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Optical tweezers have found widespread application in many fields, from physics to biology. Here, we explain in
detail how optical forces and torques can be described within the geometrical optics approximation, and we show
that this approximation provides reliable results in agreement with experiments for particles whose characteristic
dimensions are larger than the wavelength of the trapping light. Furthermore, we provide an object-oriented
software package implemented in MATLAB for the calculation of optical forces and torques in the geometrical
optics regime: Optical Tweezers in Geometrical Optics (OTGO). We provide all source codes for
OTGO as well as documentation and code examples—e.g., standard optical tweezers, optical tweezers with elon-
gated particles, the windmill effect, and Kramers transitions between two optical traps—necessary to enable users
to effectively employ it in their research. © 2015 Optical Society of America

OCIS codes: (080.1753) Computation methods; (140.7010) Laser trapping; (350.4855) Optical tweezers or optical manipulation.
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1. INTRODUCTION

Optical tweezers are tightly focused laser beams capable of hold-
ing andmanipulating microscopic particles in three dimensions.
Since their invention in 1986 [1], optical tweezers have been
increasing and consolidating their importance in several fields,
from physics to biology [2–7]. In the last 15 years, thanks to the
development of relatively simple and cheap setups, optical
tweezers have also started to be employed in undergraduate
and graduate laboratories as a tool to introduce students to ad-
vanced experimental techniques [8–11].

Part of the reason for the success of optical tweezers lies in that
the forces they can exert—from tens of piconewtons down to
tens of femtonewtons—are just in the correct order ofmagnitude
for a gentle but effective manipulation of colloidal particles and
biological samples [2–7]. An accurate mathematical description
of these forces requires the use of electromagnetic theory in order
to model the interaction between an incoming electromagnetic
wave and a microscopic particle [12–14]. However, this can be a
daunting task. Therefore, it is helpful that simpler theoretical
approaches have been shown to deliver accurate results in the
limits where the particle characteristic dimensions are much
smaller or much larger than the wavelength of the trapping light
[15], which is typically between 532 and 1064 nm for optical
tweezing applications. For particles much smaller than the wave-
length, one canmake use of the dipole approximation, which has

already been extensively described and employed to describe the
trapping of nanoparticles [7]. For particles much larger than the
wavelength, such as cells and large colloidal particles, whose size
is typically significantly larger than 1 μm, one can make use of
geometrical optics for the calculation of optical forces [16]. This
approach has been successfully employed, for example, to de-
scribe optical forces acting on cells [17], the deformation of
microscopic bubbles in an optical field [18], the optical lift effect
[19], and the emergence of negative optical forces [20].

In this paper, we explain in detail how geometrical optics
can be employed in order to study the optical forces and tor-
ques arising in optical tweezers. We will first introduce how
optical tweezers can be modeled in geometrical optics. Then,
we will study in detail the forces associated with the scattering
of a ray and of an optical beam by a spherical particle, distin-
guishing between scattering and gradient forces. Finally, we will
explore some more complex situations, such as the occurrence
of torque on nonspherical objects and the emergence of
Kramers transitions between two optical tweezers. As an inte-
gral part of this article, we provide a complete MATLAB soft-
ware package—Optical Tweezers in Geometrical
Optics (OTGO)—to perform the calculation of optical
forces and torques within the geometrical optics approach
[21]. OTGO is fully documented, accompanied by code exam-
ples, and ready to be employed to explore more complex sit-
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uations. In fact, we have implemented OTGO using an object-
oriented approach so that it can be easily extended and adapted
to the specific needs of users; for example, it is possible to create
more complex optically trappable particles by extending the ob-
jects
provided for spherical, cylindrical, and ellipsoidal particles. In
particular, we have used OTGO to obtain all the results pre-
sented in this article and for the calculations of optical forces
in [22].

2. GEOMETRICAL OPTICS MODEL OF OPTICAL
TWEEZERS

A schematic of typical optical tweezers is shown in Fig. 1(a) and
in Media 1 [21,23], Media 2 [21,24], and Media 3 [21,25].
A laser beam is focused by a high-NA objective (O1) in order
to create a high-intensity focal spot where a microscopic particle
can be trapped. Typically, the particle is a dielectric sphere with
refractive index np immersed in a liquid medium with refractive
index nm. The scattering of the focused beam on the particle
generates some optical restoring forces that keep the particle
near the focus. The sum of the incoming and scattered electro-
magnetic fields can be collected by a second objective (O2) and
projected onto a screen placed in the back-focal plane. The po-
sition of the optically trapped particle can be detected by using
the image on the screen [26], as shown in Figs. 1(b) and 1(c).
Note that Fig. 1 is not to scale by a factor ∼100 because, in an
actual setup, the objective focal length is ∼170 μm and the
particle size is typically ∼2 μm.

In the geometrical optics approach [16], the incoming
laser beam, whose intensity profile is shown on the left of
Figs. 1(a)–1(c), is decomposed into a set of optical rays, which
are then focused by the objective O1. As the rays reach the par-
ticle, they get partially reflected and partially transmitted. The
directions of the reflected and transmitted rays are different
from those of the incoming rays. This change of direction en-
tails a change of momentum and, because of the action–
reaction law, a force acting on the sphere. As we will see, if
np > nm, these optical forces tend to pull the sphere toward
the equilibrium position near the focal point. As the scattered
rays reach the objective O2, they are collected and projected
onto the back-focal plane.

3. FORCES BY A RAY ON A PLANAR SURFACE

The energy flux transported by a monochromatic electromag-
netic field, such as the one of a laser beam, is given by its
Poynting vector

S � 1

2μ
RefE × B�g; (1)

where E and B are the complex electric and magnetic fields. In
order to describe how this energy is transported, a series of rays
can be associated with the electromagnetic field [27]. These
rays are lines perpendicular to the electromagnetic wavefronts
and pointing in the direction of the electromagnetic
energy flow.

When a light ray impinges on a flat surface between two
media with different refractive indices, it is partly reflected
and partly transmitted. Given an incidence angle θi, i.e., the

angle between the incoming ray ri and the normal n to the
surface at the incidence point, the reflection angle θr is given
by the reflection law

θr � θi; (2)

Fig. 1. Schematic of an optical tweezers setup (not to scale). A
Gaussian laser beam, whose intensity is shown on the left, is divided
into a set of optical rays (lines). The rays that can cross an aperture stop,
whose radius is equal to the beam waist in this case, are then focused by
an objective (O1, NA � 1.00 in water). Near the focal point, a dielec-
tric spherical particle (refractive index np � 1.50) immersed in a fluid
(refractive index nm � 1.33) scatters the rays (for clarity, the reflection
of the incoming beam and the internally scattered rays are omitted)
and, therefore, experiences a restoring recoil optical force F (black ar-
row). The scattered rays are collected by a second objective (O2) and
projected onto a screen placed in the back-focal plane. The position of
the particle can be tracked by monitoring the back-focal plane image,
which sensitively depends on the position of the particle, e.g., (a) at the
focal point, (b) displaced in the transverse plane, and (c) displaced
along the longitudinal direction. The distance between the objectives
and the size of the particle is not to scale by a factor ∼100. See also
Media 1 [21,23], Media 2 [21,24], and Media 3 [21,25].
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and the transmission angle θt is given by Snell’s law

θt � asin

�
ni
nt

sin θi

�
; (3)

where ni is the refractive index of the medium of the incident
ray rr and nt is that of the medium of the transmitted ray rt.
Both rr and rt lie in the plane of incidence, i.e., the plane that
contains ri and n. Because of energy conservation, the power Pi

of ri must be equal to the sum of the power Pr of rr and the
power Pt of rt, i.e.,

Pi � Pr � Pt: (4)

How the power is split can be calculated by using Maxwell’s
equations with the appropriate boundary conditions [28]. The
result is expressed by Fresnel’s equations and depends on
the polarization of the incoming ray, as we must distinguish
the case in which the electric field of the ray oscillates
in the plane of incidence (p polarization) from the one in which
it oscillates in a plane perpendicular to the plane of incidence
(s polarization). The Fresnel reflection and transmission
coefficients for p-polarized light are

Rp �
���� ni cos θt − nt cos θini cos θt � nt cos θi

����
2

; (5)

T p �
4nint cos θi cos θt

jni cos θt � nt cos θij2
�6�

and for s-polarized light

Rs �
���� ni cos θi − nt cos θtni cos θi � nt cos θt

����
2

; (7)

T s �
4nint cos θi cos θt

jni cos θi � nt cos θtj2
: (8)

For unpolarized and circularly polarized light, one can use
the average of the previous coefficients, i.e.,

R � Rp � Rs

2
; (9)

T � T p � T s

2
: (10)

The recoil optical forces are equal and opposite to the rate of
change of the linear momentum of light. Since for a ray of
power P in a medium of refractive index n, the momentum
flux is nP∕c, where c is the speed of light in vacuum, the
optical force is [16]

Fpl �
niPi

c
ûi −

niPr

c
ûr −

ntPt

c
ût; (11)

where ûi is the unit vector of ri, ûr is the unit vector of rr, and
ût is the unit vector of rt. We must note that the definition of
the momentum of light in a medium is a thorny issue, which is
often referred to as the Abraham–Minkowski dilemma after
the works of Minkowski [29] and Abraham [30]. This issue
is discussed in detail, e.g., in Refs. [31,32]. Since most results
in optical trapping and manipulation do not depend qualita-
tively on the momentum definition, in this work we employ
the Minkowski momentum definition, which in fact is the
most often employed in optical tweezers studies [16,33].
However, we remark that all results can be easily adapted to the

Abraham momentum definition by changing the definition of
the force in Eq. (11) [31].

4. FORCES BY A RAY ON A SPHERE

We now consider a ray ri of power Pi impinging from a
medium with refractive index nm on a dielectric sphere with
refractive index np at an incidence angle θi, as shown in
Fig. 2(a) and in Media 4 [21,34] and Media 5 [21,35]. As soon
as ri hits the sphere, a small amount of its power, P�1�

r , is
diverted into the reflected ray r�1�r , while most power, P�1�

t , goes
into the transmitted ray r�1�t . The ray r�1�t crosses the sphere
until it reaches the opposite surface, where again a large portion
of its power, P�2�

t , is transmitted outside the sphere into the ray
r�2�t , while a small amount of its power, P�2�

r , is reflected inside
the sphere into the ray r�2�r . The ray r�2�r undergoes another
scattering event as soon as it reaches the sphere boundary,
and the process continues until all light has escaped from the
sphere. The force Fray produced on the sphere by this series of
scattering events can be calculated by using repeatedly Eq. (11),
i.e.,

Fray �
nmPi

c
ûi −

nmP
�1�
r

c
û�1�r −

X∞
j�2

nmP
�j�
t

c
û�j�t ; (12)

where ûi, û
�1�
r , and û�j�t are the unit vectors of the incident ray,

the first reflected ray, and the jth transmitted ray, respectively.
We note that the dependence of Eq. (12) on np is hidden in the

Fig. 2. (a) Scattering of a ray impinging on a sphere. The incident
ray ri impinges on a glass spherical particle (np � 1.50) immersed in
water (nm � 1.33). The reflected (r�j�r ) and transmitted (r�j�t ) rays for
the first seven scattering events are represented. Because of the spheri-
cal symmetry of the particle, all rays lie in the plane of incidence.
See also Media 4 [21,34] and Media 5 [21,35]. (b) Corresponding
trapping efficiencies as a function of the incidence angle θi. See also
Media 6 [21,36] and Media 7 [21,37].
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dependence of the quantities P�1�
r and P�j�

t on the Fresnel
coefficients [Eqs. (5–8)]. Furthermore, we can notice that
the absolute value of the force does not depend on the dimen-
sion of the particle.

Since all the reflected and transmitted rays are contained
in the plane of incidence, as can be seen in Fig. 2(a) and in
Media 4 [21,34] and Media 5 [21,35], the force Fray in
Eq. (12) also has components only within the incidence plane.
We can, therefore, split Fray into a component along the direc-
tion of the incoming ray, i.e., the scattering force Fray;s �
�Fray · ûi�ûi � F ray;sûi, and a component perpendicular to
the direction of the incoming ray, i.e., the gradient force
Fray;g � Fray − �Fray · ûi�ûi � F ray;gû⊥:

Fray � Fray;s � Fray;g � F ray;sûi � F ray;gû⊥; (13)

where û⊥ is the unit vector perpendicular to ûi and contained
in the incidence plane. Interestingly, the gradient force is a
conservative force, while the scattering force is nonconservative.
If np > nm, the particle is attracted toward the ray
(Media 4 [21,34]), while, if np < nm, the particle is pushed
away from the ray (Media 5 [21,35]).

In order to quantify the effectiveness of the transfer of
momentum from the ray to the particle, we can introduce
the trapping efficiency, i.e., the ratio between the modulus of
the optical force and the momentum per second of the incom-
ing ray in a medium with refraction index ni. The trapping
efficiency is bound to lie between 0, corresponding to a ray
that is not deflected, and 2, corresponding to a ray that is re-
flected back on its path [16]. For example, for a 1 mW ray, the
maximum optical force is 7 · 10−12 N, i.e., 7 pN. Albeit small,
this force is comparable to the forces that are relevant in the
microscopic and nanoscopic world, e.g., the forces generated
by molecular motors [36], and gives us a first impression of
the potential of optical manipulation. In particular, we can de-
fine the scattering trapping efficiency

Q ray;s �
c

niPi

F ray;s; (14)

the gradient trapping efficiency

Q ray;g �
c

niPi

F ray;g; (15)

and the total scattering efficiency

Q ray �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

ray;g � Q2
ray;s

q
: (16)

Figure 2(b) and Media 6 [21,37] show the trapping efficien-
cies as a function of θi for a circularly polarized ray impinging
on a glass sphere (np � 1.50) immersed in water (nm � 1.33);
Media 7 [21,38] shows the trapping efficiencies for a circularly
polarized ray impinging on an air bubble (np � 1.00) im-
mersed in water (nm � 1.33). In both cases, the major contri-
bution to the total trapping efficiency is given by Q ray;g,
while only for very large incidence angles does Q ray;s become
appreciable.

5. FORCES BY A FOCUSED BEAM ON A
SPHERE

It is not possible to achieve a stable trapping using a single ray
because the particle is permanently pushed by the scattering
force in the direction of the incoming ray, as we have seen
in Fig. 2(b). A possible approach to achieve a stable trap is
to use a second counterpropagating light ray. In fact, such a
configuration using two laser beams was among the first ones
to be employed in order to trap and manipulate microscopic
particles [39], and a modern version has been obtained using
the light emerging from two optical fibers facing each other
[40]. This approach also works if the two beams are not
perfectly counterpropagating, but they are arranged with a suf-
ficiently large angle.

A more convenient alternative to using several counterpro-
pagating light beams is to use a single highly focused light
beam. In fact, rays originating from diametrically opposite
points of a high-NA focusing lens produce in practice a set
of rays that converge at a very large angle, as can be seen
in Fig. 1.

The most commonly employed laser beam is a Gaussian
beam. Its intensity profile at the waist is given by

IG�ρ� � I 0e
− ρ2

2w2
0 ; (17)

where ρ is the radial coordinate, w0 is the beam waist, I0 �
1
2 cε0nmE

2
0 is the beam intensity at ρ � 0, ε0 is the dielectric

permittivity of vacuum, and E0 is the modulus of the electric
field magnitude at ρ � 0. Such a beam can be approximated by
a set of rays parallel to the optical axis (z), each endowed with a
power proportional to the local intensity of the beam. The re-
sulting rays are then focused by an objective lens, which has the
effect of bending the light rays toward the focal point, as shown
in Fig. 1 and Media 1 [21,23], Media 2 [21,24], and Media 3
[21,25]. Each one of these rays produces a force F�m�

ray on the
sphere given by Eq. (12). The total optical force exerted by the
focused beam on the sphere is then the sum of all the rays’
contributions, i.e.,

Fbeam �
X
m

F�m�
ray : (18)

In Figs. 3(a) and 3(b), the force fields in the longitudinal
(zx) and transverse (xy) planes are represented as a function
of the distance of the high-refractive-index spherical particle
(np � 1.50, nm � 1.33) from the focal point, in the case of
an objective with NA � 1.30 and a circularly polarized beam.

To have a comparison of the force obtained from our
simulations with the forces usually found in experiments, we
can compare our prediction with the results in Ref. [38].
We take, for comparison, the measured trapping stiffnesses
for a polystyrene sphere (np � 1.57) with a 1.66 μm diameter
in a trap generated using a Gaussian beam with power
P � 10 mW focused by an objective with NA � 1.20.
Performing a calculation with the cited parameters, we obtain
a trapping stiffness along the longitudinal direction (z) equal to
kOTGOz � 6.45 pN∕μm, and a trapping stiffness along the trans-
versal direction (x) equal to kOTGOx � 12.66 pN∕μm, in reason-
able agreement with the experimental values found in Ref. [38],
which are, respectively, kexpz � 3.85 pN∕μm and kexpx �
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11.0 pN∕μm. The discrepancy of the trapping stiffness along
the longitudinal direction (z) might be due to the fact that our
calculation does not account for the spherical aberrations
present in the real optical trap [41].

The optical force field is cylindrically symmetric around the
z axis. The equilibrium position lies on the z axis, i.e.,
�x; y� � �0; 0�, and is slightly displaced toward positive z
because of the presence of scattering forces, as is commonly ob-
served in experiments [42]. In fact, a Brownian particle in an
optical trap is in dynamic equilibrium with the thermal noise
pushing it out of the trap and the optical forces driving it toward
the center of the trap [11], as can be seen from the Brownian
motion that the particles experience in Media 1 [21,23],
Media 2 [21,24], and Media 3 [21,25]. The maximum value
of the force is achieved when the particle displacement is about
equal to the particle radius R. We can notice again that, like in
the case of a single ray, the value of the force does not depend on
R; however, the trap stiffness, which is given by the force di-
vided by the displacement, is inversely proportional to R.

The force Fbeam in Eq. (17) can be split into a scattering
force Fbeam;s, given by the sum of the scattering forces of each
ray, and a gradient force Fbeam;g, given by the sum of the
gradient forces of each ray [16], i.e.,

Fbeam;s �
X
m
F�m�
ray;s (19)

and
Fbeam;g �

X
m
F�m�
ray;g: (20)

Like in the case of a single ray, while the gradient force
Fbeam;g is conservative, the scattering force Fbeam;s can give rise
to nonconservative effects, as has been shown in various experi-
ments [42]. These nonconservative effects are, however, small
[43], as can be seen from the small displacement along the z
axis of the equilibrium position.

It is now possible to define the scattering efficiencies for the
focused beam as

Qbeam;s �
c

niPbeam

F beam;s; (21)

Qbeam;g �
c

niPbeam

F beam;g; (22)

and

Qbeam � c
niPbeam

F beam; (23)

where Pbeam is the power of beam that contributes to the focal
fields, i.e., after the aperture stop. The scattering coefficients are
shown in Figs. 3(c) and 3(d) for a sphere displaced along the
longitudinal and transverse directions, respectively. If the
sphere is on the z axis, i.e., the propagation axis of the beam,
both the scattering force and the gradient force act only along
the z direction because of symmetry. For displacements of the
particle along the x direction, the gradient force is along the x
direction and the scattering force is along the z direction.

Other kinds of beams can also be used in optical trapping
experiments. In particular, Laguerre–Gaussian and Hermite–
Gaussian beams [28] have been widely exploited. An accurate
description of these beams requires one to take into account
their orbital angular momentum [44], which can have major
effects on their trapping properties. However, the features
related to the presence of spin angular momentum and of a
nonuniform phase profile in the beam, which lead, e.g., to
the presence of orbital angular momentum, cannot be accu-
rately modeled within the geometrical optics approach.
Nevertheless, some features connected to the different intensity
distributions in Laguerre–Gaussian and Hermite–Gaussian
beams can be explored, as shown in Fig. 4.

6. FURTHER NUMERICAL EXPERIMENTS

This section provides some guidelines and examples on how
readers can use geometrical optics and OTGO to explore more
complex situations both in the lab and in the classroom, going
beyond the basic optical tweezers case of a microscopic sphere
optically trapped in a highly focused laser beam.

We will first consider the case of a nonspherical particle. If
the particle is convex, one can still use the formula in Eq. (13)
to calculate the forces due to a single ray. However, in general,
the scattered rays and the force will not all lie on the incidence
plane, and, therefore, apart from the optical force, an optical
torque can also arise:

Fig. 3. Optical force fields in optical tweezers. The arrows represent
the direction and magnitude of the force exerted on a glass spherical
particle (np � 1.50) in water (nm � 1.33) illuminated by a highly
focused Gaussian beam (NA � 1.30, beam waist equal to the aperture
stop radius) propagating along the z direction as a function of the par-
ticle position (a) in the longitudinal (zx) plane and (b) in the transverse
(xy) plane. The shaded area represents the dimension of the particle.
The corresponding trapping efficiencies are shown in (c) and (d) for
particle displacements along the z axis and the x axis, respectively.
Note that for displacements along the z axis both the scattering
and the gradient force are directed along z, while for displacements
along the x axis the gradient force is directed along x, but the scattering
force is directed along z.
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T � �P1 − C� ×
nmPi

c
ûi − �P1 − C� ×

nmP
�1�
r

c
û�1�r

−
X∞
j�2

�Pj − C� ×
nmP

�j�
t

c
û�j�t ; (24)

where C is center of mass of the particle and Pj is the position
where the jth scattering event takes place. This is different from
the case of a spherical particle, such as the one shown in
Fig. 2(a), where the torque is null [16]. The typical order of
magnitude of the torque on a particle with characteristic
dimension of ∼1 μm is approximately 10−18 nm to
10−21 nm for a ray of power ≈1 mW, as shown in experiments
[38,46–48]. For example, we can consider the case of an elon-
gated particle, which can be modeled as a prolate ellipsoidal
glass particle (short semi-axes 2.00 μm, long semi-axis
3.33 μm, np � 1.50, nm � 1.33), as shown in Fig. 5.
Elongated particles are known to get aligned with their longer
axis along the longitudinal direction because of the presence of
an optical torque [49]. We simulated the optical forces using
OTGO and Brownian motion using the approach described in
Ref. [50] using the freeware HYDRO++ to calculate the diffu-
sion tensor [51], assuming the particle to be at room temper-
ature (T � 300 K). We start from a configuration in which
the particle center of mass is at the focal point, but the longer

semi-axis lies in the transverse plane, as shown in Fig. 5(a).
Because of the presence of the optical torque due to a focused
Gaussian laser beam of power 1 mW, the particle gets aligned
with the long semiaxis along the longitudinal direction in about
70 ms, as shown in Figs. 5(b) and 5(c), which is a result com-
parable to experiments [52].

Closely related to the optical torque, the windmill effect
[53], where an asymmetric object illuminated by a plane wave,
i.e., a series of parallel rays, can start rotating around its axis, can

Fig. 4. Force fields in optical tweezers generated using various kinds
of beams. (a) A Gaussian beam with a waist much smaller than the
radius of the aperture stop can trap a particle in the transverse plane
but cannot confine the particle along the longitudinal direction. (b) A
Laguerre–Gaussian beam, or doughnut beam, improves the trapping
along the longitudinal direction because of the presence of more power
at large angles. (c) A Hermite–Gaussian beam clearly breaks the cylin-
drical symmetry of the trap, as can be seen from the force field in the
transverse plane. In all cases, the force fields are calculated for a glass
spherical particle (np � 1.50) in water (nm � 1.33). The circle on the
left corresponds to NA � 1.30.

Fig. 5. Simulation of the motion of a prolate ellipsoidal Brownian
particle (np � 1.50, short semi-axes 2.00 μm, long semi-axis 3.33 μm)
in water (nm � 1.33) under the action both of Brownian motion and
of the optical forces and torques arising from a highly focused Gaussian
beam (NA � 1.30, P i � 1 mW), whose rays are coming from the
bottom. Because of the presence of optical torque, after ∼70 ms
the particle’s long axis gets aligned along the longitudinal direction.
See also Media 8 [21,45].

Fig. 6. Windmill effect. An asymmetric object illuminated by a
plane wave, i.e., by a set of parallel rays (coming from the top), under-
goes an optical torque that can set it into rotation. The object in the
illustration is characterized by a rotational symmetry that permits the
cancellation of the optical forces in the transverse plane, while an
optical torque is still present.

B16 Vol. 32, No. 5 / May 2015 / Journal of the Optical Society of America B Research Article

http://www.opticsinfobase.org/josab/viewmedia.cfm?URI=josab-32-5-B11&seq=8


also be reproduced using OTGO. In the simulation, we took a
set of parallel rays and shone them onto a perfectly reflecting
object reproducing the shape of a windmill wheel, i.e., four
circular mirrors oriented as shown in Fig. 6. In the presence
of an illuminating electromagnetic field, this object starts
rotating. Similar structures have indeed been experimentally
realized [53,54].

Another interesting effect that can be reproduced using
OTGO is the emergence of Kramers’ transitions [56,57]. We
simulated the motion of a Brownian spherical particle with
radius R � 1 μm in the presence of a double trap obtained by
focalizing two Gaussian beams each with power 0.25 mW so
that their focal points laid at a distance d � 1.7 μm in the trans-
verse plane, as shown in Fig. 7(a). Letting the system free to
evolve under the action of the Brownian motion and the optical
forces, the particle jumps from one potential well to the other
one, as shown by the trajectory in Fig. 7(b). The relatively low
value of the power of the trapping beams, necessary in order
to be able to observe the transitions at room temperature

T � 300 K within a relatively short time frame, is comparable
with the one in actual experiments [57]. Changing the param-
eters of the system, e.g., distance between the focal spots, beam
power, and temperature of the system, one can alter the transi-
tion rates, and, moreover, an additional local minimum may
arise between the two traps (e.g., for d � 1.5R), which has
indeed been observed in experiments [58].

It is also possible to extend the computational capabilities of
OTGO to nonconvex and/or nonsimply-connected shapes. For
example, in Fig. 8 we show the case of a simple optical model
for a biological cell [17]: in a first approximation, a cell
containing a nucleus can be modeled by a sphere (the cyto-
plasm) containing a smaller sphere of different refractive index
(the nucleus). It is interesting to notice that in a scattering event
a ray can now be split into multiple rays that may not neces-
sarily be able to escape the particle; this is typical of all non-
convex shapes and can lead to a steep increase in the number of
rays to be taken into account.

Spherical aberrations and astigmatism, which can have a sig-
nificant effect on the parameters of real optical traps [41,59],
can also be readily implemented within OTGO, e.g., by appro-
priately bending the rays of the incoming beam.

7. COMPARISON OF OTGO WITH
ELECTROMAGNETIC THEORY

We have quantified the reliability of the geometrical optics
approximation by comparing the optical trap stiffness obtained
with OTGO to the results of exact electromagnetic theory.
We considered a spherical particle (np � 1.50) in water
(nm � 1.33) trapped by a Gaussian beam of wavelength λ �
632 nm and power P � 10 mW focused by an objective with
NA � 1.20. For the exact electromagnetic theory we
calculated the time-averaged radiation force F acting on the

Fig. 7. (a) Kramers’ transitions of a spherical particle of radius R �
1 μm (np � 1.50) in water (nm � 1.33) held in the optical potential
generated by a double optical tweezers, i.e., two highly focused
Gaussian beams (NA � 1.30, P i � 0.2 mW) whose focal points
are separated in the transverse plane by a distance d � 1.7 μm and
whose rays are coming from the bottom. The position of the particle
is illustrated by the solid line and shows that the particle jumps
between two equilibrium positions. (b) Particle position along the
transverse axis that joins the two traps’ centers as a function of time.
See also Media 9 [21,55].

Fig. 8. Biological cell can be modeled by using two spherical par-
ticles with different refractive indices placed one inside the other to
represent the cytoplasm and the nucleus. As the cytoplasm is a non-
convex shape, the scattering process is more complex than in the case
of a sphere, and for a given ray multiple scattering events may need to
be taken into consideration.
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particle, which is equal in magnitude and opposite in sign to
the rate of change of momentum of the electromagnetic field,
according to [12–14]

F �
Z
S
hTMi · dS; (25)

where the integral is on a closed orientable surface S containing
the region where the particle is located, hTMi is the time-
averaged Maxwell stress tensor calculated from the scattered
fields, and dS is an outward-directed element of surface area.
The time-averaged Maxwell stress tensor represents the
optical momentum flux, and the integration over a closed ori-
entable surface S surrounding the object gives the rate of
change of momentum of the electromagnetic field, and there-
fore the force [12–14]. We calculated the optical force acting
on the particle for different positions of its center along the x
axis (transversal plane) near the focal point; then we extracted
the stiffness kx � − ∂Fx

∂x jx�0
, both for the geometrical optics

approximation and for the exact electromagnetic theory. We
performed the calculation for different values of the radius R
of the spherical particle. The results are shown in Fig. 9.
For R ≫ λ the values of the stiffness calculated with OTGO
are in very good agreement with the electromagnetic theory.
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