..N )123..N = (1 − ei2πk1 ). (33)

N=100
n=0
β=10.2

(kj+kj+1)/2
−50 −40 −30 −20 −10 0 10 20 30 40 50

0.98

1.02

1.04

1.06

1.08

1

c=10
c=50
c=10000

1/
(k

j+
1−

 k
j)

FIG. 10. Effective momentum density in k space for different
interaction strengths. In the strongly interacting limit, the distance
between adjacent BA roots (wave vectors) is one. For small c,
the roots are closer to each other around (n − β). The impurity
carrying n − β units of angular momentum in the noninteracting
limit first disturbs the fermions which are momentum matched to that
value.

Other coefficients in this region determined by BCs yield very
similar expressions. The wave number associated with the
distinguishable particle appears in the exponent and the sign
of the permutation multiplies the coefficient,

(213..N )123..N = −(1 − ei2πk2 ), (34)

(312..N )123..N = (1 − ei2πk3 ), (35)

...

The coefficients in other regions are related to the same
coefficient in the first region with a phase factor determined
by the PBCs. This phase factor is a full circle rotation around
the ring of the particles that x1 has to pass to be in the given
region. Thus, the momenta belonging to the particles that x1

has passed multiply the coefficient, e.g.,

(21354..N)2314..N = (1 − ei2πk2 )ei2π(k1+k3) . . . . (36)

In the simple form, the wave functions are not normalized,
but we normalize the correlation function at the end. The two-
particle correlation function in any state is given as

g12(x1,x2) =
∫ 2π

0
dx3 · · ·

∫ 2π

0
dxN�∗�. (37)

For the N = 2 particle case, the correlation function is
simply the absolute square of the wave function. As could
be expected, the correlation function is highly affected by
the flux for the two-particle case. Using the numerically and
analytically found wave numbers in the expression

g12(x1,x2) = 4 − 2 cos(2πk1) − 2 cos(2πk2) − 8 sin(πk1)

× sin(πk2) cos[(k1 − k2)(x2 − x1 − π )], (38)

we observe that inclusion of the flux generally decreases the
two-particle correlation function (Fig. 11). However, if the
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FIG. 11. (Color online) Two-particle correlation function for
N = 2 particles. As expected, g12 at zero separation decreases with
increasing interaction strength. For weak interactions, the correlation
function at zero decreases with increasing flux. However, for strong
interactions, the correlation is almost insensitive to flux change due
to the fermionization of the charged particle.

interactions are strong enough so that the particles are almost
fermionized, this decrease is very small. It is also notable
that although the flux breaks time-reversal symmetry and the
wave functions choose a direction on the ring, the correlation
function is even with respect to x1 − x2. This property holds
for any particle number.

For the general N particle case, we arrange the wave
function in a better form to evaluate the integrals. We
assign two wave numbers to x1 and x2, and the rest of the
particles are represented by a Slater determinant since they
are indistinguishable fermions. For example, if we have k1,k4

associated with x1,x2, respectively, the Slater determinant is
represented by D14, indicating the use of all wave numbers
except k1 and k4 in the exponents,

D14 =

∣∣∣∣∣∣∣∣∣∣∣

eik2x3 eik3x3 eik5x3 . . .

eik2x4 eik3x4 eik5x4 . . .

...

eik2xN eik3xN eik5xN . . .

∣∣∣∣∣∣∣∣∣∣∣
. (39)

Hence, the wave function in the first region can be written as

� = [(12 . . . N )12...N + (21 . . . N)12...N ]D12

+ [(13 . . . N)12...N + (31 . . . N)12...N ]D13 + · · · .(40)

Integrating �∗� over x3, . . . ,xN , the Slater determinants are
orthogonal in the large particle number limit, as the outer roots
of the cot’s are very close to integer values. The correlation
function is then expressed as a sum over pairs of momenta
associated with x1 and x2,

g12(x) =
N∑

t<s

N∑
|(ts . . . N)|2 + |(st . . . N)|2 (41)

+ 2Re{(ts . . . N)∗(st . . . N)ei(kt−ks )x}, (42)
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FIG. 12. (Color online) Two-particle correlation function for
N = 50 particles. (a) For weak interactions, Friedel oscillations occur
as interference of two waves with wavelengths related to kF − β and
kF + β. (b) At strong interactions, the correlation becomes zero at
zero separation since the impurity is effectively indistinguishable and
g12 and the frequency of Friedel oscillations are almost insensitive to
flux change.

where x = x2 − x1. Here, x > 0, but the symmetry of the
correlation function for x < 0 can be easily seen by using the
region x2 < x3 · · · xN < x1 instead of the first region. Finally,
the correlation function is normalized to average density on
the ring so that it saturates to one. The correlation functions
for N = 2 and N = 50 particles are given in Figs. 11 and
12, respectively, for different interaction strengths and flux.
As expected, the correlation function at zero separation g12(0)
decreases with increasing interaction strength until it saturates
to zero. The other important feature of the correlation function
is the Friedel oscillations [30] reflecting the sharpness of the
Fermi surface in one dimension.

The two-particle correlation function is a local quantity,
while the external flux changes the system properties globally.
For any pair to feel the effect of the flux, one of the particles
must go a full circle through the ring. Hence, as could be
expected, the effect of the artificial magnetic field on the
correlation function decreases as the number of particles
increases or if they interact strongly. Even for the lowest-lying
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FIG. 13. (Color online) Kinetic energy of the particles vs in-
teraction strength for β = 0.2 and β = 10.2 for N = 50 particles.
Inset: The interaction potential contribution to the total energy.
The initial increase in interaction energy follows the increase in
the interaction strength. However, beyond a certain strength, the
tendency of the fermions to avoid the impurity is more dominant.
These plots are obtained by taking the derivative of the total energy
with respect to c. Alternatively, the interaction potential energy is
also obtained by using the two-particle correlation function at zero
separation. Both results are plotted in the inset, showing remarkable
agreement.

excited states, we find the primary effect of the flux is on the
Friedel oscillations, while the shape of the correlation hole is
unchanged.

Finally, we calculate a thermodynamic quantity which is
also related to g12(0). The derivative of the energy with respect
to interaction strength c gives us the interaction potential, so
the kinetic and interaction contributions to the total energy can
be separated. In Fig. 13, one can notice that the interaction
energy makes a peak and then decreases for increasing c. The
initial increase is expected; however, as interactions become
stronger, the tendency of the fermions to avoid the impurity
dominates and the impurity is effectively fermionized. This is
apparent in the δ-function BC given by Eq. (4). Additionally,
the interaction potential is equal to the correlation function at
zero g12[(x2 − x1) = 0] times the interaction strength, which
reproduces the results obtained by taking the derivative of the
total energy.

V. CONCLUSION

The problem of a single impurity interacting with a fermion
background has attracted the attention of the condensed-matter
society for years. In this paper, we argue that an artificial gauge
field coupling exclusively to the impurity is an effective tool
to probe the physics of this system at any interaction strength.
We consider a Fermi gas in a narrow ring trap and an artificial
magnetic field coupling only to a single impurity. We solve
this system exactly by using the BA for contact interactions
and calculate the dependence of measurable quantities on the
external magnetic flux. We observe this dependence for total

energy, angular momentum of the charged particle, effective
mass, and the two-particle correlation function.

Using an artificial magnetic field in this system has two
advantages. The usual measurement tools such as expansion
imaging become probes of thermodynamic quantities by
comparing measurements at different flux values. For example,
the change of the momentum carried by the impurity caused by
the magnetic field is a direct probe of the effective mass of the
impurity. The second advantage is obtained by adiabatically
increasing the flux value. Although the Hamiltonian of the
system is periodic with flux, adiabatic evolution connects
the ground state at zero flux to excited states at integer
flux. In a cold-atom experiment, such excited states can be
expected to have long lifetimes due to total angular momentum
conservation. Thus, we have calculated the physical properties
for not only the ground state but also for excited states
adiabatically connected to it.

Our results show that the system can be described by
a simple physical picture. The charged particle interacting
with the background particles drags them along with itself
around the ring. In the noninteracting limit, all of the angular
momentum in the system is carried by the impurity. As
interactions are turned on, fermions which are close to the
impurity in momentum are disturbed more and start to gain
momentum. At the limit of infinitely repulsive interactions,
the charged particle is effectively indistinguishable from the
background and the total momentum is shared equally between
all particles. The pair correlation function also confirms this
picture. The value of the correlation function near zero is
mostly insensitive to the external flux, while away from
the correlation hole frequency of the Friedel oscillations
sensitively depends on it. For strongly repulsive interactions,
the effective mass saturates the total mass of the particles since
it is dragging all of the background fermions along with itself
around the ring.

For attractive interactions, the impurity forms a bound pair
with one of the fermions. The effect of dimer formation can be
clearly seen in the angular momentum and the effective mass.
For infinitely strong attractive interactions, angular momentum
carried by the impurity saturates half the value of total angular
momentum and the effective mass saturates twice the mass
of the particle, which confirm the presence of the dimer as a
composite particle.

The physical properties calculated in this paper are exper-
imentally accessible through the standard tools of ultracold-
atom experiments. Artificial magnetic fields have been demon-
strated in a variety of settings and we find combining them with
toroidal traps would prove useful. We believe our exact results
would be relevant for such an experiment.
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F.N.Ü. is supported by Türkiye Bilimsel ve Teknolo-
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Quantum phase transition from a superfluid to a mott insulator
in a gas of ultracold atoms, Nature (London) 415, 39 (2002).

[3] T. Kinoshita, T. Wenger, and D. S. Weiss, Observation of
a one-dimensional Tonks-Qirardeau gas, Science 305, 1125
(2004).

[4] B. Parades, A. Widera, V. Murg, O. Mandel, S. Fölling, I. Cirac,
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