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Abstract Whole slide digital imaging technology enables re-
searchers to study pathologists’ interpretive behavior as they
view digital slides and gain new understanding of the diag-
nostic medical decision-making process. In this study, we pro-
pose a simple yet important analysis to extract diagnostically
relevant regions of interest (ROIs) from tracking records using
only pathologists’ actions as they viewed biopsy specimens in
the whole slide digital imaging format (zooming, panning, and
fixating). We use these extracted regions in a visual bag-of-
words model based on color and texture features to predict
diagnostically relevant ROIs on whole slide images. Using a
logistic regression classifier in a cross-validation setting on
240 digital breast biopsy slides and viewport tracking logs
of three expert pathologists, we produce probability maps that
show 74 % overlap with the actual regions at which patholo-
gists looked. We compare different bag-of-words models by
changing dictionary size, visual word definition (patches vs.
superpixels), and training data (automatically extracted ROIs
vs. manually marked ROIs). This study is a first step in

understanding the scanning behaviors of pathologists and the
underlying reasons for diagnostic errors.
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Introduction

Whole slide imaging (WSI) technology has revolutionized
histopathological image analysis research, yet most automated
systems analyze only hand-cropped regions of digital WSIs of
tissue biopsies. The fully automated analysis of digital whole
slides remains a challenge. A digital whole slide can be quite
large, often larger than 100,000 pixels in both height and
width, depending on the tissue and the biopsy type. In clinical
practice, a trained pathologist examines the full image, dis-
cards most of it after a quick visual survey and then spends
the remainder of the interpretive time viewing small regions
within the slide that contain diagnostic features that seemmost
significant [1, 2]. The first challenge for any image analysis
system is the localization of these regions of interest (ROIs) in
order to reduce the computational load and improve the diag-
nostic accuracy by focusing on diagnostically important areas.

Histopathological image analysis research tackles many
problems related to diagnosis of the disease, including nucleus
detection [3–7], prediction of clinical variables (diagnosis
[8–12], grade [13–18], survival time [19–21]), identification
of genetic factors controlling tumor morphology (gene expres-
sion [20, 22], molecular subtypes [20, 23]), and localization of
ROIs [24–28]. One of the major research directions in histo-
pathological image analysis is to develop image features for
different problems and image types. Commonly used image
features include low-level features (color [9, 10, 15, 16, 18,
21, 27–31], texture [10–14, 18, 28]), object level features
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(shape [32–37], topology [8, 11, 14, 18, 26, 31]), and semantic
features (statistics [19, 26], histograms [28, 32], bag-of-words
[28]).

The majority of the literature on ROI localization considers
ROIs manually marked by experts. Gutierrez et al. used func-
tions inspired by human vision to combine over-segmented
images and produce an activation map for relevant ROIs [25].
Their method is based on human perception of groupings, also
known as Gestalt law. Using a supervised machine-learning
method, they merge relevant segments with the help of an
energy function that quantifies similarity between two image
partitions. They evaluate their findings with pathologist drawn
ROIs. Their method outperforms the standard saliency detec-
tion models [38].

Bahlmann et al. employed a supervised model to detect
ROIs using expert annotations of ROIs to train a linear SVM
classifier [24]. They make use of color features to differentiate
diagnostically relevant and irrelevant regions on a WSI.
However, their evaluation considers only manually marked
positive and negative samples and does not apply to the com-
plete digital slide.

The experimental setting of Romo et al. is the most relevant
to our work [27]. They calculated grayscale histograms, local
binary pattern (LBP) histograms [39], Tamura texture histo-
grams [40], and Sobel edge histograms for 70×70 pixel tiles.
In a supervised setting, they classify all tiles in a WSI as
diagnostically relevant or not. They evaluate their predictions
against image regions that are visited longer by the patholo-
gists during their interpretations. Our methodology to extract
ground truth ROIs is different from theirs, since we take all
actions of the pathologists into account, not only pathologist
viewing duration. Thus, we provide a first validation of auto-
mated ROI extraction that uses a broader range of pathologist
image search behavior, including zooming, panning, and
fixating.

The problem we attempt to solve is to locate diagnostically
important ROIs on a digital slide using image features such as
color and texture. We designed a system that produces a prob-
ability map of diagnostic importance given a digital whole
slide. In our previous work, we showed the usefulness of the
visual bag-of-words representation for ROI localization using
a small subset of 20 images [28]. In this paper, we compare
different visual word representations and dictionary sizes
using 240 whole slide images and report on the results of a
larger and more comprehensive study.

Materials and Methods

Human Research Participants Projection

The study was approved by the institutional review boards at
Dartmouth College, Fred Hutchinson Cancer Research

Center, Providence Health and Services Oregon, University
of Vermont, University of Washington, and Bilkent
University. Informed consent was obtained electronically
from pathologists.

Dataset

The breast pathology (B-Path) and digital pathology
(digiPATH) study [41–44] aims are to understand the diagnos-
tic patterns of pathologists and evaluate the accuracy and ef-
ficiency of interpretations using glass slides and digital whole
slide images. For this purpose, three expert pathologists were
invited to interpret a series of 240 breast biopsies on glass or
digital media. Cases included benign without atypia (30 %),
atypical ductal hyperplasia (30 %), ductal carcinoma in situ
(30 %), and invasive breast cancer (10 %). The methods of
case development and data collection from pathologists have
been previously described [41–44] and will be summarized
here briefly.

The 240 core needle and excisional breast biopsies were
selected from pathology registries in Vermont and New
Hampshire using a random sampling stratified according to
woman’s age (40–49 vs. ≥50), parenchymal breast density
(low vs. high), and interpretation of the original pathologist.
After initial review by an expert, new glass slides were created
from the original tissue blocks to ensure consistency in stain-
ing and image quality.

The H&E stained biopsy slides were scanned using an
IScan Coreo Au® digital slide scanner in 40× magnification,
resulting in an average image size of 90,000×70,000 pixels.
Digital whole slide images of the 240 cases were independent-
ly reviewed by three experienced breast pathologists using a
web-based virtual slide viewer that was developed specifically
for this project using HD View SL, Microsoft’s open source
Silverlight gigapixel image viewer. The viewer provides sim-
ilar functionality to the industry sponsored WSI image
viewers. It allows users to pan the image and zoom in and
zoom out (up to 40× actual and 60× digital magnification).
The expert pathologists are internationally recognized for re-
search and continuing medical education on diagnostic breast
pathology. Each of our experts has had opportunities to utilize
digital pathology as a tool for research and teaching, yet none
of our experts use digital pathology as a tool for the primary
diagnosis of breast biopsies. Each expert pathologist indepen-
dently provided a diagnosis and identified a supporting ROI
for each case. On completion of independent reviews, several
consensus meetings were held to reach a consensus diagnosis
and define consensus ROIs for each case. Detailed tracking
data were collected while the expert pathologists interpreted
digital slides using the web-based virtual slide viewer. Our
dataset for this paper contains the tracking data and ROI mark-
ings from the three expert breast pathologists as they indepen-
dently interpreted all 240 cases.
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Viewport Analysis

A viewport log provides a stream of screen coordinates
and zoom levels with timestamps indicating the location

of the pathologists’ screen in the digital whole slide. We
used a graph to visualize a pathologist’s reading of a
digital whole slide (see Fig. 1a) and defined three ac-
tions over the viewport tracking data that are used to

Fig. 1 Viewport analysis. a The selected viewports (rectangular image
regions visible on the pathologist’s screen) are shown in colored
rectangles on the actual image. A zoom peak noted with a red circle in
b corresponds to red rectangles in a. Similarly, slow pannings and
fixations which are noted with blue and green circles in b correspond to
blue and green rectangles in a. b An example visualization of the
viewport log for an expert pathologist interpreting the image in a. The

x-axis shows the log entry numbers (not the time). The red bars represent
the zoom level, the blue bars represent the displacement, and the green
bars represent the duration at each entry. The y-axis on the right shows the
zoom level and duration values while the y-axis on the left shows the
displacement values. Zoom peaks, slow pannings, and fixations are
marked with red, blue and green circles, respectively
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extract regions to which pathologists focused their
attention:

– Zoom peaks are the log entries where the zoom level is
higher than the previous and the next entries. A zoom
peak identifies a region where the pathologist intention-
ally zoomed to look at a higher magnification. During the
diagnostic process, low magnification views are also very
important in terms of planning the search strategy and
seeing the big picture. In low magnification, the patholo-
gists determine the areas of importance to zoom into (see
the circled red bars in Fig. 1a). They are the local maximal
points of the zoom level series plotted in red.

– Slow pannings are the log entries where the zoom level is
the same as the previous entry, and the displacement is
small. We used a 100 pixel displacement threshold on the
screen level (100× zoom on the actual image) to define
slow pannings. The quick pans intended for moving the
viewport to a distant region result in high displacement
values (more than 100 pixels). In comparison, slow pan-
nings are intended for investigating a slightly larger and
closer area without completely moving the viewport (see
the circled blue bars in Fig. 1a). The zoom level repre-
sented by the red bars is constant, and the displacement
represented by blue bars is small at these points.

– Fixations are the log entries where the duration is longer
than 2 seconds. Fixations identify the areas to which a
pathologist focused extra attention by looking at them
longer (see circled green bars in Fig. 1a). In eye-tracking
studies, the fixation is defined as maintaining the visual
gaze for more than 100 ms, but this definition is not suit-
able for our mouse tracking data. Amuch higher threshold
than 100 ms is picked, because the mouse cursor move-
ments are much slower than the gaze movements.

The viewports (rectangular image regions) that correspond
to one of the above three actions are extracted as diagnostical-
ly relevant ROIs (see Fig. 1b for example viewports). Note
that these image regions are not necessarily related to the final
diagnosis given to a case by the expert; the regions on the
image can be distracting regions as well as diagnostic regions.

ROI Prediction in Whole Slide Images

We represent diagnostically relevant ROIs at which the pa-
thologists are expected to look with a visual bag-of-words
model. The bag-of-words (BoW) model is a simple yet pow-
erful representation technique commonly used in document
retrieval and computer vision [45]. The BoW represents doc-
uments (or images) as collections of words in which each bag
is different in terms of the frequency of each word in a pre-
determined dictionary. In this framework, a visual word is a
120×120 pixel image patch cut from a whole slide image
whereas a bag represents a 3600×3600 pixel image window,
and each bag is a collection of words. We considered the sizes
of biological structures at 40×magnification in the selection of
visual word and bag sizes. A visual word is constructed to
contain more than one epithelial cell. A visual bag, on the
other hand, may contain bigger structures such as breast ducts.

Avisual vocabulary is a collection of distinct image patches
that can be used to build images. The visual vocabulary is
usually obtained by collecting all possible words
(120×120 pixel patches) from all images and clustering them
to reduce the number of distinct words. We selected two com-
monly used low-level image features for representing visual
words: Local binary pattern (LBP) [39] histograms for texture
and L*a*b* histograms for color. For LBP histograms, instead
of using grayscale as is usually done, we used a well-known
color deconvolution algorithm [46] to obtain two chemical
dye channels, hematoxylin and eosin (H&E), and calculated
LBP feature on these two color channels (for example, images
of RGB to H&E conversion, see Fig. 2). Each visual word is
represented by a feature vector that is the concatenation of the
LBP and L*a*b* histograms. Both LBP and L*a*b* features
have values ranging from 0 to 255, and we used 64 bins for
each color and texture channel resulting in a feature vector of
length 320.

We used k-means clustering to obtain a visual vocabulary
that can be represented as the cluster centers. Any
120×120 pixel image patch is assigned to the most similar
visual word, the one with the smallest Euclidean distance be-
tween the feature vector of the patch and the cluster center that
represents the visual word. This enables us to represent image

Fig. 2 a 120 × 120 image patch
(visual word) in RGB, b
deconvolved hematoxylin color
channel that shows nuclei, c
deconvolved eosin color channel
that shows stromal content, d, e
LBP histograms of deconvolved
H and E channels, f–h L, a, and b
channels of the L*a*b* color
space, i–k color histogram of L, a,
and b color channels

J Digit Imaging (2016) 29:496–506 499



Fig. 3 Example results from the
k-means clustering. Each set show
the closest 16 image patches to a
cluster center

Fig. 4 Sliding window and
visual bag-of-words approach: a
A 3600× 3600 pixel sliding
window is shown with a red
square on an image region. b The
sliding window from a is shown
in the center with neighboring
sliding windows overlapping
1200 pixels horizontally and
vertically. c 120 × 120 pixel visual
words are shown with black
borders on the same sliding
window from a. Visual words do
not overlap. d A group of visual
words are shown in higher
magnification. They are identified
with green borders in c

500 J Digit Imaging (2016) 29:496–506



windows (bags) as histograms of visual words (see Fig. 3 for
some example clusters). Since the cluster center is not always
a sample point in the feature space, we show the closest 16
image patches to cluster centers for 6 visual words.

We used a sliding window approach for extracting visual
bags that are 3600×3600 pixel image windows overlapping
by 2400 pixels both horizontally and vertically. Overlapping
the sliding windows is a common technique to ensure that at
least one window contains an object, if all others fail to en-
compass it. We picked a two-thirds overlap between sliding
windows for performance purposes, since a higher overlap
would increase the number of sliding windows and hence
the sample size for the classification. Each sliding window
contains 30×30=900 image patches, which are then repre-
sented as color and texture histograms and assigned to visual
words by calculating distances to cluster centers. In this frame-
work, each sliding window is represented as a histogram of
visual words. Figure 4 shows an example sliding window and
visual words computed from it.

Results

We formulated the detection of diagnostically relevant ROIs
as a classification problem where the samples are sliding win-
dows, the features are visual bag-of-words histograms and the
labels are obtained through viewport analysis. We labeled
sliding windows that overlap with the diagnostically relevant

ROIs as positive samples and everything else as negative sam-
ples. We employed tenfold cross-validation experiments using
logistic regression.

We conducted several experiments to understand the visual
characteristics of ROIs. We compared different dictionary
sizes, different visual word definitions (square patches vs.
superpixels), and different training data (automatically ex-
tracted viewport ROIs vs. manually marked ROIs). The clas-
sification accuracies we are reporting are calculated as the
percentage of sliding windows that are correctly classified as
diagnostically relevant or not over all possible sliding win-
dows of size 3600×3600 pixels.

Dictionary Size

The dictionary size corresponds to the number of clusters and
the length of the feature vector (as the histogram of visual
words) calculated for each image window. For this reason,
the dictionary size can determine the representative power of
the model, yet large dictionaries present a computational chal-
lenge and introduce redundancy. Since the dictionary is built
in an unsupervised manner, we tested different visual vocab-
ulary sizes to understand the effect of dictionary size on model
predictions. For this purpose, we applied k-means clustering
to obtain the initial 200 clusters from millions of image
patches and reduced the number of clusters by using hierar-
chical clustering.

Fig. 5 Visual dictionaries with b
40 words and a 30 words. Note
that visual words that represent
epithelial cells are missing in a
while present in b. This difference
causes classification accuracy to
drop from 74 to 46 %. The visual
words that represent epithelial
cells are absolutely necessary for
the diagnostically relevant
regions, since all the structures in
a are discarded by pathologists
during the screening process
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The classification accuracy (74 %) does not change when
the dictionary size is reduced from 200 to 40 but drops from
74 to 46 % when the dictionary contains only 30 words. This
trend is present in all experiments with different visual words
(superpixels) and different training data. We compared the
visual dictionaries with 40 words and 30 words to discover

critical visual words in the ROI representation. Figure 5 shows
the visual dictionaries; the missing words in the 30-word vo-
cabulary are framed in the 40-word dictionary. The missing
words include some blood cells, stroma with fibroblast, and,
in particular, epithelial cells in which the ductal carcinoma or
pre-invasive lesions present abnormal features.

Superpixels

Superpixel [47] segmentation is a very popular method in
computer vision. There has been successful work in histopath-
ological image analysis in which superpixels are used as
building blocks of the tissue analysis [19, 48].We tried replac-
ing 120×120 pixel image patches with superpixels that are
obtained by the efficient SLIC algorithm [49]. Similar to im-
age patches, we calculated color and texture features from all
superpixels from all images and built our visual vocabulary by
k-means clustering. Figure 6 shows the closest 6 superpixels
to cluster centers.

Superpixel segmentation is formulated as an optimization
problem that is computationally expensive to calculate. Using
superpixels instead of square patches did not improve diag-
nostically relevant ROI detection significantly. Figures 7 and
8 give a comparison of ROI classification accuracy for
superpixel-based visual words and square patch visual words.

Training Using Manually Marked ROIs

The viewport analysis produces a set of ROIs that are poten-
tially diagnostically relevant even though not included in the
diagnostic ROI that is drawn by the pathologist. These areas
include those that are zoomed in, slowly panned around, or
fixated by pathologists with the intention of detailed assess-
ment of these regions on the slide. However, due to the nature
of viewing software or human factors, some of these areas are

Fig. 6 Some superpixel clusters as visual words from a dictionary of
superpixels. Most superpixel clusters can be named by expert
pathologists although they are discovered through unsupervised
methods. Some of the superpixel clusters as identified by pathologists:
a empty space (e.g., areas on the slide with no tissue), b loose stroma, c
stroma, d blood cells, e epithelial nuclei, and f abnormal epithelial nuclei

Fig. 7 Classification accuracies
with different-sized visual
dictionaries and different
representations of visual words.
The accuracies obtained by
tenfold cross-validation
experiments using ROIs extracted
through viewport analysis of three
expert pathologists on 240 digital
slides
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incorrectly depicted as diagnostically relevant because their
zoom, duration, or displacement characteristics are matched
to our criteria. This situation introduces noise in training data
by labeling some negative samples as positive. We retrained
our model by using the consensus ROI for each case that are
agreed upon by three experts and show diagnostic features
specific to the diagnosis of the slide as training data.
Although comparatively very small and very expensive to
collect, hand-drawn ROIs provide very controlled training
data but increase detection accuracy very little. Figure 8 shows
that the classification accuracy for manually marked ROIs is
only slightly higher to that of viewport ROIs as shown in
Fig. 7.

Comparison of Computer-Generated Regions to Human
Viewport Regions

We evaluated our ROI detection framework in a classification
setting where each instance is an image region extracted by the
sliding window approach. In addition to these quantitative
evaluations, we produced probability maps that show the

regions detected as ROIs by the computer. Figure 9 shows a
comparison of viewport-extracted ROIs (ground truth) and
predictions of the two different models. A visual evaluation
reveals that our detection accuracy is affected by the rectan-
gular ground truth regions, but in fact our system is able to
capture most of the areas the pathologist focused on.

Discussion

Whole slide digital images provide researchers with an unpar-
alleled opportunity to study the diagnostic process of pathol-
ogists. This work presents a simple yet important first step in
understanding the visual scanning and interpretation process
of pathologists. In the BViewport Analysis^ section, we intro-
duced a novel representation and analysis of the pathologists’
behavior as they viewed and interpreted the digital slides. By
defining three distinct behaviors, we can extract diagnostically
important areas from the whole slide images. These areas
include not only the final diagnostic ROIs that support the

Fig. 8 Classification accuracies
with different-sized visual
dictionaries and different
representations of visual words.
The accuracies obtained by
tenfold cross-validation
experiments using manually
marked ROIs as training and
viewport-extracted ROIs as test
data

Fig. 9 a Ground truth calculated
by analyzing the viewport logs for
a case. b Probabilitymap showing
the predictions made by using
manually marked ROIs as
training data and image patches as
visual words. c Probability map
showing the predictions made by
using viewport-extracted ROIs as
training data and image patches as
visual words
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diagnosis but also the distracting areas that pathologists may
focus attention on during the interpretation process.

The other contribution of this paper is an image analysis
approach to understand the visual characteristics of ROIs that
attract pathologists’ attention. We used a visual bag-of-words
model to represent diagnostically important regions as a col-
lection of small image patches. In classification experiments,
we were able to detect ROIs from unseen images with 75 %
accuracy. Further analyzing the dictionary size, we were able
to identify the important visual words for detecting diagnosti-
cally important ROIs.

In additional experiments, we analyzed the model with
different-sized visual vocabularies. The dictionary size does
not have an impact on the accuracy as long as the dictionary is
large enough to include basic building blocks of tissue images.
Since breast histopathology images have less variability in
comparison to everyday images, the dictionary size needed
for a high detection accuracy is around 40 words—much
smaller than general computer vision practices for the bag-
of-words model. We also discovered that the words
representing the epithelial cells are the most important words
in representation of ROIs. When the dictionary size is de-
creased to 30 words where hierarchical clustering merges all
epithelial cell clusters to others, the accuracy drops signifi-
cantly. This is very intuitive since the breast cancer presents
diagnostic features especially around epithelial structures of
the tissue such as breast ducts and lobules.

We also experimented with a different visual word defini-
tion, superpixels. Using superpixels instead of square patches
does not increase classification accuracy significantly.
Furthermore, superpixels are computationally very expensive
and slow in comparison to simple square patches.

A factor in our evaluation that should be considered is the
nature of viewport-extracted ROIs. Because the tracking soft-
ware records the portions of the digital slide visible on the
screen, the viewports are always rectangular. Although this
simple data collection allowed us to obtain a large dataset that
is unique in the field, it has its shortcomings. In lower resolu-
tions that correspond to small zoom levels, the viewports in-
clude a lot of surrounding uninteresting tissue (like back-
ground white space or tissue stroma) but there is no way to
understand, outside of eye tracking, where the pathologist
actually focused in these rectangular image regions. Our pre-
dictions, on the other hand, can be quite precise in ROI shapes.

Conclusions

With the increasing integration of digital slides into education,
research, and clinical practice, the localization of ROIs is even
more important. In this work, we explored the use of detailed
tracking data in localization of ROIs. This study is a step
toward developing computer-aided diagnosis tools with which

an automated system may help pathologists locate diagnosti-
cally important regions and improve their performance.

We showed that image characteristics of specific regions on
digital slides attract the attention of the pathologists, and basic
image features, such as color and texture, are very useful in
identifying these regions. We applied the bag-of-words model
to predict diagnostically relevant regions in unseen whole
slide images and achieved a 75 % detection accuracy. Our
analysis of the viewport logs is novel and extracts the regions
on which the pathologists focused during their diagnostic re-
view process. This analysis enabled us to use a large dataset
that consists of interpretations of three expert pathologists on
240 whole slide images.

This study is a first step in understanding the diagnostic
process and may contribute to understanding how errors are
made by pathologists when screening slides. In future work,
we intend to analyze scanning behavior with the help of image
analysis techniques and uncover the reasons underlying
misdiagnosis.
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