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Abstract

A multi-class c-server retrial queueing system in which customers arrive

according to a class-dependent Markovian arrival process (MAP) is considered.

Service and retrial times follow class-dependent phase-type (PH) distributions

with the further assumption that PH distributions of retrial times are acyclic.

A necessary and sufficient condition for ergodicity is obtained from criteria

based on drifts. The infinite state space of the model is truncated with an

appropriately chosen Lyapunov function. The truncated model is described

as a multi-dimensional Markov chain and a Kronecker representation of its

generator matrix is numerically analyzed.
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1. Introduction

Retrial queues are queueing systems in which an arriving customer who finds all

servers busy joins an infinite retrial queue (called the orbit) and retries to receive

service. Such systems have been considered in various application areas such as call

centers, computer networks, and telecommunication systems. Detailed overviews and

bibliographical information about retrial queues may be obtained from the surveys by

Gómez-Corral [29] and by Kim and Kim [33], the books by Artalejo and Gómez-Corral

[4] and by Falin and Templeton [26], and also from the bibliographies by Artalejo [1, 2].
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Criteria based on Lyapunov functions have been widely used for the stability analysis

of retrial queues. The following is a review to that end in which the list of references

is not exhaustive but covers many related papers. For single- and multi-class M/M/c

queues with exponential retrials respectively in [26] and [47], simple linear Lyapunov

functions are used to show the sufficiency and necessity of an ergodicity condition.

Artalejo and Phung-Duc [5] extend a single-class M/M/c queue with exponential retrial

by allowing outgoing calls. Sakurai and Phung-Duc [44] consider a more general model

than that in [5] with multiple types of outgoing calls. In both systems, simple linear

Lyapunov functions are used in the sufficiency proofs of ergodicity conditions.

Analysis of a system in which arrival or service processes include phases is more com-

plicated. For such systems, one possible approach is to obtain some of the parameters

of the Lyapunov function using algebraic properties of the blocks of an auxiliary M/G/1

type matrix (see [38]). Phung-Duc and Kawanishi [40] consider an M/M/c retrial queue

with exponential retrials and after-call work, and allow for customer abandonment

in [41]. Diamond and Alfa [22] consider a retrial queue in which customers arrive

according to a Markovian arrival processes (MAP) [37], service times follow phase-type

(PH) [38] and retrial times follow exponential distributions. For these three systems,

the auxiliary M/G/1 type matrices are obtained from their classical queueing system

counterparts in which customers join infinite waiting lines instead of orbits. Dudin and

Klimenok [24] define asymptotically quasi-Toeplitz Markov chains (AQTMCs) whose

blocks converge to the blocks of an M/G/1 type matrix as the level numbers increase.

The sufficiency of an ergodicity condition is then obtained by choosing a Lyapunov

function whose parameters are determined using the results for the blocks in the

M/G/1 type matrix. They also show that a single-server queue with batch MAP

(BMAP) arrivals, semi-Markovian service process, and exponential retrials is in the

class of AQTMCs. Breur et al. [10] show that a BMAP/PH/c queue with exponential

retrials is in the class of AQTMCs and give a sufficient condition for its ergodicity. He

et al. [30] consider a BMAP/PH/c retrial queue with a waiting line and PH retrials.

They obtain a sufficient ergodicity condition by choosing a Lyapunov function whose

parameters follow from a classical BMAP/PH/c queue with no retrials.

Artalejo and Gómez-Corral [4, p. 33] indicate that mathematical analysis of multi-

class retrial queues in which all customers can join an orbit is more difficult compared
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to its single-class counterpart since its joint queue length process is a random walk

on the multi-dimensional integer lattice. Expected waiting time expressions are given

for two- and multi-class M/G/1 queues with batch arrivals and exponential retrials

in [34] and [25], respectively. Avrachenkov et al. [7] consider an M/G/c queue

with waiting lines and constant retrial policy in which only one customer in the

orbit can attempt to get service. Shin and Moon [47] show that the stationary

distribution of a multi-class M/M/c queue with exponential retrials converges to that of

a classical multi-class M/M/c queue with discriminatory random order service policy

as retrial rates tend to infinity, and they present approximation formulae for some

performance measures. Kim [31] considers a multi-server multi-class retrial queue in

which customers arrive according to a class-dependent Poisson process, service and

retrial times follow exponential distributions, and each server can serve a specific class

of customers. They obtain a necessary and sufficient condition for positive recurrence

by using the fluid limit approach. There are explicit results for a multi-class retrial

queue with multiple servers and a few papers take a computational approach. The

retrial queue in [16] has two customer classes in which customers either join an infinite

waiting line or a finite orbit depending on their class if all servers are busy upon arrival.

Therein, this system is modeled as an LDQBD and solved using the matrix-analytic

method in [39]. Choi et al. [17] obtain several performance measures; they consider a

different system than the one in [16] in that the orbit is infinite and the waiting line is

finite. Gharbi et al. [28] model a finite source retrial system using generalized stochastic

Petri nets and analyze it with the embedded Markov chain resolution algorithm in [15].

The analysis of a queueing system with PH retrials requires a state representation

keeping the number of customers in all retrial phases. This leads to a random walk

on the multi-dimensional integer lattice with more than one infinite dimension as for

multiple customer classes. Therefore, there are only a handful of papers that consider

PH retrials. In those, either simple arrival and service processes are assumed, or a

methodology for numerical analysis is not proposed. M/M/c queues with PH retrials

appear in [35, 45, 46]. Kumar et al. [35] analyze the waiting time distribution, and

Shin and Moon [46] present approximation formulae for the distributions of numbers

of customers in service and orbit. Shin [45] describes the model with two retrial phases

as an LDQBD and gives an algorithmic solution. In [23], a stability condition for an
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M/PH/1 queue with PH retrials is obtained. Besides, a method is proposed for approx-

imating its stationary distribution and waiting time moments. In [3], a MAP/PH/c

queue with PH retrials is numerically analyzed with a finite source assumption. Besides

giving a sufficient condition for ergodicity, He et al. [30] show that the condition is

also necessary for the ergodicity of a BMAP/PH/c queue with a waiting line and PH

retrials. However, a methodology for numerical analysis is not proposed. Finally,

Chakravarthy [14] studies a MAP/PH/c queue with PH retrials via simulation due to

its complexity. To the best of our knowledge, a multi-class queueing system with MAP

arrivals, PH services, and PH retrials has not been analyzed previously.

In this paper, a multi-class MAP/PH/c retrial queueing system with acyclic PH

retrials is considered. The acyclic PH distribution is a subclass of the PH distribution,

but is considered to be as powerful as a general PH distribution, since both are dense in

the set of nonnegative distributions (see, for instance, [13]). Therefore the system under

consideration is quite general. A necessary and sufficient condition for its ergodicity

is obtained from criteria based on drifts by choosing appropriate Lyapunov functions.

The system includes multiple customer classes and construction of a useful auxiliary

M/G/1 type matrix is not obvious. Hence, it seems that the approach taken to choose

the Lyapunov function for the BMAP/PH/c retrial queue in [30] is not applicable when

there are multiple customer classes. The infinite state space of the model is truncated

with the help of the Lyapunov function chosen in the sufficiency proof so that a finite

state space including at least a given steady-state probability mass is determined [18].

Then the truncated model is described as a multi-dimensional Markov chain (MC) and

a Kronecker representation of its underlying infinitesimal generator matrix is formed

in a similar manner to those models in [8, 19]. Finally, the steady-state distribution

of the truncated model is computed iteratively using successive over-relaxation (SOR)

[49]. Here, the truncated model is not modeled as an infinite LDQBD and is not solved

using the matrix-analytic method of Bright and Taylor [11] although it is possible to

do so by choosing an appropriate level definition as in [8, 19, 21]. The reason for this

choice is that the method does not scale well as the number of dimensions in the multi-

dimensional MC increases. This is due to the increase in the order of the diagonal

blocks as the level number increases in multi-dimensional MCs.
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2. Mathematical model

The system under consideration is a multi-class MAP/PH/c queue with acyclic PH

retrials, where c is the number of servers. We model this system as a multi-dimensional

MC and give the generator matrix of the underlying Markov process.

Recall that a MAP can be viewed as a counting process or an irreducible MC with

some marked transitions (describing arrivals) as in [13]. We will be using the definition

of a MAP with the latter interpretation given below.

Definition 1. MAP with representation (C,D) of orderm is an irreducible MC with a

state space of sizem and irreducible generator matrix pC�Dq, whereC is a nonsingular

matrix with negative diagonal and nonnegative off-diagonal elements and D ¥ 0.

A state of the MAP in Definition 1 is said to be a phase. Without loss of generality,

we assume that the phases of the MAP are numbered 1 through m. The MAP

characterizes a stochastic process, where C includes transitions without an arrival and

D includes transitions with one customer arrival. The definition of PH distribution

which will be used to model service and retrial times is given next.

Definition 2. Let m P Z
¥0, β P R

1�m
¥0

, and T P R
m�m
¥0

be a nonsingular matrix

with negative diagonal and nonnegative off-diagonal elements. A PH distribution with

representation (β,T ) of order m is the distribution of time until absorption in a finite

state space MC with generator matrix

T̂ �

�

�

T T 0

0 0

�

�

pm�1q�pm�1q

and initial probability vector pβ, 1� βeq P R
1�pm�1q

¥0
.

Here, e represents a column vector of 1’s. Without loss of generality, we assume

that the state space of T̂ is t1, . . . ,m� 1u, where m� 1 is the absorbing state and the

other states are transient. The transient states in a PH distribution are called phases.

We assume that the process does not start in the absorbing state; hence, βe � 1 holds.

Since T̂ is the generator matrix of a MC, T 0
� �Te is a nonnegative column vector.

Next, the definition of acyclic PH distribution is given.
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Definition 3. PH distribution with representation (ξ,U) is said to be acyclic if its

states can be ordered in such a way that U is an upper-triangular matrix.

We consider a retrial queueing system with c ¥ 1 homogeneous servers and K ¥ 1

customer classes. Customers of class k P t1, . . . ,Ku arrive according to MAP with

representation pCk,Dkq of order mA
k . Since pCk �Dkq is irreducible by Definition

1, there exists a nonnegative row vector θk P R
1�mA

k

¥0
such that θkpCk � Dkq � 0

and θke � 1. Furthermore, the average arrival rate is given by λk � θkDke. If all

servers are busy upon arrival, an arriving customer of class k joins orbit k and retries

to capture a server after a random amount of time. A retrial customer is blocked if

it attempts to receive service when there are no idle servers. The service time of a

class k customer follows PH distribution with representation pβk,T kq of order m
S
k and

T 0

k � �T ke. The retrial time of a class k customer follows acyclic PH distribution

with representation pξk,Ukq of order mR
k and U0

k � �Uke. Hence, we assume that

Uk is upper-triangular. For a customer of class k, the average service rate is given by

µk � r�βkpT kq
�1es�1 and the average retrial rate is given by δk � r�ξkpUkq

�1es�1.

In [14], a single-class MAP/PH/c queue with PH retrials is modeled using a multi-

dimensional MC. The multi-class counterpart can also be modeled similarly. To that

end, we let Xkptq, XbR
k
�iR

k

ptq, andXbS
k
�iS

k

ptq respectively denote the phase of the arrival

process of class k customers, the number of class k retrial customers in phase iRk , and

the number of busy servers serving class k customers in phase iSk for iRk � 1, . . . ,mR
k

and iSk � 1, . . . ,mS
k , where

mR
�

Ķ

k�1

mR
k , mS

�

Ķ

k�1

mS
k , bRk � K �

k�1
¸

k1

�1

mR
k1

, bSk � K �mR
�

k�1
¸

k1

�1

mS
k1

.

Then the multi-dimensional MC Xptq � tX1ptq, . . . , XK�mR
�mS ptq : t ¥ 0u has

the state space S � SA
� SR

� SS , where SA
� �

K
k�1

 

1, . . . ,mA
k

(

, SR
� Z

mR

¥0
,

SS
� ty � py1, . . . , ymS q P Z

mS

¥0 | ye ¤ cu, and a possible state representation of the

model is x � px1, . . . , xK�mR
�mS q P S. We let npxq denote the number of busy servers

in state x; that is, npxq �
°K

k�1

°mS

k

i�1
xbS

k
�i. Set SS is defined so that the number of

busy servers does not exceed the number of servers, and its size is given by

|S
S
| �

ç

i�0

pi�mS
� 1q!

i! pmS
� 1q!

.
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Note that another possible approach for modeling this system is to keep the phase of

each server in a single but different dimension of the state. However, that approach

leads to a larger state space as discussed in [32, 43].

Now, we give the generator matrix underlying the model in terms of matrices

associated with arrival, service, and retrial. Matrix QA
k includes transitions associated

with arrival of class k customers and is given elementwise as

QA
k px,yq �

$

'

'

'

'

'

'

&

'

'

'

'

'

'

%

Ckpxk, iq if i � xk and y � x� pi� xkqe
T
k

Dkpxk, iqξkpjq if npxq � c and y � x� pi� xkqe
T
k � eT

bR
k
�j

Dkpxk, iqβkpj
1

q if npxq   c and y � x� pi� xkqe
T
k � eT

bS
k
�j1

0 otherwise

for i � 1, . . . ,mA
k , j � 1, . . . ,mR

k , j
1

� 1, . . . ,mS
k , and x,y P S, where ek represents

the kth principal axis vector. Matrix QR
k includes transitions associated with retrial

of class k customers and is given elementwise as

QR
k px,yq �

$

'

'

'

&

'

'

'

%

xbR
k
�iUkpi, jq if i � j and y � x� eT

bR
k
�i
� eT

bR
k
�j

xbR
k
�iU

0

kpiqβkpj
1

q if npxq   c and y � x� eT
bR
k
�i
� eT

bS
k
�j1

0 otherwise

for i, j � 1, . . . ,mR
k , j1 � 1, . . . ,mS

k , and x,y P S. Finally, matrix QS
k includes

transitions associated with service of class k customers and is given elementwise as

QS
k px,yq �

$

'

'

'

&

'

'

'

%

xbS
k
�iT kpi, jq if i � j and y � x� eT

bS
k
�i
� eT

bS
k
�j

xbS
k
�iT

0

kpiq if y � x� eT
bS
k
�i

0 otherwise

for i, j � 1, . . . ,mS
k and x,y P S. Then the generator matrix underlying Xptq becomes

Q � Qoff
� diagp�Qoffeq with Qoff

�

Ķ

k�1

�

QA
k �QR

k �QS
k

	

.

Example 1. Now consider an example with K � 2 and c � 2. Let the vectors and

matrices describing the arrivals, services, and retrials be given by

C1 �

�

�

�0.8 0.8

0 �0.8

�

�

2�2

, D1 �

�

�

0 0

0.8 0

�

�

2�2

, C2 �

�

�0.3
�

1�1

, D2 �

�

0.3
�

1�1

,
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ξ1 �
�

1 0
�

1�2

, U1 �

�

�

�1 1

0 �1

�

�

2�2

, ξ2 �
�

1
�

1�1

, U2 �

�

�0.5
�

1�1

,

β
1
�

�

0.75 0.25
�

1�2

, T 1 �

�

�

�1 0.25

0 �0.25

�

�

2�2

, β
2
�

�

1
�

1�1

, T 2 �

�

�0.5
�

1�1

.

Hence,

U0

1
�

�

�

0

1

�

�

2�1

, U0

2
�

�

0.5
�

1�1

, T 0

1
�

�

�

0.75

0.25

�

�

2�1

, T 0

2
�

�

0.5
�

1�1

.

Here, λ1 � 0.4, λ2 � 0.3, δ1 � δ2 � 0.5, µ1 � 0.4, µ2 � 0.5, mA
1
� 2, mA

2
� 1, mR

1
� 2,

mR
2
� 1, mS

1
� 2, and mS

2
� 1. This is an 8-dimensional model with mR

� 3, mS
� 3,

bR1 � 2, bR2 � 4, bS1 � 5, bS2 � 7, and npxq � x6 � x7 � x8. Therefore, the state space

of the MC is given by S � SA
� SR

� SS , where SA
� t1, 2u � t1u, SR

� Z
3

¥0
, SS

�

tp0, 0, 0q, p0, 0, 1q, p0, 0, 2q, p0, 1, 0q, p0, 1, 1q, p0, 2, 0q, p1, 0, 0q, p1, 0, 1q, p1, 1, 0q, p2, 0, 0qu.

3. Ergodicity condition

With the help of Lyapunov functions, we show that the inequality

Ķ

k�1

λk

µk

  c (1)

is a necessary and sufficient ergodicity condition for the multi-class MAP/PH/c queue

with acyclic PH retrials considered. The Lyapunov function used to show the sufficiency

of this condition will also aid us in finding a truncated state space with a given steady-

state probability mass. When the arrival, service or retrial processes include phases,

Lyapunov functions need to be chosen so that the phases are carefully taken into

consideration. Otherwise, a necessary and sufficient ergodicity condition may not be

found. In order to obtain Lyapunov functions leading to such a condition, we start

with Lyapunov functions that work for simple models, and then add terms to these

functions for the additional complexities of the model.

The following two lemmas introduce two vectors which include variables that will

be used in the additional terms.

Lemma 1. There exists a unique vector uk P R
mA

k
�1 for MAP with representation

pCk,Dkq and λk � θkDke such that pCk �Dkquk � λke�Dke and uke � 1.
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Proof. The reduced linear system of equations Âkuk � b̂k with Âk �

MkpCk � Dkq � pImA

k

� emA

k

eT
mA

k

qpCk � Dkq and b̂k � Mkpλke � Dkeq �

pImA

k

�emA

k

eT
mA

k

qpλke�Dkeq, where Mk � ImA

k

�emA

k

p�eT
mA

k

�θkq and ImA

k

denotes

the identity matrix of order mA
k , has only its last equation altered to make the equation

0 on both sides. Because pCk �Dkq is an irreducible generator matrix, this implies

Âk is of rank pmA
k � 1q. Thus, pCk �Dkquk � λke�Dke is consistent (see [36, Ch.

2.3]), and there exists a unique vector uk under the normalization condition uke � 1.

Since transition rates describing arrivals in MAP depend on the phase of the process,

elements of uk will be used in additional terms to obtain an ergodicity condition based

on average arrival rate λk instead of phase-dependent arrival rates in Dk.

Lemma 2. There exists a unique vector vk P R
mS

k
�1

¥0
for PH service distribution with

representation pβk,T kq and µk � r�βkpT kq
�1es�1 such that vk � �µkpT kq

�1e and

βkvk � 1.

Proof. Matrix�T k is a nonsingular M-matrix, �T�1

k ¥ 0 [36, p. 626], and therefore,

vk ¥ 0 exists. This implies βkvk � 1 since βkvk � �µkpβkpT kq
�1eq � �µkp�µkq

�1.

Since transition rates describing PH service depend on the phase of the customer,

elements of vk will be used in additional terms to obtain an ergodicity condition based

on average service rate µk instead of phase-dependent service rates in T 0

k � �T ke.

3.1. Necessary condition

The condition in (1) is necessary for ergodicity if it can be shown that the system

is non-ergodic when the condition does not hold. Fortunately, the following theorem

provides a non-ergodicity condition for MCs. Note that the theorem is originally proved

for discrete-time MCs (see [6, p. 22] and [27, p. 30]), but here we give a continuous-time

version which is obtained by considering the embedded MC.

Theorem 1. A MC with generator matrix Q is non-ergodic if there exists two con-

stants τ, σ P R and a Lyapunov function f : S Ñ R such that

(i)
°

yPS
P px,yq|fpyq � fpxq| ¤ τ for x P S and

(ii)
°

yPS
P px,yq pfpyq � fpxqq ¥ 0 for x P R,

where the sets R � tx P S | fpxq ¡ σu and pSzRq are non-empty, and the matrix
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P P R
|S|�|S|

¥0
is given elementwise as

P px,yq �

$

&

%

Qpx,yq{|Qpx,xq| if y � x

0 otherwise
for x,y P S.

This theorem is used to prove a non-ergodicity condition for an M/M/c retrial queue

with exponential retrial in [26, p. 98]. Therein, a Lyapunov function fpxq linear in the

infinite variables (i.e., numbers of different class customers in the orbits) is used. We

have also chosen a linear Lyapunov function, but have added constant terms including

elements of vectors uk and vk from Lemmas 1 and 2. Thus, we consider

fpxq �

Ķ

k�1

1

µk

�

�

mR

ķ

i�1

xbR
k
�i

�




�

Ķ

k�1

ukpxkq

µk

�

Ķ

k�1

1

µk

�

�

mS

ķ

i�1

vkpiqxbS
k
�i

�


.

The first term of fpxq is the initial function, whereas the other two terms are added to

obtain a phase-independent condition. Note that each of the three terms is in the form

of a summation of K other terms each corresponding to a different customer class.

Since Q is a generator matrix, P px,yq ¤ 1 for x,y P S. The value of |fpyq � fpxq|

is finite if P px,yq ¡ 0 for x,y P S. Besides, each row of the matrix P includes a

finite number of nonzero elements due to the form of the particular model considered.

Therefore, there exists some constant τ such that condition (i) is satisfied.

After some algebraic operations, we obtain

1

|Qpx,xq|

¸

yPS

Qpx,yqpfpyq � fpxqq �
1

|Qpx,xq|

�

Ķ

k�1

λk

µk

� npxq

�

.

The right-hand side of this equation is nonnegative if
°K

k�1
pλk{µkq ¥ c since

|Qpx,xq| ¡ 0 and npxq ¤ c hold for x P S. Besides, sets R and pSzRq are non-

empty when σ � maxxPS

�

°K
k�1

ukpxkq{µk

	

. Therefore, condition (ii) also holds.

3.2. Sufficient condition

In coming up with a Lyapunov function to show the sufficiency of the condition in

(1) for ergodicity, we benefit from the next theorem in [48]. Note that the Lyapunov

function is assumed to be nonnegative in [48], but the theorem is also valid if the

Lyapunov function is bounded from below (see [26, p. 97]). This theorem will also be

used to bound the steady-state probability mass associated with the truncated state

space from below as proposed in [18].
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Theorem 2. The MC is ergodic if and only if there exists a Lyapunov function g :

S Ñ R that is bounded from below and a finite set C � S satisfying the three conditions

(i) tx P S | gpxq ¤ τu is finite for all τ   8,

(ii) dpxq ¤ �γ for all x P SzC and some γ ¡ 0, and

(iii) dpxq   8 for all x P S,

where dpxq �
°

yPS
Qpx,yq pgpyq � gpxqq is called the drift in state x P S.

We will be choosing a quadratic Lyapunov function gpxq that is similar to those

discussed in [8] to obtain a drift function dpxq whose infinite variables have negative

coefficients for x P S. If customers in the orbits attempt to receive service in all

PH retrial phases, adding terms with variables each corresponding to the number of

customers in a service phase leads to the condition in (1). However, if the PH retrial

process of a class k customer includes a phase, say i, in which no attempt is made

to receive service (i.e., if U0

kpiq � 0, where U0

k � �Uke), then the coefficient of

the corresponding variable, xbR
k
�i, is positive in dpxq at states with no busy servers.

Therefore, the value of gpxq should also depend on the number of customers in retrial

phases. This can be managed by adding carefully chosen terms so that dpxq at states

with no busy servers become negative for a sufficiently large number of customers in the

orbits. Based on this explanation, the following lemma gives the vector that includes

variables to be used in the term added due to PH retrials of class k customers.

Lemma 3. For acyclic PH retrial distribution with representation pξk,Ukq, let

Ûk � Uk � diagpU0

kq and ηk P R
mR

k
�1 be given elementwise as

ηkpiq �

$

&

%

�c{µk if i P Ik

0 otherwise
for i � 1, . . . ,mR

k ,

where Ik � ti P t1, . . . ,mR
k u | U

0

kpiq � 0u. Then there exists wk P R
mR

k
�1 such that

Ûkwk � ηk.

Proof. Note that all elements in row i of Ûk are zero if and only if Ûkpi, iq � 0. Then

the result follows from the row echelon form of upper-triangular matrix Ûk obtained

by interchanging all zero rows with nonzero rows below them (see [36, Ch. 2.1]), that

its rank is equal to its number of nonzero rows, and Ûkwk � ηk is consistent and has

infinitely many solutions (see [36, Ch. 2.3]). Note that negative elements of ηk could
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take a smaller value than �c{µk that may lead to a smaller truncated state space.

We choose this value in order to bound coefficients of infinite variables from above by

p

°K

k�1
pλk{µkq � cq in dpxq for all states.

There exist infinitely many solutions to Ûkwk � ηk. Hence, additional constraints

need to be imposed. Here, we choose to set wkpiq to 1 if row i of Ûk is zero. The

elements of vector ηk contribute to coefficients of infinite variables corresponding to

class-k retrial customers in dpxq; hence, its elements need to be nonpositive with at

least one negative element. If PH retrials are allowed to be non-acyclic, it is a possibility

that Ûkwk � ηk is inconsistent since Ûk is a singular M-matrix. Hence, the acyclicity

assumption is necessary due to the form of the chosen gpxq. We conjecture that

the condition in (1) is also necessary and sufficient when PH retrials are non-acyclic;

however, we have not managed to provide a suitable gpxq for such a system.

Having defined all necessary variables, as the Lyapunov function we consider

gpxq �

Ķ

k1

�1

Ķ

l1�1

1

2µk1µl1

�

�

mR

k1

¸

i�1

xbR
k1

�i

�




�

�

mR

l1
¸

i�1

xbR
l1
�i

�




�

Ķ

k1

�1

�

Ķ

l1�1

ul1pxl1 q

µk1µl1

�

�

�

mR

k1

¸

i�1

xbR
k1

�i

�




�

Ķ

k1

�1

�

�

Ķ

l1�1

1

µk1µl1

�

�

mS

l1
¸

j�1

vl1pjqxbS
l1
�j

�




�




�

�

mR

k1

¸

i�1

xbR
k1

�i

�




�

Ķ

k1

�1

mR

k1

¸

i�1

wk1

piqxbR
k1

�i �

Ķ

k1

�1

αk1

pxq

�

�

mS

k1

¸

i�1

xbS
k1

�i

�


,

where

akpi,xq � wkpiq �
1

2µ2

k

�

Ķ

k1

�1

uk1

pxk1

q

µkµk1

�

Ķ

k1

�1

1

µkµk1

�

�

mS

k1

¸

j1

�1

vk1

pj1qxbS
k1

�j1

�


 for i R Ik

and αkpxq � miniRIk

�

akpi,xq � c{pU0

kpiqµkq

�

for x P S and k � 1, . . . ,K. The

first term of gpxq is the initial quadratic Lyapunov function. The second and third

terms are added to obtain a phase-independent condition, and the last two terms are

added due to PH retrials. Note that, αkpxq is well-defined since Ik � t1, . . . ,mR
k u for

k � 1, . . . ,K due to Definitions 2 and 3. Then gpxq is a quadratic polynomial in which

the coefficients of all infinite variables are finite and the coefficient of each quadratic

term pxbR
k
�ixbR

k1

�i1q is positive for i � 1, . . . ,mR
k , i

1

� 1, . . . ,mR
k1

, and k, k1 � 1, . . . ,K.

Hence, the function g is bounded from below and condition (i) holds.
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For npxq � c, the drift is given by

dpxq �

Ķ

k�1

1

µk

�

Ķ

k1

�1

λk1

µk1

� c

�

�

�

mR

ķ

i�1

xbR
k
�i

�




�

Ķ

k�1

c

µk

�

¸

iPIk

xbR
k
�i

�

�

Ķ

k�1

mA

ķ

i�1

Dkpxk, iq

�

�

�

�

ukpiq

µ2

k

�

Ķ

k1

�1

k1

�k

uk1

pxk1

q

µkµk1

�

Ķ

k1

�1

1

µkµk1

�

�

mS

k1

¸

j1

�1

vk1

pj1qxbS
k1

�j1

�




�

�

�

�

�

Ķ

k�1

mA

ķ

i�1

Dkpxk, iq

�

�

�

�

mR

ķ

j�1

ξkpjqwkpjq

�




�

1

2µ2

k

�

�

�

Ķ

k�1

αkpxq

�

�

mS

ķ

i�1

xbS
k
�iT

0

kpiq

�


;

on the other hand, for npxq   c the drift is given by

dpxq �

Ķ

k�1

1

µk

�

�

Ķ

k1

�1

λk1

µk1

�

Ķ

k1

�1

mS

k1

¸

i�1

xbS
k1

�i

�




�

�

mR

ķ

i�1

xbR
k
�i

�




�

Ķ

k�1

c

µk

�

¸

iPIk

xbR
k
�i

�

�

Ķ

k�1

¸

iRIk

xbR
k
�iU

0

kpiq p�akpi,xq � αkpxqq

�

Ķ

k�1

αkpxq

�

�

mA

ķ

i�1

Dkpxk, iq �

mS

ķ

i�1

xbS
k
�iT

0

kpiq

�


 for x P S.

When
°K

k�1
pλk{µkq   c holds, coefficients of all infinite variables are negative; hence,

condition (iii) holds. Besides, C � tx P S | dpxq ¡ �γu is finite for any arbi-

trarily chosen γ ¡ 0. Therefore, condition (ii) also holds and the model is ergodic

if
°K

k�1
pλk{µkq   c. As discussed in [18], for some given positive ǫ   1 we have

°

xPC
πpxq ¥ 1�ǫ, where γ � sup

xPS dpxq p1{ǫ� 1q and π is the steady-state solution.

Example 1. (cont’d) In this example,

u1 �

�

�

0.25

0.75

�

�

2�1

, v1 �

�

�

0.8

1.6

�

�

2�1

, w1 �

�

�

6

1

�

�

2�1

, u2 � v2 � w2 �

�

1
�

1�1

.

Then I1 � t1u, I2 � H,

a1p2,xq � 4.125� 6.25u1px1q � 5u2px2q � 5x6 � 10x7 � 5x8, α1pxq � a1p2,xq � 5,

a2p1,xq � 3� 5u1px1q � 4u2px2q � 4x6 � 8x7 � 4x8, α2pxq � a2p1,xq � 8.
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The Lyapunov function is given by

gpxq � 3.125px3 � x4q
2
� 5px3 � x4qx5 � 2x2

5 � 6x3 � x4 � x5

� p6.25u1px1q � 5u2px2q � 5x6 � 10x7 � 5x8q px3 � x4q

� p5u1px1q � 4u2px2q � 4x6 � 8x7 � 4x8qx5 � α1pxqpx6 � x7q � α2pxqx8.

For npxq � 2, the drift is given by

dpxq � � 6x3 � x4 � 0.8x5 � 1x1�2 p4u2px2q � 4x6 � 8x7 � 4x8 � 8.55q

� 1x2�1 p1.5u1px1q � 1.2x6 � 2.4x7 � 1.2x8 � 2.1q

� α1pxq p�0.75x6 � 0.25x7q � α2pxq p�0.5x8q ,

where 1 denotes the indicator function, and for npxq   2, the drift is given by

dpxq � 2.5 p�0.4� x6 � x7 � x8q px3 � x4q � 2 p�0.4� x6 � x7 � x8qx5

� α1pxq p1x1�2 0.8� 0.75x6 � 0.25x7q � α2pxq p1x2�1 0.3� 0.5x8q .

4. Numerical results

Once a Kronecker representation of the truncated generator matrix Q̄ is obtained as

in [8, 19], one can employ a memory-efficient Kronecker-based iterative solver in which

the nonzeros of Q̄ are not stored and no factorization takes place during the course of

computing π̄. In practice, this approach always saves a significant amount of memory.

Another approach is to employ an LDQBD model, where level l has the state space

Splq � tx � px1, . . . , xK�mR
�mS q P S | l � maxtxK�1, . . . , xK�mRuu,

and then use the matrix-analytic method proposed in [11]. In this method, conditional

expected sojourn time matrices between two given truncation levels need to be com-

puted and stored. For our system, the conditional expected sojourn time matrix at

level l includes about pM̄2l2pm
R
�1q

q nonzeros, where M̄ � |SS
|p

±K
k�1

mA
k qm

R. Hence,

the memory allocated to store these matrices becomes extremely large. Phung-Duc

et al. [42] propose an algorithm to compute the conditional expected sojourn time

matrices of an LDQBD with a smaller memory usage (see [42, Algorithm. 1]). However,

the stationary distribution is computed using the algorithm proposed in [11] (see [42,

Algorithm. 3]) which requires computing and storing the conditional expected sojourn
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time matrices (see [42, Remark. 3.5]). Hence, memory usage is expected to be large

in this algorithm. On the other hand, the Kronecker-based iterative solver is expected

to solve the truncated system with comparable accuracy if the value of the stopping

tolerance it uses is sufficiently small.

We implemented a Kronecker solver [20] built on the Nsolve package [12] of the

APNN toolbox [9]. The solver obtains the truncated state space of the model, generates

the Kronecker structured matrix of the truncated model, and computes its steady-state

solution by using the SOR method of Nsolve. All experiments are carried out on an

Intel Core2 Duo 2.4 GHz processor with 4 GB of main memory. Iterations are stopped

when infinity norm of the residual vector of the truncated model (i.e., ||π̄Q̄||
8

) becomes

smaller than 10�15, and the relaxation parameter of SOR is chosen as 0.9.

We considered six different models with ǫ � 0.2. Table 1 reports the results

of numerical experiments with these models. The first column gives the name of

the model. ERL1 is the model introduced in Example 1. ERL2 and ERL3 are

obtained by multiplying the matrices describing the arrival processes of ERL1 by 0.75

and 0.5, respectively. EXP1 differs from the first model in that the retrial time of

customer class 1 is exponentially distributed with average retrial rate 0.5. EXP2 and

EXP3 are obtained by multiplying the matrices describing the arrival processes of

EXP1 by 0.75 and 0.5, respectively. The second column gives the traffic intensity

ρ � p

°K
k�1

λk{µkqc
�1. The third column gives the number of states in the truncated

state space. Columns E1,1, E1,2, and E2,1 give the average number of class 1 customers

in retrial phases 1 and 2, and the average number of class 2 customers in retrial phase

1, respectively. Retrial process of customer class 1 has a single phase in EXP1, EXP2,

and EXP3; hence, E1,2 is undefined for those models. Column Pblock provides the

probability that an arriving customer finds all servers busy. Column ||π̄Q̄||1 provides

the 1-norm of the residual vector of the truncated model which is an indicator of the

accuracy of the solution to the truncated model. Column ||π̃Q||1 provides the 1-norm

of the residual vector of the infinite model and is obtained from

||π̃Q||1 �
¸

xPS̄

|rpxq �
¸

yRS̄

π̄pxqQpx,yq| �
¸

xPS̄

¸

yRS̄

π̄pxqQpx,yq with r � π̄Q̄.

This value is an indicator of the accuracy of the solution to the infinite model.

Relative difference between average numbers of retrial customers in ERLi and EXPi
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Table 1: Numerical results

Model ρ |S̄| E1,1 E1,2 E2,1 Pblock ||π̄Q̄||1 ||π̃Q||1

ERL1 0.8 29, 932, 260 0.2584 2.0165 2.8985 0.6784 9e� 14 9e� 14

ERL2 0.6 811, 800 0.1097 0.4422 0.6756 0.4164 2e� 14 2e� 12

ERL3 0.4 12, 800 0.0317 0.0860 0.1511 0.2048 6e� 15 7e� 6

EXP1 0.8 270, 400 3.1663 2.5486 0.6755 8e� 14 8e� 14

EXP2 0.6 25, 600 0.7154 0.6302 0.4142 2e� 14 2e� 11

EXP3 0.4 1, 600 0.1464 0.1461 0.2038 4e� 15 6e� 6

becomes relatively large as traffic intensity increases. This difference ranges from 0.03

(customer class 2 in ERL3 and EXP3) to 0.39 (customer class 1 in ERL1 and EXP1).

Relative difference between blocking probabilities is around 0.005. In ERL1 and EXP1,

residuals of truncated and infinite models are about the same; hence, truncation error

is not larger than numerical error. In other models, truncation error is larger than

numerical error. Therefore, as traffic intensity increases, choosing a smaller ǫ value

does not introduce additional inaccuracy to the computed solution.
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