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Mott Transition in a Two Leg Bose Hubbard Ladder Under an Artificial Magnetic Field
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We consider the Bose Hubbard model on a two leg ladder under an artificial magnetic field, and investigate
the superfluid to Mott insulator transition in this setting. Recently, this system has been experimentally realized
[M.Atala et.al, Nature Physics 10, 588-593 (2014)] , albeit in a parameter regime that is far from the Mott
transition boundary. Depending on the strength of the magnetic field, the single particle spectrum has either
a single ground state or two degenerate ground states. The transition between these two phases is reflected
in the many particle properties. We first investigate these phases through the Bogoliubov approximation in
the superfluid regime and calculate the transition boundary for weak interactions. For stronger interactions
the system is expected to form a Mott insulator. We calculate the Mott transition boundary as a function of
magnetic field and inter–leg coupling with mean field theory, strong coupling expansion and density matrix
renormalization group (DMRG). Finally, using DMRG, we investigate the particle-hole excitation gaps of this
system at different filling factors and find peaks at simple fractions indicating the possibility of correlated phases.

PACS numbers: 05.30.Jp, 05.70.Fh, 67.25.dj,03.75.Lm, 73.43.-f,05.10.-a

I. INTRODUCTION

Cold atom experiments can realize fundamental models of
many particle physics which are not accessible with tradi-
tional condensed matter techniques. One recent advance has
been the demonstration of artificial magnetic fields in optical
lattice systems, as well as in continuum [1–3]. The optical
lattice experiments control the phase of the hopping between
different lattice sites to create a Hamiltonian with an artifi-
cial magnetic field. This effective magnetic filed is orders of
magnitude larger than what is attainable in a solid state exper-
iment. For the typical lattice constants in solids, the magnetic
flux through a unit cell is comparable to flux quantum h/e only
for magnetic fields in excess of thousands of Tesla. The first
experiments demonstrating effective magnetic fields in the op-
tical lattices have proved that this extremely high magnetic
field regime is accessible with cold atoms [2, 3].

Most investigations of the magnetic field effects on many
particle systems rely on a separation of length scales, assum-
ing that the magnetic length is much larger than the lattice
scale. However, if these two length scales are comparable, the
magnetic field can no longer be treated semiclassically and has
to be directly taken into account in the microscopic Hamil-
tonian. The profound effect of such strong magnetic fields
can be observed even for non-interacting particles. The sin-
gle particle spectrum is sensitively dependent on the external
field, forming a self-similar structure known as the Hofstadter
butterfly [4]. The recent experiments hold the promise for
investigation of many-particle physics for systems with such
complicated single particle dispersion. The interplay between
interactions and the complicated single particle spectrum is
expected to result in novel phases [5, 6].

The first experiments which implemented an artificial mag-
netic field for lattice systems demonstrated the existence of the

∗ ahmetkeles99@gmail.com
† oktel@fen.bilkent.edu.tr

artificial magnetic field by measuring the effect of this field on
excited states of the system [7]. Thus they have not probed the
ground state of the Hofstadter-Hubbard Hamiltonian. The re-
cent experiment by the Munich group have for the first time
demonstrated the effects of the artificial magnetic field on the
ground state of a lattice system.

The experiment in Ref. [7] realizes a model which is es-
sentially one dimensional. In general, the orbital coupling of
the magnetic field to a one dimensional system does not cre-
ate any change, as such a field can be set to zero by a gauge
transformation. However, by using a two leg ladder, the ex-
periment creates a situation for which the magnetic field has
non-trivial effects on the system without generating a compli-
cated single particle spectrum or a sensitive dependence on
the rationality of the applied field. Thus, experimental real-
ization of this system provides the first opportunity to study
the behavior of lattice bosons in the extremely high magnetic
field regime.

In this paper, we investigate this model system theoretically,
particularly focusing on the effect of the artificial magnetic
field on the Mott insulator to superfluid transition. We have
previously conducted a theoretical study of the two leg Bose-
Hubbard ladder [8]. In this paper our unpublished results are
summarized and extended to cover the regime investigated by
the experiment. The paper is organized as follows: We intro-
duce the Hamiltonian in section (II), and review the proper-
ties of the single particle spectrum in section (III). In section
(IV), we investigate the system with weak interactions using
the Gross-Pitaevskii mean field approximation and also dis-
cuss the excitations of the system above the mean field solu-
tion. The remaining sections focus on the strongly interacting
regime. In section (V), we calculate the phase diagram of the
system using a real space Gutzwiller ansatz. This approxi-
mation is particularly poor for one dimensional systems, thus
in section (VI) we calculate the phase diagram using strong
coupling perturbation theory. Section (VII) contains the dis-
cussion of the Mott transition using DMRG. In section (VIII),
we investigate the gap between the ground and the first excited
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state of the system at half filling in the infinite interaction limit
as well as the gaps in the particle hole excitations of the system
for various fillings using DMRG and discuss the possibility of
correlated states. Finally, we summarize our results and their
consequences for experiments in section (IX).

II. MODEL

We consider an infinite ladder composed of square plaque-
ttes extending in the x̂ direction, with nearest neighbor hop-
ping. The tight-binding Hamiltonian for this two leg ladder is
given by

H =−∑
i

[
Je−iα a†

i ai+1 + Jeiα b†
i bi+1 +Ka†

i bi +H.C.
]

+
U
2 ∑

i
na

i (n
a
i −1)+nb

i (n
b
i −1)−µ ∑

i
na

i +nb
i (1)

where ai, bi (a†
i , b†

i ) are bosonic annihilation (creation) oper-
ators for the ith site in the upper and lower legs, respectively.
na

i = a†
i ai and nb

i = b†
i bi are corresponding number operators,

J (K) is the intra-leg (inter-leg) hopping strength, U is the
on-site interaction strength and µ is the chemical potential.
We assume a homogeneous system that has “up-down” sym-
metry for zero magnetic field, so that on-site interactions and
chemical potentials are identical for each leg. The phase α

accumulated by hopping from~ri to~r j is

α =
e
h̄

∫ rj

ri
dr ·A(r), (2)

where A is the vector potential satisfying ∇×A = B and B is
the magnetic field perpendicular to the two leg plane. We use
the Landau gauge A =−Byx̂ for B = Bẑ, and choose y = 0 to
be at the center of two legs so that upper and lower legs will be
at position y = c/2 and y =−c/2, respectively. Thus, the ex-
ponent in Eq. (1) can be calculated from Eq. (2) as α = πφ/φ0
where φ is the magnetic flux passing through each plaquette
and φ0 = h/e is the flux quantum.

The main advantage of considering a two leg ladder as op-
posed to the two dimensional extended system is immedi-
ately obvious. For two dimensional systems, periodicity un-
der translations can only be obtained when φ/φ0 is taken to
be a rational number p/q. Only then the symmetry broken by
the specific gauge choice can be restored in a q-fold enlarged
unit cell. The two leg ladder system does not require such a
constraint so that calculations can be carried out for any real
number α/π between zero and one. As such, the two leg sys-
tem presents an opportunity to observe the non-trivial effects
of an external field in a lattice system refrained from the added
theoretical complication. The profound effect of the magnetic
field is evident even in the single particle level which is pre-
sented in the next section.

III. SINGLE PARTICLE SOLUTION

We first give solutions for non-interacting particles; U = 0.
Using the translational invariance along the x-direction, the

Fourier components of the field operators can be written as,

a j =
1√
L ∑

k
akeik j,b j =

1√
L ∑

k
bkeik j (3)

where the Fourier components satisfy the commutation
[ak,a

†
k′ ] = δkk′ and [bk,b

†
k′ ] = δkk′ , all other commutators be-

ing zero. For simplicity, we have taken c = 1 above so that
all lengths are measured in units of the lattice constant. Us-
ing these transformations in Eq.(1), the following Hamiltonian
can be obtained in the momentum space

Hsp =−∑
k

[
ξaka†

kak +ξbkb†
kbk +Ka†

kbk +Kb†
kak

]
, (4)

where ξak and ξbk are 2J cos(k−α) and 2J cos(k+α),
respectively. Diagonalization is achieved by the Bogoli-
ubov transformation Ak = cosθak + sinθbk, Bk =−sinθak +
cosθbk where θ = 1

2 arctan( 2K
ξak−ξbk

). The energy eigenvalues
ε1,2 can be found as

ε1,2 =−2cos(k)cos(α)∓
√

K̃2 +4sin2 k sin2
α, (5)

where K̃ = K/J and we normalize the energy with the inter-
leg hopping J. In Fig. (1), we show the dispersion relation in
the first Brillouin zone, for zero and non-zero magnetic fields.
It can be seen that, as the strength of the field increases, band
minimum in the dispersion shifts from k = 0 to two nonzero
k values that are degenerate and symmetric around the origin.
The critical field for this bifurcation depends on the parameter
K̃ as

αc = cos−1

(
− K̃

4
±
√

K̃2

16
+1

)
. (6)

Above this critical field, the ground state of the system will no
longer be a spatially uniform state, but will be a superposition
of the plane waves corresponding to the two minima that can
be found from the dispersion as:

kmin =±sin−1

√
sin2

α− K̃2

4tan2 α
. (7)

In the Munich experiment [7], these two ground states were
observed for weakly interacting bosons and have been named
as the Meissner and Vortex phases, respectively.

As one can see from the Fig. (1), for small values of the
magnetic field, there is no gap between the lower band and
the upper band, whereas for the one α/π = 0.5 there is a finite
band gap between these two and it decreases as K/J reduced.
We observe that this gap closes as K/J → 0 and a singular
point emerges at k = 0 in this limit. To show a more detailed
behavior of the band gap, we plot the minimum and the max-
imum of the two bands as a function of the magnetic field for
K = J in Fig. (2). This plot can be regarded as the “Hofstadter
butterfly” of the two leg ladder system. We see that a diamond
shaped gapped region starts at α/π = 1/3, takes its maximum
value 2J at α/π = 1/2 and closes at α/π = 2/3. In Fig. (2),
we also provide the value of the reciprocal lattice vector kmin
as given in Eq. (7) at the band minimum as a function of mag-
netic field and the parameter K/J which is in agreement with
[7].
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FIG. 1. Single particle spectrum of the two leg ladder with varying
magnetic field α and inter-leg to intra-leg hopping ratio K (in units of
J). Lower bands are shown with solid lines whereas upper bands are
shown with dashed lines. The gap between lower and higher bands
appears for α/π = 0.5 is further shown below for the case K = 1 as
a function of magnetic field in Fig.(2). It is also observed that gap
around k = 0 for α/π = 0.5 closes for very small K� 1 giving rise
to a linear dispersion around k = 0.
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FIG. 2. (Left) Band minima and maxima for the two bands as a
function of the magnetic field. Blue lines are for the lower band and
red lines are for the higher band. Band minima are shown with solid
lines, band maxima are shown with dashed lines. Band gap is evident
in between α/π = 1/3 and α/π = 2/3 which attains its maximum
value for α/π = 1/2. (Right) Value of reciprocal lattice vector at the
minimum energy as a function of magnetic field and parameter K/J.

IV. GROSS-PITAEVSKII APPROXIMATION

For small values of the interaction strength and the mag-
netic field, the system will essentially be in the superfluid
state, mostly dominated by the hopping term in the Hamil-
tonian. Thus, assuming that the condensate fluctuations are
negligible, we make the following approximation:

ai→ 〈ai〉= ψi, bi→ 〈bi〉= φi. (8)

Both amplitude and the phase of those classical fields are time
and position dependent. Clearly, approximation with a uni-
form condensate will fail above the critical field.

Making the substitution (8) in Eq. (1), the following energy
functional is obtained (here we take J = 1 so that U , µ and K

are in the units of J);

E =−∑
j

[
e−iα

ψ
∗
j ψ j+1 + eiα

φ
∗
j φ j+1 +Kψ

∗
j φ j + c.c.

]
+

U
2 ∑

j

[
ψ
∗
j ψ j(ψ

∗
j ψ j−1)+φ

∗
j φ j(φ

∗
j φ j−1)

]
−µ ∑

j
|ψi|2 + |φi|2. (9)

Variation of the energy functional around the minimal solu-
tions i∂ψi/∂ t = δE/δψi

∗ and i∂φi/∂ t = δE/δφ ∗i gives the
following coupled Gross-Pitaevskii equations:

i
∂ψ j

∂ t
=−

[
e−iα

ψ j+1 +Kφ j + eiα
ψ j−1

]
+U |ψ j|2ψ j− (

U
2
+µ)ψ j (10)

i
∂φ j

∂ t
=−

[
eiα

φ j+1 +Kψ j + e−iα
φ j−1

]
+U |φ j|2φ j− (

U
2
+µ)φ j. (11)
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FIG. 3. Band diagrams for the two leg ladder with on-site interactions
calculated within the Gross Pitaevskii approximation for U = 2. The
left panel is for α/π = 0.1 and the right panel is for α/π = 0.3.

Zeroth order terms ψ j = φ j =
√

n give the chemical poten-
tial as µ =−(2cosα + K̃)+0.5U(2n−1). For a higher order
approximation, the fluctuations in the condensate is taken into
account as[9]:

ψ j =
√

n+Aei(kx j−ωt)+B∗e−i(kx j−ωt),

φ j =
√

n+Cei(kx j−ωt)+D∗e−i(kx j−ωt), (12)

where A, B, C, D are small complex parameters, x j is the po-
sition of the lattice site and k is the reciprocal lattice vector.
Inserting these wave functions into Eq. (11), the equation of
motion can be reduced to an algebraic equation of the form
Hgp~Ψ = ω~Ψ where ~Ψ = (A,B,C,D) and Hgp has the form

Hgp =

 −ξ ′ak Un −K 0
−Un ξ ′bk 0 K
−K 0 −ξ ′bk Un
0 K −Un ξ ′ak

 , (13)
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where ξ ′ak = 2cos(k − α)− 2cos(α)−Un− K and ξ ′bk =
2cos(k + α)− 2cos(α)−Un−K. The resulting change in
the spectrum can be obtained by calculating the eigenvalues
of Hgp which is shown in Fig. (3).
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FIG. 4. Critical magnetic field plotted as a function of the interac-
tion strength U and the intra-leg hopping K. Inset shows the same
plot zoomed out for large interaction strengths. Note that the Gross-
Pitaevskii approximation is not expected to be reliable for strong in-
teractions.

Competition between the magnetic field and the interac-
tions can be seen by considering the band minima around
k = 0 in Fig. (3). Here the interactions sharpen the band and
provide a cusp like shape whereas the increase of the magnetic
field makes it smoother. The expansion of the wave function
in Eq. (12) fails above the critical magnetic field, as the ground
state is no longer spatially uniform. We have used this prop-

erty to determine the change of the critical field with the in-
teraction strength. In Fig. (4), the critical magnetic field as
function of the strength of the interaction is shown. It can be
seen that, U−αc relation is almost linear for small interaction
strength but saturates for strong interactions. It must be noted
that for strong interactions Gross Pitaevskii approximation is
not reliable.

V. VARIATIONAL MEAN FIELD APPROACH

In this section, we consider the transition from the super-
fluid state to the Mott insulating state as a function of J, K,
µ and α . Here, it is convenient to scale the Hamiltonian in
Eq. (1) with U = 1. In the perfect Mott insulator phase, each
site has a localized wave function with exactly n0 particles
such that the wave function in each site is |n0〉i in the Fock
basis. Allowing small variations around this equilibrium, we
write the following Gutzwiller ansatz for local sites;

|G〉ak = ∆ak|n0−1〉ak + |n0〉ak +∆
′
ak|n0 +1〉ak,

|G〉bk = ∆bk|n0−1〉bk + |n0〉bk +∆
′
bk|n0 +1〉bk, (14)

where ∆ and ∆′ are small complex variational parameters.
Wavefunction for a rung is |Gr〉k = |G〉ka|G〉kb so that the
total wavefunction of the system can be written as |Ψ〉 =
∏

N
k |G〉ka|G〉kb. Variational energy of the system is calculated

from ε = 〈Ψ|H|Ψ〉/〈Ψ|Ψ〉 up to second order in ∆ and ∆′ as
follows:

ε =
N

∑
i=1
{− Je−iα

[
n0∆a,i∆

∗
a,i+1 +(n0 +1)∆′∗a,i∆

′
a,i+1 +

√
n0(n0 +1)∆a,i∆

′
a,i+1 +

√
n0(n0 +1)∆′∗a,i∆

∗
a,i+1

]
− Jeiα [a→ b]

−K
[
n0∆a,i∆

∗
b,i +(n0 +1)∆′∗a,i∆

′
b,i +

√
n0(n0 +1)(∆a,i∆

′
b,i +∆

′∗
a,i∆
∗
b,i)
]

+
[
(1−n0 +µ)(|∆a,i|2 + |∆b,i|2)+n0(n0−1−2µ)+(n0−µ)(|∆′a,i|2 + |∆′b,i|2)

]
}. (15)

We minimize the energy with respect to ∆ai, ∆bi, ∆′ai, ∆′bi. The Jacobian matrix of the second derivatives are calculated as

J =−
(

n0F
√

n0(n0 +1)F√
n0(n0 +1)F (n0 +1)F

)
+

(
(1−n0 +µ)I 0

0 (n0−µ)I

)
, (16)

where I is 2N×2N identity matrix and F is written as

F =


A B . . . B†

B† A
. . . 0

...
. . . . . . B

B 0 B† A

 . (17)

Here sub-blocks are defined in terms of Pauli matrices in the upper leg-lower leg basis as

A = Kσx, B = Jeiασz . (18)

To find the eigenvalues, we use the same method presented in Ref.6; let λF and ~u be the eigenvalues and the eigenvectors of F
respectively, then one can apply an ansatz of the form~v = (a~u,b~u) and solve the eigenvalue equation J~v = λ~v which is found to
be

λ1,2 = 1−λF(2n0 +1)±
√
(1−λF(2n0 +1))2 +4λF(µ +1)−4(n0−µ)(1−n0 +µ) (19)



5

Equating the minimum eigenvalue of the Jacobian matrix in
Eq. (19) to zero yields the phase boundary the of Mott insu-
lating region. Solving the corresponding equation for K and
J, the following simple relation can be found for the boundary
of Mott phase

λF(Kc,Jc) =
(n0−µ)(1−n0 +µ)

(µ +1)
. (20)

Here λF is the minimum value of ε1 in Eq. 5 so that we obtain
the Mott phase boundary for each value of the magnetic field
α . In Fig. (5), Eq. (20) is plotted for n0 = 1 which shows the
shape of the Mott insulation region.

Note that this result is exact within the mean field theory.
However, the mean field theory in a quasi one dimensional
system is not expected to be accurate. The decoupling of the
hopping term in Eq.1 by introducing a mean field is question-
able in a low dimensional system, where effect of fluctuations
are necessarily important. The mean field calculation can only
describe the system at a qualitative level. It provides a general
idea about the topology of the Mott region, and an estimate of
the phase boundary for small values of the hopping strength
where site-site correlations are diminished. For a better deter-
mination the Mott insulating region, we turn to more accurate
methods in the following sections.

VI. STRONG COUPLING EXPANSION

A better description of the transition is obtained by treating
the hopping term as a perturbation on the perfect Mott state.
While this is, in spirit, close to the mean field approach given
in the previous section, correlations between the sites are built
in as higher orders in perturbation theory are developed. The
resulting ‘strong coupling expansion’ has been successfully
applied to Bose-Hubbard model in low dimensions and has
been shown to be in perfect agreement with accurate numeri-
cal methods [10, 11].

In strong coupling expansion, the hopping amplitude is con-
sidered as a small parameter. The Mott insulator state is char-
acterized by a finite gap for particle-hole excitations, whereas
this gap vanishes for the superfluid phase[12]. We calculate
the energy of a system with exactly n0 particles per site (Mott
state EM) and the energy of a system with one additional de-
fect (particle EP or hole EH ) perturbatively. The energy dif-
ference between the defect states and the perfect Mott state
vanishes at the phase boundary. This method has been used
for systems with different dimensions[13, 14] and for a two
dimensional system under a magnetic field[15].

For the calculations in perturbation theory, it is convenient
to write the Hamiltonian in the following generalized form:

H =−∑
i j

Fi ja
†
i a j +

1
2 ∑

i
ni(ni−1)−µ ∑

i
ni (21)

where F is given in Eq.(17) for our model.
We perform strong coupling perturbation up to second or-

der in our calculations. The energies of the Mott state EM , the

additional particle state EP and the additional hole state EH
are found to be

EM = E0
M−Nn0(n0 +1)(2J2 +K2), (22)

EP = E0
P− (n0 +1)λF−Nn0(n0 +1)(2J2 +K2)

−n0(n0 +1)λ 2
F +

1
2

n0(5n0 +4)(2J2 +K2), (23)

EH = E0
H −n0λF−Nn0(n0 +1)(2J2 +K2)

−n0(n0 +1)λ 2
F +

1
2
(n0 +1)(5n0 +1)(2J2 +K2), (24)

where λF is the lowest eigenvalue of hopping matrix F and N
is the number of lattice sites in one leg. Zeroth order energies
are E0

M = 2N(n0(n0 − 1)/2− µn0), E0
P = E0

M + n0 − µ and
E0

H = E0
M − (n0− 1)+ µ . Solving the equations EP−EM =

0 and EM −EH = 0 for the chemical potential µ separately,
the phase boundary of the particle sector and hole sector is
obtained as,

µP = n0 +(n0 +1)λF−n0(n0 +1)λ 2
F

+
1
2

n0(5n0 +4)(2J2 +K2), (25)

µH = (n0−1)−n0λF−n0(n0 +1)λ 2
F

− 1
2
(n0 +1)(5n0 +1)(2J2 +K2). (26)

Here the magnetic field dependence comes indirectly from the
eigenvalue λF, but higher order terms in the perturbation will
depend on the magnetic field explicitly. An interesting obser-
vation is that our results to this order are similar to the results
of Ref.15 for number of nearest neighbors equal to 3 . How-
ever this is not guaranteed for higher order expansions since
the flux attained through hopping is different due to difference
of the topology of this constrained problem. Eigenvalue spec-
trum of the F matrix is shown in Fig. (2).

In Fig. (6) we show the results of this calculation. An in-
crease of the magnetic field enlarges the Mott insulating re-
gion of the phase diagram. This is expected as the magnetic
field localizes the single particle trajectories even for the non-
interacting problem thus a transition to an insulator state is
easier. The Mott lobe grows in size until α = 0.5 and then re-
duces to satisfy periodicity at α = 1. The shape of the lobe is
not concave as predicted by mean field, but convex with a cusp
at the tip. This shape is generic in one dimension, as obtained
by strong coupling, Monte Carlo and DMRG results in one
dimension. By comparing Fig. (5) Fig.6, it can be observed
that the mean field results underestimate the Mott boundary
by a considerable amount.

A new feature of the phase diagram emerges after α = 0.3.
The Mott phase has a reentrance as a function of hopping
strength at fixed chemical potential. Beyond α = 0.3 (for
K = 2) curves of the particle and the hole sector intersect at
such a large value of the hopping amplitude that the second
order perturbation theory fails to capture this region. A final
remark about the figure is that, for strong magnetic field, i.e
αc > 0.3 the phase diagram takes the shape of the one dimen-
sional case found in Ref.[10]. The re-entrant phase behavior
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FIG. 5. Mott insulating phase boundary calculated within variational mean field approach as a function of the magnetic field strength and the
chemical potential for K = 0.5J, K = 0.5J, K = 0.5J. The region below(above) the plotted surface is the insulating(superfluid) state.
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FIG. 6. Phase diagram of the two leg ladder from strong coupling
expansion up to the second order for different magnetic fields and
inter-leg to intra-leg hopping ratios.

found in one dimensional systems appears with the increase of
magnetic field for the two leg ladder. This reentrant behavior
was not observed in the results of strong coupling perturbation
in one, two or three dimensions, or in two dimensional lattice
under a magnetic field ( in [13–15] perturbation was carried
out up to the third order). Existence of this reentrant phase is
also supported by our DMRG results, which is the subject of
the next section.

VII. DMRG CALCULATIONS

Density Matrix Renormalization Group (DMRG) theory is
proved to provide numerically exact solutions of one dimen-
sional lattice systems[16, 17]. This method has been exten-
sively applied to the Bose Hubbard model[10, 11, 18] and
shown to be one of the most reliable approaches for quasi-one
dimensional systems. Thus, in this section, we use DMRG to
calculate the Mott transition boundary for the two leg Bose
Hubbard ladder under a magnetic field.

We use a method similar to [19], namely rung by rung en-
largement, but employ single rung enlargement [20] in the
construction of superblock Hamiltonian. We use the finite
system DMRG algorithm for a ladder of 60 rungs and for each
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24
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FIG. 7. Phase diagram of the two leg Bose Hubbard ladder from
DMRG for α = 0 on the left and α/π = 0.45 on the right. For com-
parison the strong coupling results are also shown.

site we set the maximum occupacy nmax = 4. Particle number
conservation is used to diagonalize only the Nparticle = Nsites
sector of the superblock Hamiltonian or Nparticle = Nsites± 1
as additional target states. Further details about the projection
to the space with different fillings are given in the next section.

Calculation of the Mott phase boundary via DMRG is very
similar to the strong coupling perturbation method. One needs
energies of the Mott phase together with the additional parti-
cle and hole states to find the phase boundary. The energies
of particle and hole states are calculated as additional target
states in DMRG implementation[10]. In Fig.7, one can see
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the good agreement between the strong coupling result and
DMRG. For larger values of hopping, the strong coupling de-
viates from DMRG, as expected for a perturbative method.
Another point is that the existence of reentrance is also val-
idated by DMRG results. We show the similar phase for
α = 0.45 in Fig. (7). It is seen that strong coupling calcu-
lations give relatively poor results above J ≈ 0.2.

Finally, we note that the tip of the Mott insulator region
requires a special treatment with DMRG. The two branches
coming from particle and hole sector intersect only in the ther-
modynamic limit, whereas our system is composed of only 60
rungs. There are several approaches (like consideration of the
correlation length and extrapolation to Luttinger liquid corre-
lation function in [10] ) to remedy this situation. As the crit-
ical behavior of the tip is not our main concern in this paper,
we do not perform a similar analysis.

VIII. EVIDENCE OF STRONGLY CORRELATED PHASES

In the previous sections, we performed various calculations
that can only work close to the Mott insulator phase. Theoret-
ical approaches are limited for 2D Bose Hubbard model under
a magnetic field, particularly for strong fields. This is due to
the complicated single particle spectrum as well as the inter-
play between strong correlations and the high number of de-
generacies. Both strong coupling and mean field approaches
work in the region where such correlations are weak. On the
other hand, this is exactly the region where novel phases are
expected. For this reason, the characterization of the two di-
mensional Bose Hubbard model exposed to a strong magnetic
field is attracting close attention. There have been several
proposals that try to connect these strongly correlated states
with the formation of vortex lattice or with the incompress-
ible quantum liquids found in the quantum Hall effects. [5]
The absence of an encompassing theoretical model makes it a
hard task to identify the physics of this regime.

Both the strong coupling expansion and the mean field the-
ory as discussed in the previous sections use the Mott insulator
state as their starting point. As a result, their range of valid-
ity is limited to densities close to integer filling. In the other
limit, the Gross Pitaevskii approximation assumes a uniform
gas spread over the lattice to reveal the dynamics of the sys-
tem. Compared to these theoretical approaches, DMRG has
a very wide range of applicability regardless of the particle
number, strength of the field and the interaction. One can cal-
culate the ground state of the system for a finite lattice with
any number of particles for all values of the magnetic field
and the interaction strength. In this section, we use DMRG
method to study the two leg Bose Hubbard Model under mag-
netic field outside the Mott insulator region, and look for evi-
dence for strongly correlated behavior.

Here, we limit DMRG calculations to hard core bosons in
the infinite U limit, providing an easier implementation of the
algorithm as the Hilbert space is drastically reduced by ex-
cluding multiple occupation of each site. This limit is particu-
larly important for correlated states as the gaps in the spectrum
are expected to be more prominent with strong interactions.

Within this constraint, each site is allowed to be empty or have
only one boson so that maximum occupation number nmax = 1
and the terms with the on site interaction in the Hamiltonian
becomes only a constraint in the Hilbert space. Bose Hub-
bard model in this limit can be mapped to spin-XXZ model,
where ground state is at half filling. We find that our system
has a ground state at half filling not only for α = 0 but also
for nonzero α . In the two limits; all sites are empty and all
sites are filled, ground state energy is zero and minimum of
the energy is always at half filling which is in the middle of
these two limits.

The energy gap between the ground state and first two ex-
cited states is shown in Fig.9 for half filling. From the figure,
it can be seen that spectrum of the three lowest lying states
changes abruptly to at αc/π ≈ 0.21. This plot is symmetric
around α/π = 0.5 so we only display the half. The critical
value found here is consistent with the one found in single
particle solution, which are equal to 0.2148 or 0.7852.

To get the energies at different fillings DMRG code must be
restricted to a different particle number conserving subspace.
We use the route proposed by Ramanan et al.[18] in which the
plateaus in the chemical potential versus the density plots and
the corresponding compressibilities are obtained successfully.
We again have a system length L = 60 that has 2×L = 120
sites. Beginning from L = 4 and total number of particles
N = 4, we increase both the lattice length and the number of
particles up to where number of particles is N = 10. After
that, the lattice length is increased while total number of par-
ticles held fixed at 10. Whenever the lattice length reaches
to L = 60, finite system sweeps are used to decrease energy.
Next, we increase the total particle number by 1 keeping the
system size fixed and perform 5 sweeps to get the energy for
this new filling. Repeating this procedure, we get energies
where the particle number is increased up to N = 110. At the
end, energies of systems from N = 10 to N = 110 particles
placed on 2×L = 120 sites are obtained. After that, the gap
formula defined by Cooper et al.[21]

∆ = N
[

E(N +1)
N +1

+
E(N−1)

N−1
−2

E(N)

N

]
(27)

is used, which minimizes the finite size effects.
We show this gap for various values of magnetic field in

Fig.8. It is seen that the gap oscillates between zero and
nonzero values for low densities and becomes negative to-
wards integer filling. Apart from that there are three domi-
nant peaks one is always at 1/2 and the other two depend on
α . Magnitude of these changing peaks are also seen to be
getting smaller and smaller as the field approaches to 1/2. It
is interesting to compare these peaks by defining the filling
factor[22],

ν =
n
f

(28)

where n is particle density and f is vortex density defined as
the phase attained around a unit cell divided by 2π which
means f = α/π in our model. We see that the correspond-
ing distinct values of the filling factors for the peaks in Fig.8
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from the dominant peaks at 1/6, 5/6 for α = 1/3, 1/5, 4/5 for α = 2/5 and 1/4, 3/4 for α = 1/2 thew is a persistent peak at half filling.
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FIG. 9. Gap between ground state and two excited states for differ-
ent magnetic fields at half filling for hard core interaction. The gap
between first excited state E1−E0 is shown by green ’+’, whereas
the one for E2−E0 is shown by blue ’◦’. Thin lines are spline in-
terpolation to data points. Spectrum shows a jump at αc/π = 0.21
which is very close to critical magnetic field calculated from the sin-
gle particle spectrum.

are obtained as ν = 1/4, 3/4, 5/4 for α/π = 1/3; ν = 1/4,
5/8, 1 for α/π = 2/5, and ν = 1/4, 1/2, 3/4 for α/π = 1/2.

The dependence of the gap on the filling fraction is a clear
evidence of the role played by the interactions. However our
simple finite size DMRG calculations can not reveal the char-
acter of correlations within these states. Future studies of the
system in this limit must include larger system sizes, finite
on-site interactions and a careful consideration of finite size
effects to reveal the physics of possible correlated states in the
two-leg Bose Hubbard ladder.

IX. CONCLUSION

Our calculations lead to a number of conclusions related to
the recent experiment Ref.[7].

The experiment has probed only the limit where the number
of particles per site is high, which can mostly be described by
the Gross-Pitaevskii level approximations. The reported phase
transition between the two phases is driven by the change in
the character of the single particle spectrum rather than inter-
actions. In this limit, the effect of interactions is expected to
be quantitative rather than qualitative. Our calculations indi-
cate that the interactions will shift the boundary between the
Meissner and Vortex phases, however observation of this shift
is complicated by the uncertainty due to finite temperature in
the experiments. A recent paper [23] argues that another ef-
fect of the interactions would be the spontaneous breaking of
the symmetry between the two legs. As our calculations have
this symmetry built in we cannot investigate such a transition.

While the current experiment operates in the superfluid
regime, it is natural to expect further experiments in this sys-
tem to probe the region with only a few particles per site where
the insulating state is likely. We expect our strong coupling
and DMRG results to be quantitatively correct for the Mott
transition boundary. While the effect of the external confining
potential is weak in the experiment, a wedding cake structure
would be a clear indication of the Mott transition. Such a
wedding cake structure can be observed by not only looking
at the density but can also be deduced from the link currents
investigated by the method used in the present experiment.

Finally, our DMRG results for non-integer filling factors
provide some evidence for the possibility of correlated phases
in this system. However we can not confidently assert the
presence of these phases due to the finite size limitations of
our calculation. To judge the viability of the experimental
observation of these phases a better characterization of their
gaps and correlation properties must be made. Nonetheless
our results indicate that this regime should be interesting to
investigate experimentally.

In conclusion, we worked on the two leg Bose Hubbard



9

ladder exposed to magnetic field within various theoretical
approaches and implemented DMRG to study the behavior
of the system. We found that the system has two distinc-
tively different regimes in agreement with the recent exper-
iment. The shape of the Mott insulator region is obtained with
three different methods; variational mean field theory, strong
coupling perturbation theory and DMRG. We found that the
shape of the lobe is consistent within DMRG and strong cou-
pling approximation while the results of the mean field theory
is relatively poor. Apart from the determination of the Mott
lobes, system is found to display novel physical properties as
a result of the single particle spectrum. We believe that this
model serves as an important tool for understanding the gen-
eral properties of the optical lattices coupled to a gauge field.
In the final part of the paper, we calculated the excitation gap

for non-integer filling and found distinct peaks at simple frac-
tions of particle number to flux quanta. This regime will be
investigated further in subsequent work.
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