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We study marriage problems where two groups of agents, men and women, match 
each other and probabilistic assignments are possible. When only ordinal preferences 
are observable, stochastic dominance efficiency (sd-efficiency) is commonly used. First, 
we provide a characterization of sd-efficient allocations in terms of a property of an 
order relation defined on the set of man–woman pairs. Then, using this characterization, 
we constructively prove that for each probabilistic assignment that is sd-efficient for some 
ordinal preferences, there is a von Neumann–Morgenstern utility profile consistent with 
the ordinal preferences for which the assignment is Pareto efficient. Second, we show 
that when the preferences are strict, for each ordinal preference profile and each ex-
post stable probabilistic assignment, there is a von Neumann–Morgenstern utility profile, 
consistent with the ordinal preferences, for which the assignment belongs to the core of 
the associated transferable utility game.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The theory of two-sided matching problems has been useful in providing solutions to many real-life economic problems 
(see Roth and Sotomayor, 1990). A marriage problem, which constitutes a basis for two-sided matching problems, consists 
of two equal-sized groups of agents: men and women. Each man has ordinal preferences over women and vice versa. 
A majority of the literature is focused on deterministic assignments, where men and women are matched one-to-one. One 
can also think of probabilistic assignments, which are lotteries over deterministic assignments, and these are interesting for 
at least two reasons: (1) agents may match in fractions; for example, a consultant may allocate his time among several 
firms,1 (2) probabilistic assignments may help us achieve fairness when it is not possible with deterministic assignments 
(e.g. Bogomolnaia and Moulin, 2001). Here, we consider probabilistic assignments, and in particular their “stability” and 
“efficiency”.

We consider a model where only ordinal preference information is available. That is, for each man, all we know is his 
preference ordering over women, and vice versa, which is in line with the applications and the theoretical literature. Most 
allocation rules that have been discussed in this literature elicit only ordinal preferences, as opposed to utility information 
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over possible mates.2 When only ordinal preference information is available, extensively studied efficiency and stability 
notions are stochastic dominance efficiency (sd-efficiency) and ex-post stability. We ask whether probabilistic assignments that 
are sd-efficient or ex-post stable for ordinal preferences are possibly efficient or stable for cardinal preferences.

The main contribution of this paper pertains to stability, which is a central robustness condition for two-sided match-
ings. A deterministic assignment is stable if no pair of a man and a woman prefers each other to their assigned mates. 
A probabilistic assignment is ex-post stable if it can be expressed as a lottery over stable deterministic assignments. In the 
deterministic case, if an assignment is stable, then it is also in the core of an associated non-transferable utility (NTU) game 
(Roth and Sotomayor, 1990). It follows that in an ordinal environment where monetary transfers are not allowed, if an as-
signment is ex-post stable, then there is no incentive for ex-post3 group deviation. However, ex-ante,4 a group of men and 
women may break away from the rest of society and may form matches among themselves that make each of them better 
off in terms of expected utility. This possibility motivates us to ask whether ex-post stability implies welfare properties 
deducible from the ordinal preferences that would prevent such break aways.

We show that when preferences are strict (no agent is indifferent between two different agents), for each ex-post stable 
probabilistic assignment, there is a utility profile consistent with the ordinal preferences such that no group of agents 
consisting of equal numbers of men and women can deviate to a probabilistic assignment among themselves and make each 
member better off. In fact, we prove an even stronger result (Theorem 2): for each ex-post stable probabilistic assignment, 
there is a utility profile consistent with the ordinal preferences such that no group of agents consisting of equal numbers of 
men and women can deviate to a probabilistic assignment among themselves in which the sum of their expected utilities 
is greater. Put differently, we associate with each utility profile a transferable utility (TU) game, as in Shapley and Shubik
(1971), in which a coalition is admissible if it consists of equal numbers of men and women, and the worth of each such 
coalition is the maximal total expected utility it can achieve by forming matches among themselves.5 We show that for each 
ex-post stable assignment, there is a utility profile such that the assignment belongs to the core of the associated TU-game 
(Theorem 2). That is, even if we were to allow monetary transfers, there would be no profitable ex-ante group deviation.

Our other result pertains to efficiency. A natural efficiency requirement for probabilistic assignments is sd-efficiency, 
which is based on the first-order stochastic dominance relation. A probabilistic assignment stochastically dominates 
(sd-dominates) another if for each agent, the probability distribution assigned to that agent in the former first-order 
stochastically dominates the probability distribution assigned to that agent in the latter assignment. Assignments that are 
undominated in this sense are called “sd-efficient”.6 We ask the following question: Consider an ordinal preference profile 
and an sd-efficient assignment. Does there exist a utility profile consistent with the ordinal preferences at which the as-
signment is Pareto efficient? We show that for each ordinal preference profile, and for each sd-efficient assignment, one can 
construct a utility profile consistent with the ordinal preferences such that the sum of the expected utilities of the agents is 
maximized at that assignment (Theorem 1). To prove the result, we characterize the sd-efficiency of an assignment in terms 
of a property of an order relation that we define over the set of man–woman pairs.7

Our results regarding efficiency are intimately related to some recent results. Carroll (2011) proves a counterpart of 
Theorem 1 in a more general social choice setup, from which Theorem 1 can be obtained as a corollary. Aziz et al. (2015)
provide an interesting non-expected utility generalization of Carroll (2011). Our results are based on an order theoretical 
analysis; we characterize the sd-efficiency of an assignment in terms of the acyclicity of a binary relation on the set of 
man–woman pairs, which parallels the results by Bogomolnaia and Moulin (2001) and Katta and Sethuraman (2006). In this 
vein, Aziz et al. (2015) note that it does not seem possible to extend this characterization to Carroll’s (2011) or their general 
social choice setting. Moreover, the utility profile constructed in Theorem 1 clearly relates to the utility profile constructed 
in Theorem 2, which sheds further light on the relation between sd-efficiency and ex-post stability.8

Our results for stability, unlike efficiency, cannot be directly related to the recent findings on the general social choice 
setup. To prove Theorem 2, we observe an interesting property of ex-post stable assignments related to the lattice structure 
of stable deterministic assignments (see Knuth, 1976, pp. 92–93, who attributes the discovery of this lattice structure to 
J.H. Conway). In Proposition 3, we show that each ex-post stable probabilistic assignment can be decomposed into a col-
lection of deterministic stable assignments, which can be ordered in such a way that each man’s welfare is non-increasing 
and each woman’s welfare is non-decreasing as we follow the assignments from the first to the last. This result, which we 
show via the rounding approach due to Teo and Sethuraman (1998), plays a key role in the proof of Theorem 2. A corollary 
of Theorem 2 is that ex-post stability implies sd-efficiency when preferences are strict, which is independently shown also 
by Manjunath (2011).

2 One justification for why such mechanisms are common is that it is a complex process for an agent to formulate his utility information. See Bogomolnaia 
and Moulin (2001) for a detailed discussion.

3 After the realization of a deterministic assignment.
4 That is, before the realization of a particular deterministic assignment.
5 We assume preferences to be quasilinear in money.
6 This notion is usually referred to as “ordinal efficiency”, starting from Bogomolnaia and Moulin (2001). Here, we use the terminology of Thomson

(2010).
7 For the problem of assigning objects, similar characterizations are given by Bogomolnaia and Moulin (2001) in the case of strict preferences and by 

Katta and Sethuraman (2006) in the case of weak preferences.
8 In fact, as noted in the proof of Proposition 2, if the ex-post stable assignment has a decomposition into stable assignments such that no agent matches 

with the same agent in two different assignments, then the two utility profiles coincide.
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1.1. Related literature

For the probabilistic assignment setup, a strand of the literature discusses different stability notions and their relation to 
each other. At the heart of this literature lies the notion of ex-post stability, which is also at the center of our study. Roth 
et al. (1993), Rothblum (1992), and Vande Vate (1989) provide a characterization of the set of ex-post stable assignments 
that we summarize in Lemma 2 and use in the proof of Proposition 3. More recently, Manjunath (2011) investigates several 
ex-ante stability and core notions that are based on first-order stochastic dominance. Kesten and Ünver (2015) propose 
ex-ante stability notions for the school choice problem, in which schools have priority orderings rather then preferences, 
which are not taken into consideration in the welfare analysis. Second, schools are assumed to behave non-strategically. 
In all these studies, the focus is on stability and core notions based on ordinal preference information. In contrast, we are 
interested in the relationship between ex-post stability based on ordinal preferences and a core notion based on cardinal 
preferences.

Following Bogomolnaia and Moulin (2001), one strand of the literature studies the probabilistic assignment of objects. 
In this literature, a result similar to our Theorem 1, which is due to McLennan (2002),9 follows from our Theorem 1
(Corollary 1). Manea (2008) gives a constructive proof of McLennan’s result. Our proof technique is similar to Manea’s: 
An order relation, the acyclicity of which characterizes an assignment’s sd-efficiency, is used to construct the utility profile. 
As shown in Manea (2008), if only one side of the market has preferences over the other, then the relation rather directly 
delivers the desired utility profile. However, in marriage problems, the preferences of both men and women must be taken 
into account, both in sd-efficiency and utilitarian social welfare considerations. We show that doing so requires a rather 
novel construction of the utility profile compared to the case of one-sided markets.

In the deterministic assignment literature, the theory of stable assignments without transfers (NTU-model) is first devel-
oped by Gale and Shapley (1962). Given preference rankings, the algorithm they propose selects a stable assignment that is 
Pareto dominant for the proposing side among all stable assignments. On the other hand, the theory of stable assignments 
with transfers (TU-model) is developed by Shapley and Shubik (1971), where for given valuations of agents, the core of the 
associated TU-game (the assignment game) is characterized.10

Our Theorem 2 offers a connection between TU and NTU-models. Echenique (2008) and Echenique et al. (2013) offer a 
similar connection between TU and NTU-models based on the observable content of stability in both setups. Their analysis 
is in a revealed preference framework, in which ordinal preferences are not observable and are recovered from an observed 
aggregate matching.11 Echenique et al. (2013) argue that in this setting, matching theory with transfers is nested in matching 
theory without transfers, that is, for each aggregate matching, if there is a utility profile such that the matching is in the 
core of the associated TU-game, then there is an ordinal preference profile such that the matching is the unique stable 
matching. For our Theorem 2, we assume that ordinal preferences and an ex-post stable assignment are observable, but 
utility profiles are not. We construct a utility profile that is consistent with the ordinal preferences such that the matching 
is in the core of the associated TU-game. Since the converse statement does not hold,12 by contrast with Echenique (2008), 
in our setting matching theory without transfers is nested in matching theory with transfers.

Another recent study, which provides several interesting insights on the relationship between stability in TU and NTU-
models, is Echenique and Galichon (2014). One of their goals is to understand for which stable deterministic assignments, 
availability of monetary transfers would not affect stability. They show that, for a particular subset of stable deterministic 
assignments, which they call “isolated” assignments, for any ordinal preference profile, one can construct a utility profile 
such that each isolated stable deterministic assignment remains stable when monetary transfers are introduced. At the end 
of Section 3.3, we show that their result follows from our Theorem 2.

2. The framework

Let M be a set of n men and W a set of n women. Each i ∈ M has preferences over W , and each j ∈ W has preferences 
over M . Let N = M ∪ W . For each i ∈ N , the preferences of i, which we denote by Ri , is a weak order, that is, Ri is 
transitive and complete. Let Pi denote the associated strict preference relation, and Ii the associated indifference relation. 
Let Ri denote the set of all possible preference relations for i, and R ≡ ×i∈NRi denote the set of all possible preference 
profiles.

A deterministic assignment is a one-to-one function μ : M ∪ W → M ∪ W such that for each (m, w) ∈ M × W , we have 
μ(m) ∈ W , μ(w) ∈ M , and μ(m) = w if and only if μ(w) = m. A deterministic assignment can be represented by an n × n
matrix, with rows indexed by men and columns indexed by women, and having entries in {0, 1}, such that each row and 
each column has exactly one 1. Such a matrix is called a permutation matrix. For each (m, w) ∈ M × W , having 1 in the 
(m, w) entry indicates that m is assigned to w . A probabilistic assignment is a probability distribution over deterministic 
assignments. A probabilistic assignment can be represented by an n × n matrix having entries in [0, 1] such that the sum 

9 Athanassoglou (2011) approaches the problem in McLennan (2002) by using duality.
10 This theory is applied to the marriage problem by Becker (1973).
11 See Echenique et al. (2013) for the definition of an aggregate matching.
12 See our Example 2.
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of the entries in each row and each column is 1. Such a matrix is a doubly stochastic matrix. For each probabilistic 
assignment π , and each pair (m, w) ∈ M × W , the entry πmw indicates the probability that m is assigned to w at π . Since 
each doubly stochastic matrix can be represented as a convex combination of permutation matrices (Birkhoff, 1946 and Von 
Neumann, 1953), the set of all doubly stochastic matrices provides another representation for the set of all probabilistic 
assignments. Let � be the set of all doubly stochastic matrices.

We denote the collection of all lotteries over M by L(M), and the collection of all lotteries over W by L(W ). For each 
i ∈ M with preferences Ri ∈Ri , a von Neumann–Morgenstern (vNM) utility function ui is a real-valued mapping on W , i.e. 
ui : W →R. We obtain the corresponding preferences of i over L(W ) by comparing expected utilities. For each i ∈ M with 
preferences Ri ∈Ri , a vNM utility function ui is consistent with Ri if for each pair (w, w ′) ∈ W we have ui(w) ≥ ui(w ′) if 
and only if w Ri w ′ . For each woman, a (vNM) utility function consistent with her ordinal preferences is defined similarly.

For each utility profile u = (ui)i∈N and probabilistic assignment π , the utilitarian social welfare at (u, π) is the sum of 
the expected utilities of the agents, that is:

SW(u,π) =
∑

(m,w)∈M×W

πmw(um(w) + uw(m)).

An assignment π is ex-ante utilitarian-welfare maximizing at a utility profile u if it maximizes the social welfare at u, 
i.e. π ∈ argmaxπ∈� SW(u,π).

Next, we define a well-known notion of efficiency that is independent of any vNM utility specification consistent with 
the ordinal preferences. Let π, π ′ ∈ � and R ∈ R; we say that π first-order stochastically dominates π ′ at R if for each 
pair (m, w) ∈ M × W :

∑

w ′:w ′ Rm w

πmw ′ ≥
∑

w ′:w ′ Rm w

π ′
mw ′ and

∑

m′:m′ R wm

πm′ w ≥
∑

m′:m′ R w m

π ′
m′ w

such that for at least one pair, at least one of the inequalities is strict. An assignment π ∈ � is sd-efficient at R if no 
probabilistic assignment sd-dominates π at R . For each R ∈R, let P sd(R) denote the set of sd-efficient assignments at R .

3. Results

3.1. A characterization of sd-efficiency

For each pair (π, R) ∈ � ×R, we define two relations ∼(π,R) and 
(π,R) on M × W induced by (π, R), and characterize 
the sd-efficiency of an assignment π at R in terms of a property of ∼(π,R) and 
(π,R) .

For each pair (m, w), (m′, w ′) ∈ M × W , (m, w) ∼(π,R) (m′, w ′) if and only if πmw > 0, πm′ w ′ > 0, and w ′ Im w , m I w ′ m′ . 
For each pair (m, w), (m′, w ′) ∈ M × W , (m, w) 
(π,R) (m′, w ′) if and only if πm,w > 0, πm′ w ′ > 0, and w ′ Rm w , m R w ′
m′ with at least one strict preference. Let the relation �(π,R) be the union of the two relations just defined. That is, 
�(π,R)=∼(π,R) ∪ 
(π,R) .

If assignment π is deterministic and preferences are strict, then (m, w) 
(π,R) (m′, w ′) implies that m and w ′ prefer each 
other to their assigned mates. Furthermore, suppose that (m, w) 
(π,R) (m′, w ′) 
(π,R) (m, w). Then, m and m′ (or w and 
w ′ ) are better off by exchanging mates. In general, if the relation 
(π,R) has a cycle, agents in the cycle can Pareto improve 
by exchanging mates along the cycle. Next, we formulate an acyclicity requirement on �(π,R) with the same implication for 
sd-efficiency.

Note that, if (m, w) 
(π,R) (m′, w ′), then (m, w) and (m′, w ′) are not related according to ∼(π,R) , that is, (m, w) �(π,R)

(m′, w ′). A strong cycle of �(π,R) is a sequence of pairs (m1, w1), (m2, w2), . . . , (mk, wk) ∈ M ×W such that (m1, w1) 
(π,R)

(m2, w2) �(π,R) . . . �(π,R) (mk, wk) �(π,R) (m1, w1). The relation �(π,R) is weakly acyclic if and only if it has no strong 
cycle. Next, we characterize sd-efficient assignments. This result generalizes characterizations of sd-efficiency of object as-
signments on the strict preference domain (Bogomolnaia and Moulin, 2001) and on the weak preference domain (Katta and 
Sethuraman, 2006).

Proposition 1. An assignment π is sd-efficient at a preference profile R if and only if �(π,R) is weakly acyclic.

Proof. Let π ∈ �, R ∈R.
Only-if part: We prove the contrapositive statement. Suppose that �(π,R) is not weakly acyclic, that is, there is a sequence 

of pairs (m1, w1), (m2, w2), . . . , (mk, wk) ∈ M × W such that (m1, w1) 
(π,R) (m2, w2) �(π,R) . . . �(π,R) (mk, wk) �(π,R)

(m1, w1). Let ε ≡ mini∈{1,...,k} πmi wi . Let π ′ ∈ � be defined by setting for each i ∈ {1, . . . , k}, π ′
mi wi

= πmi wi − ε , π ′
mi wi+1

=
πmi wi+1 + ε (with the convention that wk+1 = w1), and for each other pair (m, w), π ′

mw = πmw . Note that π ′ sd-dominates 
π at R . Thus, π ∈ P sd(R).

If part: We prove the contrapositive statement. Suppose that π /∈ P sd(R), that is, there is π ′ ∈ � that sd-dominates it. 
Without loss of generality, suppose that there is a man, say m1 ∈ M , who is better off at π ′ in stochastic dominance 
terms. Then, there are w1, w2 ∈ W such that w2 Pm1 w1, π ′

m w > πm1 w2 , and π ′
m w < πm1 w1 . Moreover, there is m2 ∈ M
1 2 1 1
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such that m1 R w2 m2 and π ′
m2 w2

< πm2 w2 . Note that (m1, w1) 
(π,R) (m2, w2). Now, there are m3 ∈ M , w3 ∈ W such that 
w3 Rm2 w2, π ′

m2 w3
> πm2 w3 , m2 R w3 m3, and π ′

m3 w3
< πm3 w3 . Then, (m1, w1) 
(π,R) (m2, w2) �(π,R) (m3, w3). Proceeding 

inductively, we can add pairs to this sequence, and since there are finitely many man–woman pairs, this sequence includes 
a cycle of �(π,R) .

If the cycle includes (m1, w1), then it is strong and we are done. Suppose otherwise. Let the cycle consist of 
(x1, y1), (x2, y2), . . . , (xk, yk) ∈ M × W . Note that (x1, y1) ∼(π,R) (x2, y2) ∼(π,R) . . . ∼(π,R) (xk, yk) ∼(π,R) (x1, y1). Remem-
ber that π ′

x1 y1
< πx1 y1 , π ′

x2 y2
< πx2 y2 , . . . , π ′

xk yk
< πxk yk , and π ′

x1 y2
> πx1 y2 , π ′

x2 y3
> πx2 y3 , . . . , π ′

xk y1
> πxk y1 . Let ε1 ≡

min{πx1 y1 − π ′
x1 y1

, . . . , πxk yk − π ′
xk yk

}, ε2 ≡ min{π ′
x1 y2

− πx1 y2 , . . . , π ′
xk y1

− πxk y1 } and ε ≡ min{ε1, ε2}. Let π ′′ ∈ � be de-
fined by setting for each i ∈ {1, . . . , k}, π ′′

xi yi
= π ′

xi yi
+ ε , π ′′

xi yi+1
= π ′

xi yi+1
− ε (with the convention that yk+1 = y1), and 

for each other pair (m, w), π ′′
mw = π ′

mw . Since for each i ∈ {1, . . . , k}, yi Ixi yi+1 and xi−1 I yi xi , π ′′ also sd-dominates π . 
Also, by the construction of π ′′ , there are two consecutive pairs in the cycle, say (xt , yt) and (xt+1, yt+1), such that either 
π ′′

xt yt
= πxt yt or π ′′

xt yt+1
= πxt yt+1 .

Now, because π ′′ sd-dominates π , as we did above, we can find a cycle of �(π,R) , say (x′
1, y

′
1), (x′

2, y
′
2), . . . , (x′

t , y′
t) ∈

M × W , such that for each i ∈ {1, . . . , t}, π ′′
x′

i y′
i
< πx′

i y′
i

and π ′′
x′

i y′
i+1

> πx′
i y′

i+1
(with the convention that yt+1 = y1). Note that 

(xt , yt) and (xt+1, yt+1) cannot be part of this cycle consecutively, implying that this new cycle must be different from the 
cycle that was identified before. Continuing similarly, we obtain additional assignments that sd-dominate π and additional 
cycles. None of those cycles can include (xt , yt) and (xt+1, yt+1) consecutively; and for each additional cycle, we identify 
additional consecutive pairs in the cycle that cannot be part of any cycle in the future, implying that each cycle is different 
from any cycle that was identified before. Since the number of cycles in �(π,R) is finite, this process eventually leads to a 
strong cycle. Thus, �(π,R) is not weakly acyclic. �

Given R ∈ R, for each π ∈ P sd(R), the relation �(π,R) can have cycles of the form (m1, w1) �(π,R) (m2, w2) �(π,R)

. . . �(π,R) (mk, wk) �(π,R) (m1, w1). However, �(π,R) being weakly acyclic implies that such a cycle should belong to ∼(π,R) , 
that is, the cycle should be of the form (m1, w1) ∼(π,R) (m2, w2) ∼(π,R) . . . ∼(π,R) (mk, wk) ∼(π,R) (m1, w1).

Given (π, R) ∈ � × R, let Cπ,R be the binary relation on M × W , defined as follows: For each pair (m, w), (m′, w ′) ∈
M × W , (m, w) Cπ,R (m′, w ′) if and only if there is a cycle of ∼(π,R) that contains both, that is, there is a sequence of pairs 
(not necessarily distinct) (m1, w1), (m2, w2), . . . , (mk, wk) ∈ M × W that includes (m, w) and (m′, w ′), and is such that 
(m1, w1) ∼(π,R) (m2, w2) ∼(π,R) . . . ∼(π,R) (mk, wk) ∼(π,R) (m1, w1). Note that Cπ,R is an equivalence relation on M × W , 
that is, it is reflexive, symmetric, and transitive. For each pair (m, w) ∈ M × W , let [m, w]Cπ,R ≡ {(m′, w ′) ∈ M × W :
(m, w) Cπ,R (m′, w ′)} denote the equivalence class of (m, w) relative to Cπ,R . Let �(π,R) be the relation defined on the 
set of all equivalence classes of C(π,R) as follows: For each pair (m1, w1), (m2, w2) ∈ M × W , [m1, w1] �(π,R) [m2, w2] if 
and only if [m1, w1] = [m2, w2] and there are (m′

1, w
′
1) ∈ [m1, w1], (m′

2, w
′
2) ∈ [m2, w2] such that (m′

1, w
′
1) �(π,R) (m′

2, w
′
2). 

Note that, if π ∈ P sd(R), then �(π,R) is acyclic.

3.2. An efficiency theorem

In this section we show that for each probabilistic assignment that is sd-efficient at a given preference profile, there 
is a utility profile consistent with these preferences such that the probabilistic assignment maximizes the sum of the ex-
pected utilities. First, let us consider the simple case where the sd-efficient assignment for which a utility function is to 
be constructed is an efficient deterministic assignment, μ. Let u be a utility profile consistent with R such that for each 
(m, w) ∈ M × W , if m and w are matched at μ, then um(w) = uw(m) = 1. Further, for each w ′ ∈ W such that w 
m w ′ , let 
0 < um(w ′) < δ for some δ > 0 and for each w ′′ ∈ W such that w ′′ 
m w , let 1 < um(w ′′) < 1 + ε for some ε > 0. Let uw be 
similarly defined. Note that for some small enough selection of δ and ε , the efficient assignment μ is a welfare maximizing 
assignment at utility profile u.

This construction would fail even for the simplest probabilistic assignment, which is obtained as a mixture of two 
efficient deterministic assignments. However, we show that the same conclusion holds for each sd-efficient probabilistic 
assignment π by providing an explicit construction for a utility profile at which π is welfare maximizing. The construction 
in the next example is instructive to understand the general construction to follow in Theorem 1.

Example 1. Let M = {1, 2, 3} and W = {a, b, c}. Let the preference profile R be as follows:

R1 R2 R3 Ra Rb Rc

a b c 3 1 2
c a b 2 3 1
b c a 1 2 3

Let μ be the assignment where 1 is matched with a, 2 with b, and 3 with c. Let μ′ be the assignment where 1 is matched 
with b, 2 with c, and 3 with a. Let π assign 0.5 probability to each of μ and μ′ .
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Now, let u be such that each agent gets utility 1 from his/her top-ranked agent and utility 0 from his/her third-ranked 
agent. Further, each agent gets utility in the open interval (0, 1/2) from his/her second-ranked agent. Clearly, for each pair 
(m, w), if πmw > 0, then um(w) + uw(m) = 1. Moreover, if πmw = 0, then um(w) + uw(m) < 1. Hence, the sum of expected 
utilities, which is 3 at π , cannot exceed 3 at any probabilistic assignment.

In the above construction, for each man–woman pair, the sum of the utilities they get from each other is the same, and 
that aspect plays the critical role. For our general result, a similar construction works.

Theorem 1. For each preference profile and each assignment that is sd-efficient at it, there is a utility profile consistent with the 
preference profile such that the assignment is ex-ante utilitarian welfare maximizing at that utility profile.

Proof. Let (π, R) ∈ � ×R be such that π ∈ P sd(R). Since we fix (π, R) throughout the proof, we remove the reference to 
(π, R) in denoting the binary relations we have defined, and simply write ∼, 
, �, and �.

For each pair m ∈ M , w ∈ W , let smw denote the length of the longest path of � starting at [m, w], and let emw denote 
the length of the longest path of � ending at [m, w].13

Step 1: Constructing an auxiliary utility profile. For each m ∈ M , let vm : W →R be defined by setting, for each w ∈ W ,

vm(w) = emw

emw + smw
.

For each w ∈ W , let v w : M → R be defined by setting, for each m ∈ M ,

v w(m) = smw

emw + smw
.

Note that for each pair (m, w) ∈ M × W , vm(w) + v w(m) = 1.

Lemma 1. Let (m, w), (m′, w ′) ∈ M × W . If [m, w] � [m′, w ′], then v w(m) > v w ′ (m′).

Proof. Since emw < em′ w ′ and smw > sm′ w ′ , then

smw

smw + emw
>

sm′ w ′

sm′ w ′ + em′ w ′
, i.e.

1

1 + emw
smw

>
1

1 + em′ w′
sm′ w′

. �

One consequence of the Lemma is that, for each pair (m, w), (m′, w ′) ∈ M × W , if [m, w] � [m′, w ′], then vm(w) +
v w ′ (m′) < 1. Let z((m, w), (m′, w ′)) = 1 − vm(w) − v w ′ (m′) if [m, w] � [m′, w ′], and 1 otherwise. Let

min
(m,w),(m′,w ′)∈M×W

z((m, w), (m′, w ′)) ≡ 2ε.

Step 2: Defining the utility profile u. Let m ∈ M . Let um be defined as follows (for each w ∈ W , we define uw in a symmetric 
way):

i. For each w ∈ W such that πmw > 0, set um(w) ≡ vm(w). We show that um is consistent with Rm on the subset of 
women for whom πmw > 0. Let m ∈ M and w, w ′ ∈ W be such that πmw > 0 and πmw ′ > 0. Without loss of generality, 
suppose that w Rm w ′ . If w Im w ′ , then note that (m, w ′) ∼ (m, w), and [m, w ′] ∼ [m, w]. Thus, um(w) = um(w ′), 
as desired. If w Pm w ′ , then (m, w ′) 
 (m, w), and [m, w ′] � [m, w]. Thus, um(w) > um(w ′), as desired.

ii. For each w ∈ W such that πmw = 0 and there is no w ′ ∈ W with πmw ′ > 0, w Rm w ′ , set um(w) ≤ −1. Obviously, 
at this step the utilities can be chosen such that um is consistent with Rm on the subset of women for whom the 
utilities are defined so far.

iii. For each w ∈ W such that πmw = 0 and there is w ′ ∈ W with πmw ′ > 0, w Rm w ′ , consider a best such w ′ , that is, 
πmw ′ > 0, w Rm w ′ , and there is no such w ′′ ∈ W with w ′′ Pm w ′ . Set um(w) ∈ [vm(w ′), vm(w ′) + ε]. Obviously, at this 
step the utilities can be chosen such that um is consistent with Rm on the entire set of women.

Let the function SW(u, .) : � →R be defined by setting, for each π ′ ∈ �,

SW(u,π ′) =
∑

(m,w)∈M×W

[π ′
mw(um(w) + uw(m))].

13 A path of length k of � consists of k pairs (m1, w1), (m2, w2), . . . , (mk, wk) ∈ M × W such that (m1, w1) � (m2, w2) � . . . � (mk, wk).
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Step 3: SW attains its maximum at π . For each pair (m, w) ∈ M × W , if πmw > 0, then um(w) + uw(m) = 1. Thus, 
SW(u, π) = n. We show that for each pair (m, w) ∈ M × W , if πmw = 0, then um(w) + uw(m) ≤ 1, which implies that 
the maximal possible ex-ante utilitarian social welfare is n, and it is reached at π .

Let (m, w) ∈ M × W be such that πmw = 0. Suppose that there is no w ′ ∈ W such that πmw ′ > 0, w Rm w ′ . Then, 
um(w) ≤ −1. If there is no m′ ∈ M such that πm′ w > 0 and m R w m′ , then uw(m) ≤ −1 and um(w) + uw(m) < 1. If there is 
m′ ∈ M such that πm′ w > 0 and m R w m′ , then uw(m) ≤ uw(m′) + ε < 2. Thus, um(w) + uw(m) < 1. The case when there is 
no m′ ∈ M such that πm′ w > 0, m R w m′ , is symmetric.

So, there is only one case left to consider. Suppose that there is w ′ ∈ W such that πmw ′ > 0 and w Rm w ′ , and there is 
m′ ∈ M such that πm′ w > 0 and m R w m′ . Let w ′ and m′ be the best such agents. Note that (m, w ′) � (m′, w). If w Im w ′
and m I w m′ , then by Lemma 1, um(w) + uw(m) < 1. So, suppose that for at least one agent, the preference is strict. Then, 
(m, w ′) 
 (m′, w) and [m, w ′] � [m′, w]. Recall that z((m, w ′), (m′, w)) = 1 − vm(w ′) − v w(m′) ≥ 2ε . Now,

um(w) + uw(m) ≤ [um(w ′) + ε] + [uw(m′) + ε] = vm(w ′) + v w(m′) + 2ε

which implies um(w) + uw(m) ≤ 1, as desired. �
The welfare theorem by McLennan (2002) for the problem of allocating objects is a corollary of Theorem 1. To see 

this, first consider the following counterparts of sd-efficiency and utilitarian social welfare for that model. Let us keep the 
men-women notation. An assignment π ∈ � men-side sd-dominates π ′ ∈ � at R ∈ R if for each agent i ∈ M , the lottery 
assigned to i at π sd-dominates the one assigned at π ′ . That is, for each pair (m, w) ∈ M × W ,

∑

w ′:w ′ Rm w

πmw ′ ≥
∑

w ′:w ′ Rm w

π ′
mw ′

such that for at least one pair the inequality is strict. An assignment π ∈ � is men-side sd-efficient at R ∈ R if no prob-
abilistic assignment men-side sd-dominates it at R . For each utility profile u = (ui)i∈N and probabilistic assignment π , the
men-side utilitarian social welfare at (u,π) is the sum of the utilities of the men, that is:

MSW(u,π) =
∑

m∈M

∑

w∈W

πmw um(w).

A probabilistic assignment π is ex-ante men-side utilitarian welfare maximizing at a utility profile u if it maximizes 
the men-side social welfare at u, that is, π ∈ argmaxπ∈� MSW(u,π).

Corollary 1. (See McLennan, 2002.) For each preference profile and each assignment that is men-side sd-efficient at it, there is a utility 
profile consistent with the preference profile such that the assignment is ex-ante men-side utilitarian welfare maximizing at that utility 
profile.

Proof. Let π ∈ � be men-side sd-efficient at R ∈ R. Let R ′ ∈R be such that for each m ∈ M , R ′
m = Rm , and each woman is 

indifferent between any two men at R ′ . Note that π is men-side sd-efficient also at R ′ . Moreover, π ∈ P sd(R ′). By Theorem 1, 
there is a utility profile u consistent with R ′ such that π is ex-ante utilitarian welfare maximizing at u. Since each woman 
gets the same utility from any two men at u, π is ex-ante men-side utilitarian welfare maximizing at u. Now, let u′ be a 
utility profile such that for each m ∈ M , um = u′

m , and for each w ∈ W , u′
w is consistent with R w . Note that π is ex-ante 

men-side utilitarian welfare maximizing at u′ . �
3.3. A stability theorem

A central robustness criterion for deterministic assignments is “stability”, which requires that there be no unmatched 
man–woman pair who prefer each other to their assigned mates. A counterpart of stability for probabilistic assignments 
is “ex-post” stability, which requires that there be at least one decomposition of the probabilistic assignment into stable 
deterministic assignments.

Let D denote the set of deterministic assignments. An assignment μ ∈ D is stable at R ∈ R if there is no (m, w) ∈
M × W such that m P w μ(w), w Pm μ(m). An assignment π ∈ � is ex-post stable if it can be expressed as a convex 
combination of stable deterministic assignments.

From this point on, we restrict ourselves to strict preferences. For each i ∈ N , let Pi ⊂ Ri be the set of all transitive, 
anti-symmetric, and complete preference relations for i. Let P = ×i∈NPi be the set of all strict preference profiles.

We show that ex-post stability implies welfare properties, beyond sd-efficiency, which are also deducible from the ordinal 
preferences and can avoid ex-ante break aways of men-women coalitions from the society.

A coalition S = M ′ ∪ W ′ ⊆ M ∪ W is admissible if |M ′| = |W ′|. Let A be the set of all admissible coalitions. For each 
S ∈ A, let �S denote the set of probabilistic assignments defined over S . For each utility profile u = (ui)i∈N , let V u be the



54 B. Doğan, K. Yıldız / Games and Economic Behavior 95 (2016) 47–58
transferable utility game defined by setting for each S = M ′ ∪ W ′ ∈ A, V u(S) to be the maximum total expected utility 
coalition S can achieve among its members. That is, for each S = M ′ ∪ W ′ ∈A,

V u(S) = max
π S ∈�S

∑

(m,w)∈M ′×W ′
π S

mw(um(w) + uw(m)).

Let E(um|π) = ∑
w∈W πmw um(w) be the expected value of um at π and E(uw |π) = ∑

m∈M πmw uw(m) the expected 
value of uw at π . Given a utility profile u, an assignment π ∈ � is in the core of V u if no coalition can increase its total 
expected utility by deviating to another probabilistic assignment where they are matched among themselves. That is, for 
each S ∈A,

V u(S) ≤
∑

m∈M ′
E(um|π) +

∑

w∈W ′
E(uw |π).

Let C(V u) be the set of all assignments that are in the core of V u .
Let P ∈P . Let P M and P W denote the common preferences of men and women over deterministic assignments induced 

by P , defined as follows: For each pair μ, μ′ ∈D, μ P M μ′ if and only if for each m ∈ M , μ Rm μ′ with strict preference for 
some m. The relation P W is defined similarly.

An assignment π ∈ � is well-ordered ex-post stable at P ∈ P if it has a decomposition into stable assignments 
μ1, . . . , μT such that for each t, t′ ∈ {1, . . . , T } with t < t′ , we have μt P M μt′ and μt′ P W μt .

Proposition 2. If an assignment π is well-ordered ex-post stable at a strict preference profile, then there is a utility profile u consistent 
with the preference profile such that π ∈ C(V u).

Proof. Let π ∈ � be well-ordered ex-post stable at P ∈ P . Suppose that π has the following decomposition into stable 
assignments: π = λ1μ1 + λ2μ2 + · · · + λT μT . Suppose that for each pair t, t′ ∈ {1, 2, . . . , T } such that t < t′ , μt P M μt′ and 
μt′ P W μt .

We first define the utilities each agent gets from the agents that he/she is matched with positive probability. Let (m, w) ∈
M × W such that πmw > 0. First note that if m is matched to w in two different assignments in the decomposition, say 
μt , μt′ , t < t′ , then they should be matched in all assignments between μt and μt′ , that is, for each t′′ ∈ {t, t + 1, . . . , t′}, 
μt′′(m) = w . So, let μp, μp+1, . . . , μq be the list of assignments at which m is matched to w . Let λmw ≡ λp +λp+1 +· · ·+λq . 
Let

uw(m) = λp

λmw
· p

T + 1
+ λp+1

λmw
· p + 1

T + 1
+ · · · + λq

λmw
· q

T + 1
,

and

um(w) = λp

λmw
· T − p + 1

T + 1
+ λp+1

λmw
· T − p

T + 1
+ · · · + λq

λmw
· T − q + 1

T + 1
.

If there is a unique assignment μt in the decomposition such that μt(m) = w , we simply have uw(m) = t
T +1 and um(w) =

T −t+1
T +1 .14

Next, we argue that the utilities each agent gets from the agents that he/she is matched with zero probability can 
be defined in such a way that for each such pair (m, w) ∈ M × W , um(w) + uw(m) < 1. Let (m, w) ∈ M × W be such 
that πmw = 0. If there is no w ′ ∈ W such that πmw ′ > 0 and w Pm w ′ , then let um(w) ≤ −1. The case when there is no 
m′ ∈ W such that πm′ w > 0, m P w m′ is the same. So, suppose that there are m′ ∈ M, w ′ ∈ W such that πmw ′ > 0, w Pm w ′ , 
and πm′ w > 0, m P w m′ . Suppose w.l.o.g. that w ′ and m′ are best such agents at P w and Pm . We will show that um(w ′) +
uw(m′) < 1. First, note that the pairs (m, w ′) and (m′, w) cannot appear in the same assignment of the decomposition, since 
otherwise that assignment would not be stable. Suppose that m and w ′ are matched in assignments μp, μp+1, . . . , μq , and 
m′ and w are matched in assignments μp′ , μp′+1, . . . , μq′ . Either q < p′ or q′ < p. In fact we cannot have q < p′; otherwise, 
m would prefer his mate in μq , namely w ′ , to his mate in μp′ . But then, m would prefer w to his mate in μp′ , contradicting 
the assumption that μp′ is stable. Thus q′ < p. Since um(w ′) ≤ T −p+1

T +1 and uw(m′) ≤ q′
T +1 , um(w ′) + uw(m′) < 1. Then, 

by arguments similar to the proof of Theorem 1, for each such m, w , m′ , w ′ , let z((m, w), (m′, w ′)) = 1 − um(w) − uw ′ (m′)
and let 2ε be the minimum of z((m, w), (m′, w ′)). Now, for the pair (m, w), let um(w) ∈ [um(w ′), um(w ′) + ε] and let 
uw(m) ∈ [uw(m′), uw(m′) + ε]. Thus, utility profile u is consistent with P and for each pair (m, w) that is matched with 
zero probability um(w) + uw(m) < 1.

Now, we show that π ∈ C(V u). First, for each admissible coalition S = M ′ ∪ W ′ , V u(S) ≤ |M ′|. Now, let (m, w) ∈ M × W . 
We show that E(um|π) + E(uw |π) = 1. Observe that

E(um|π) = λ1
T

T + 1
+ λ2

T − 1

T + 1
+ · · · + λT

1

T + 1
·

14 In this case, the utility function is exactly the one constructed in Theorem 1.
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Similarly,

E(uw |π) = λ1
1

T + 1
+ λ2

2

T + 1
+ · · · + λT

T

T + 1
·

It follows that E(um|π) + E(uw |π) = λ1 + λ2 + · · · + λT = 1, and for each admissible coalition S = M ′ ∪ W ′ ,
∑

i∈S

E(ui|π) = |M ′| ≥ V u(S).

Therefore, π ∈ C(V u). �
Next, we show that well-ordered ex-post stability is equivalent to ex-post stability. The proof relies on the following 

lemma. The first part of the lemma is due to Rothblum (1992) and the second part to Roth et al. (1993).

Lemma 2. Let P ∈P and π ∈ �. Let π be ex-post stable at P .

1. For each pair (m, w) ∈ M × W ,

πmw +
∑

w ′:w Pm w ′
πmw ′ +

∑

m′:mP wm′
πm′ w ≤ 1.

2. For each pair (m, w) ∈ M × W such that πmw > 0,

πmw +
∑

w ′:w Pm w ′
πmw ′ +

∑

m′:mP wm′
πm′ w = 1.

Proposition 3. If an assignment is ex-post stable at a strict preference profile, then it has a well-ordered stable decomposition.

Proof. Let π ∈ � be ex-post stable at P ∈ P . We construct a well-ordered stable decomposition of π using the rounding 
approach due to Teo and Sethuraman (1998).

For each m ∈ M , let π+
m ≡ {w ∈ W : πmw > 0}. We partition the (0, 1] interval into |π+

m | intervals (Imw)w∈π+
m

such that 
each interval Imw is of the form (amw , bmw ] (left-open, right-closed) with length πmw , and if w Pm w ′ , then amw < amw ′ .

( ]( ]( ] · · · ( ]
0 1

Imw Imw ′ Imw ′′ Imw ′′′

w Pm w ′ Pm w ′′ Pm w ′′′

For each w ∈ W , let π+
w ≡ {m ∈ M : πmw > 0}. We partition the (0, 1] interval into |π+

w | intervals (I wm)m∈π+
w

such that 
each interval I wm is of the form (awm, bwm] (left-open, right-closed) with length πmw , and if m P w m′ , then awm > awm′ .

( ]( ]( ] · · · ( ]
0 1

I wm I wm′ I wm′′ I wm′′′

m′′′ P w m′′ P w m′ P w m

Due to Lemma 2 Part 2, for each pair (m, w), the intervals Imw and I wm coincide. Thus, the following procedure gives a 
well-defined matching. Pick x ∈ (0, 1]. For each pair (m, w), match m with w if and only if πmw > 0 and x ∈ Imw [or equiva-
lently x ∈ I wm]. This matching is stable: for each (m, w) such that m prefers w to his match, either πmw > 0 and Imw is on 
the left of x and therefore I wm is on the left of x and w does not prefer m to her match, or πmw = 0 and due to Lemma 2
Part 1, w does not prefer m to her match. Now, if the real number x is picked according to the uniform distribution on 
(0, 1], it is easy to see that we have a well-ordered decomposition of π . �
Theorem 2. If an assignment is ex-post stable at a strict preference profile, then there is a utility profile u consistent with the preference 
profile such that π ∈ C(V u).

Proof. Follows from Propositions 2 and 3. �
The following example shows that the converse of Theorem 2 is not true.
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Example 2. Let M = {1, 2, 3} and W = {a, b, c}. Let the preference profile R and the utility profile u that is consistent with 
R be as follows.

R1 u1 R2 u2 R3 u3

c 2
3 a 2

3 a 1
2 + ε

a 1
3 c 1

3 b 1
2

b 0 b 0 c 0

Ra ua Rb ub Rc uc

1 2
3 3 1

2 2 2
3

3 1
3 + ε 1 1

3 + ε 3 1
3 + ε

2 1
3 2 1

3 1 1
3

Let μ be the assignment where 1 is matched with a, 2 with c, and 3 with b. Let μ′ be the assignment where 1 is matched 
with c, 2 with a, and 3 with b. Note that (3, a) blocks μ′ . Let π be the assignment that assigns 0.5 probability to each of 
μ and μ′ . Since this is the only possible decomposition of π , it is not ex-post stable.

Next, let u be as described with the numerical values in the profile. Note that each man or woman receives the same 
expected utility 1/2 from π at u. Moreover, for each pair (m, w) ∈ M × W , if πmw > 0 then um(w) + uw(m) = 1 and for a 
small enough choice of ε , if πmw = 0 then um(w) + uw(m) < 1. It follows that π ∈ C(V u).

For deterministic assignments, if we restrict ourselves to strict preferences (at which no agent is indifferent between any 
two different agents), stability implies efficiency. To see this, suppose that a deterministic assignment is not efficient. Then 
there is another assignment at which an agent, say agent i, is better off, which means that i is matched to agent j whom 
he prefers to his/her current mate. Since j cannot be worse off in the new assignment, j prefers i to his/her current mate. 
Thus, the initial assignment is not stable. However, once indifferences are allowed, there is no implication relation between 
efficiency and stability.15

As opposed to the deterministic case, in the probabilistic case, the relation between sd-efficiency and ex-post stability is 
not evident. If we allow for indifferences, since efficiency is not related to stability in the deterministic case, ex-post stability 
and sd-efficiency are not related either. However, if we restrict ourselves to strict preferences, the relation between ex-post 
stability and sd-efficiency is not so clear. Yet, it follows from Theorem 2 that ex-post stability implies sd-efficiency when 
preferences are strict.16

Corollary 2. If an assignment is ex-post stable at a strict preference profile, then it is sd-efficient at that preference profile.

Echenique and Galichon (2014) ask if there is a utility profile consistent with ordinal preferences such that each stable 
deterministic assignment is in the core of the associated TU-game. They provide the following partial answer. Define an 
isolated stable assignment as a stable deterministic assignment such that for each pair of matched agents, there is no other 
stable assignment at which they are matched to each other; then, there is a utility profile consistent with the ordinal prefer-
ences such that each isolated stable assignment is in the core. To see that this result also follows from our results, consider 
the ex-post stable assignment that is a uniform lottery over these isolated stable deterministic assignments. It is easy to 
see that this lottery is the unique decomposition of the ex-post stable assignment into stable deterministic assignments 
and therefore, the isolated stable deterministic assignments are well-ordered. Now, one can show that the utility profile 
that follows from our construction is such that not only the ex-post stable probabilistic assignment, but also each of these 
deterministic isolated stable assignments belongs to the core. It is simply due to the fact that for each isolated assignment, 
for each unmatched man–woman pair, the sum of the utility the man gets from his mate and the utility the woman gets 
from her mate is equal to 1. As Echenique and Galichon (2014) point out, it is not clear if this result can be generalized to 
the entire set of stable assignments. However, it is rather clear that one can construct a utility profile such that each stable 
assignment is utilitarian welfare-maximizing.

4. Extensions of the model

We present extensions of our model and discuss whether our results still follow for these extensions or not.

Allowing for remaining single: Suppose that each man or woman is allowed to remain single, and the preference relation 
of each m ∈ M is a strict preference relation over W ∪ M , where being assigned to m represents remaining single, and for 
each m′ ∈ M \ {m}, we have for each w ∈ W , w Pm m′ and m Pm m′ . We extend the preference relation of each w ∈ W to 
M ∪ W similarly.

15 Consider a serial dictatorship, which, according to a predetermined order, assigns each man to one of his most preferred women from among the 
remaining ones. One can easily specify preferences so that this produces an efficient but unstable assignment. To see that there is a stable but ineffi-
cient assignment, consider two men {m1, m2} and two women {w1, w2}. Let preferences be such that each woman is indifferent between the two men, 
m1 prefers w1 to w2, and m2 prefers w2 to w1. Note that assigning m1 to w2, and m2 to w1 is stable but inefficient.
16 To see this note that for a probabilistic assignment π , if there is a utility profile u such that π ∈ C(V u), then π is utilitarian efficient at u. This result 

is independently reported also by Manjunath (2011) (Proposition 2), the proof of which relies on Lemma 2 (Roth et al., 1993) that we report in Section 3.3.
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Note that, the binary relations that we defined to characterize sd-efficiency are defined over M × W . To extend our 
results related to sd-efficiency to the setup where agents can remain single, for each m ∈ M and w ∈ W , we add the pairs 
(m, m) and (w, w) to M × W and define the relations over this extended set in the same way.

One can easily see that in this extended setting, the sd-efficiency of a probabilistic assignment is equivalent to the weak 
acyclicity of �(π,R) defined over the extended set. Since for Theorem 1, our construction of the utility profile is based on 
this binary relation, the construction of the utility profile for this extended case follows similarly in which for each agent 
we also obtain a utility index for remaining single.

As for the extension of Theorem 2, the key is to note that for a given preference profile, by the Rural Hospital Theorem 
(Roth, 1986), at each stable matching, the same men and women are single. It follows that each ex-post stable probabilistic 
assignment induces a sub-matrix that is doubly-stochastic, and the same men and women that are single. Now, for the 
matched men and women, consider the utility profile obtained by our Theorem 2. The only question is how to incorporate 
the utility of remaining single to this profile. Since the given assignment is ex-post stable, each agent prefers each other 
agent that he or she is matched with positive probability to being single. So, for each agent, let the utility he/she gets from 
remaining single be −1. One can construct the rest of the utility profile in such a way that for each unmatched man–woman 
pair, the utilities they get from each other are less than 0. Hence, remaining single or the possibility of getting matched 
with agents who are single is not a threat for the given ex-post assignment to be in the core.

Many-to-one setting: Suppose that there is a set of firms, denoted by F , and a set of workers, denoted by W . Each firm 
f ∈ F has a capacity c f such that 

∑
f ∈F c f = |W |. Each worker has a strict preference relation over firms. We assume 

that each firm f has responsive strict preferences over sets of workers, that is, for each S ⊂ W and each pair of workers 
w, w ′ ∈ W \ S , we have S ∪ {w} P f S ∪ {w ′} if and only if w P f w ′ .

In a deterministic assignment, each worker is assigned to a firm such that each firm is assigned its capacity number of 
workers. A probabilistic assignment is an |W | ×|F | stochastic matrix where each row corresponds to a worker, each column 
corresponds to a firm, each row sum is equal to 1, and each column sum is equal to the capacity of the corresponding firm 
(Birkhoff, 1946 and Von Neumann, 1953 extends to this setting). A deterministic assignment is ex-post stable if there is no 
worker-firm pair such that the worker prefers the firm to his assigned firm, and the firm prefers the worker to one of his 
assigned workers. A probabilistic assignment is ex-post stable, if it can be decomposed into stable deterministic assignments. 
As before, let � denote the set of all probabilistic assignments and let P denote the set of strict preference profiles.

We extend the notion of well-ordered ex-post stability to this setting in the following way. An assignment π ∈ � is
many-to-one well-ordered ex-post stable at P ∈ P if it has a decomposition into stable deterministic (many-to-one) as-
signments μ1, . . . , μT such that for each t, t′ ∈ {1, . . . , T } with t < t′ , each worker either strictly prefers his assignment at 
μt′ to his assignment at μt or he is assigned to the same firm in both assignments, and each firm strictly prefers each 
worker that it receives at μt to each worker that it receives in μt′ but not in μt , that is,

i. for each w ∈ W , μt′(w) P w μt(w), and
ii. for each f ∈ F , for each w ∈ μt( f ), and for each w ′ ∈ μt′ ( f ) \ μt( f ), we have w P f w ′ .

Note that, given responsive preferences, each firm weakly prefers its set of workers at μt to its set of workers at μt′ . 
We show that each many-to-one ex-post stable assignment has a many-to-one well-ordered stable decomposition, that is, 
Proposition 3 extends to this setting.

Proposition 4. If a many-to-one assignment is ex-post stable at a strict preference profile, then it has a many-to-one well-ordered 
stable decomposition.

Proof. Consider an ex-post stable assignment π with a stable decomposition π = λ1μ1 + λ2μ2 + · · · + λT μT . Consider the 
following auxiliary one-to-one problem and the auxiliary assignment π ′: for each firm f , there are |c f | copies, indexed 
from 1 to |c f |, such that each copy has the same preference relation as the firm’s original preference relation; each worker’s 
preference relation is such that given two copies of firms, if the copies belong to different firms, then the worker’s preference 
relation agrees with his original preference relation, and if the two copies belong to the same firm, then the worker prefers 
the copy with the lower index to the other copy. Note that the auxiliary problem belongs to our one-to-one setting. For 
each μt where t ∈ {1, . . . , T }, let μ′

t be the deterministic assignment in the one-to-one setting with copies such that each 
worker is assigned to a copy of the firm that he is assigned to at μt , and for each pair of copies of the same firm, if the 
copy with a higher index is assigned a worker, then the copy with a lower index is assigned a more preferable worker.

Let π ′ = λ1μ
′
1 + λ2μ

′
2 + · · · + λT μ′

T . It is easy to see that π ′ is ex-post stable at the auxiliary one-to-one problem. Then, 
by Proposition 3, it has a well-ordered stable decomposition π ′ = λ′

1μ
′′
1 + λ′

2μ
′′
2 + · · · + λ′

K μ′′
K such that for each t , t′ with 

1 ≤ t < t′ ≤ K , each copy of any firm weakly prefers μt to μt′ and each worker weakly prefers μt′ to μt . Now, for each 
t ∈ {1, . . . , K }, let μt be the many-to-one deterministic assignment where a worker w is assigned to a firm f if and only if 
w is assigned to a copy of f at μ′′

t . Clearly, for each t ∈ {1, . . . , K }, μt is stable and π = λ′
1μ1 + λ′

2μ2 + · · · + λ′
K μK .

We show that π = λ′
1μ1 + λ′

2μ2 + · · · + λ′
K μK is a many-to-one well-ordered stable decomposition of π . Let t, t′ ∈

{1, . . . , K } such that t < t′ . By construction, for each w ∈ W , μt′(w) P w μt(w). Let f ∈ F , w ∈ μt( f ), and w ′ ∈ μt′ ( f ) \
μt( f ). Suppose that w ′ P f w . Since f = μt′ (w ′) P w ′ μt(w ′), we have a contradiction to μt being stable. Thus w P f w ′ , 
which completes the proof. �



58 B. Doğan, K. Yıldız / Games and Economic Behavior 95 (2016) 47–58
Although the well-ordered stable decomposition result (Proposition 3) extends to the many-to-one setting, whether 
Proposition 2 extends is not clear. To see why a construction similar to the one in the proof of Proposition 2 does not 
work, consider a firm f that is matched with workers w and w ′ with positive probabilities. Suppose that f prefers w
to w ′ . To sustain the core property, we should keep each admissible coalition’s sum of expected utilities from the given 
assignment above the value of that coalition. To do so, similar to our earlier construction, we can define the utility that 
f gets from w as a convex combination of the utility indexes associated with the assignments that f is assigned to w
in the well-ordered decomposition. Now, although the first stable assignment in the decomposition that f is assigned to 
w precedes (or is the same as) that of w ′ , this may not be true for the last stable assignment that f is assigned to w . 
Therefore the utility that f gets from w can be less than the utility that f gets from w ′ , whence the utility profile that 
we construct may not be consistent with the given preference profile.17 Such a problem never arises in the one-to-one 
setting since a man cannot be matched with two women in the same assignment. To sum up, it is not clear to us whether 
Proposition 2 and Theorem 2 extend to the many-to-one setting or not, and we leave this problem for future research.

5. Conclusion

Marriage problems constitute a basis for many real-life economic problems. Here, we considered the efficiency and sta-
bility of probabilistic assignments in marriage problems when only ordinal preference information is available. When we 
only have ordinal preference information, two common ways to evaluate probabilistic assignments in terms of efficiency 
and stability are sd-efficiency and ex-post stability, respectively. We asked whether probabilistic assignments that are sd-
efficient or ex-post stable for the ordinal preferences are possibly efficient or stable for the cardinal preferences. Our answer 
was positive. Of course, this positive answer does not provide a strong justification for the efficiency and stability notions 
mentioned above, as there may be several utility profiles consistent with the ordinal preferences for which the sd-efficient 
or ex-post stable assignments are not desirable. However, our results show that there is at least one utility profile for which 
these assignments continue to be desirable, which provides a further understanding of the structure of such assignments 
and the connection between efficiency and stability notions in the ordinal and cardinal environments.
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