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Abstract A k-core of a graph is a maximal connected
subgraph in which every vertex is connected to at least k
vertices in the subgraph. k-core decomposition is often used
in large-scale network analysis, such as community detec-
tion, protein function prediction, visualization, and solving
NP-hard problems on real networks efficiently, like maximal
clique finding. In many real-world applications, networks
change over time. As a result, it is essential to develop effi-
cient incremental algorithms for dynamic graph data. In this
paper, we propose a suite of incremental k-core decomposi-
tion algorithms for dynamic graph data. These algorithms
locate a small subgraph that is guaranteed to contain the
list of vertices whose maximum k-core values have changed
and efficiently process this subgraph to update the k-core
decomposition. We present incremental algorithms for both
insertion and deletion operations, and propose auxiliary ver-
tex state maintenance techniques that can further accelerate
these operations. Our results show a significant reduction in
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Buğra Gedik
bgedik@cs.bilkent.edu.tr

Gabriela Jacques-Silva
g.jacques@us.ibm.com

Kun-Lung Wu
klwu@us.ibm.com

Ümit V. Çatalyürek
umit@bmi.osu.edu

1 Sandia National Labs, Livermore, CA, USA

2 Bilkent University, Ankara, Turkey

3 IBM T.J. Watson Research Center, Yorktown Heights, NY,
USA

4 The Ohio State University, Columbus, OH, USA

runtime compared to non-incremental alternatives. We illus-
trate the efficiency of our algorithms on different types of
real and synthetic graphs, at varying scales. For a graph of
16million vertices, we observe relative throughputs reaching
a million times, relative to the non-incremental algorithms.

Keywords k-Core · Streaming graph algorithms · Dense
subgraph discovery · Incremental graph algorithms

1 Introduction

Relationships between people and systems can be captured
as graphs where vertices represent entities and edges rep-
resent connections among them. In many applications, it is
highly beneficial to capture this graph structure and analyze
it. For instance, the graph may represent a social network,
where finding communities in the graph [16] can facilitate
targeted advertising. As another example, the graphmay rep-
resent the web link structure, and finding densely connected
regions in the graph [13] may help identify link spam [26]. In
telecommunications, graphs are used to capture caller–callee
relationships based on call detail records (CDRs) [24]. Such
graphs can be used to locate closely connected groups of peo-
ple for generating promotions. Graph structures are widely
used in biological systems as well, such as in the study of
proteins. Locating cliques in protein structures can be used
for comparative modeling and prediction [27].

Many real-world graphs are highly dynamic. In social net-
works, users join/leave and connections are created/severed
on a regular basis. In the web graph, new links are estab-
lished and severed as a natural result of content update and
creation. In customer call graphs, new edges are added as
people extend their list of contacts. Furthermore, many appli-
cations require analyzing such graphs over a time window, as

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-016-0423-8&domain=pdf


426 A. E. Sarıyüce et al.

newly forming relationships may be more important than the
existing ones. For instance, in customer call graphs, the his-
toric calls are not too relevant for churn detection. Looking at
a time window naturally brings removals as key operations,
just like insertions. This is because as edges slide out of the
timewindow, theyhave to be removed from thegraphof inter-
est. In summary, dynamic graphs where edges are added and
removed continuously are common in practice and represent
an important use case.

In this paper, we study the problem of incrementallymain-
taining the k-core decomposition of a graph. A k-core of a
graph [29] is a maximal connected subgraph in which every
vertex is connected to at least k other vertices. Finding k-
cores in a graph is a fundamental operation for many graph
algorithms. k-core is commonly used as part of community
detection algorithms [18], as well as for finding dense com-
ponents in graphs [3,5,21], as a filtering step for finding large
cliques (as a k-clique is also a k-1-core), and for large-scale
network visualization [2].

The k-core decomposition of a graph maintains, for each
vertex, the max-k value: The maximum k value for which
a k-core containing the vertex exists. This decomposition
enables one to quickly find the k-core containing a given
vertex for a given k. Algorithms for creating k-core decom-
position of a graph in time linear to the number of edges in
the graph exist [7]. For applications that manage dynamic
graphs, applying such algorithms frequently is prohibitive in
terms of performance and thus requires operating in large
batches. However, the use of large batches takes away the
ability to react to changes quickly—one of the key benefits
of stream processing [31].

In this paper, we develop incremental algorithms for k-
core decomposition of graphs. In particular, we develop
algorithms to update the decomposition as edges are inserted
into and removed from the graph (vertex additions and
removals are trivial extensions). There are a number of
challenges in achieving this. The first is a theoretical one:
determining a small subset of vertices that are guaranteed to
contain all vertices that may have their max-k values changed
as a result of an insertion or removal. The second is a prac-
tical one: finding algorithms that can efficiently update the
max-k values using this subset. Last but not the least, we
have to understand the impact of the graph structure on the
performance of such incremental algorithms.

We address these challenges by developing the first incre-
mental k-core decomposition algorithm for dynamic graph
data, where we efficiently process a small subgraph for each
change. We focus on how to maintain the k-core decom-
position when a single edge is inserted or removed. Single
edge insertion and removal algorithms serve as a fundamental
building block to handle dynamic graphs and can be used to
efficiently process the updates coming in a batch manner. We
develop a number of variations in our algorithm and empiri-

cally show that incremental processing provides a significant
reduction in runtime compared to non-incremental alterna-
tives, reaching 6 orders of magnitude faster solutions for a
graph of size of around 16 million vertices. We showcase the
efficiency of our algorithms on different types of real and
synthetic graphs at varying scales and study the impact of
graph structure on the performance of algorithm variations.

In summary, we make the following major contributions:

– We identify a small subset of vertices that have to be
visited in order to update the max-k values (aka. the k-
core decomposition) in the presence of edge insertions
and deletions (Sect. 3).

– We develop a set of algorithms to update the k-core
decomposition incrementally. To the best of our knowl-
edge, these are the first such incremental algorithms
(Sect. 4).

– We present a comparative experimental study that evalu-
ates the performance of our algorithms on real-world and
synthetic datasets (Sect. 6).

An earlier version of this paper has appeared in the VLDB
2013 conference [28]. This journal paper includes the fol-
lowing additional contributions that are not present in the
conference paper:

– An incremental removal algorithm for incremental k-core
decomposition, which is designed to be the dual of the
traversal algorithm used for insertions (Sect. 4.3.3).

– A generalization of the traversal algorithm, which uses
multihop residential core degrees (RCDs) (Sect. 4.5).

– A generalized RCD maintenance algorithm that can
maintain theRCD values up to any given hop count, under
insertions and removals (“Appendix”).

– Additional evaluation of the incremental k-core decom-
position algorithms, exploring the impact of graph struc-
ture on the optimal hop value for RCD maintenance
(Sect. 6.5).

The rest of this paper is organized as follows. Section 2
gives the background on k-core decomposition of graphs.
Section 3 introduces our theoretical findings that facilitate
incremental k-core decomposition. Section 4 introduces sev-
eral new algorithms for incrementalmaintenance of a graph’s
k-core decomposition. Section 5 provides discussions on
implementation details. Section 6 gives a detailed experi-
mental evaluation of our algorithms. Section 7 reports related
work, and Sect. 8 concludes the paper. “Appendix” includes
some of the pseudocodes and their detailed explanation.
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2 Background

In this work, we focus on incremental maintenance of k-
core decomposition of large networks modeled as undirected
and unweighted graphs. Here, we start by giving several def-
initions that are used throughout the paper as part of our
theorems and proofs.

Let G be an undirected and unweighted graph. For a
vertex-induced subgraph H ⊆ G, δ(H) denotes the min-
imum degree of H , defined as the minimum number of
neighbors a vertex in H has. That is to say, δ(H) =
min{δH (u): u ∈ H}, where δH (u) denotes the number of
neighbors of a vertex u in H . As a result, any vertex in H is
adjacent to at least δ(H) other vertices in H , and there is no
other value larger than δ(H) that satisfies this property.

Definition 1 If H is a connected graph with δ(H) ≥ k, we
say that H is a seed k-core of G. Additionally, if H is maxi-
mal, i.e., �H ′ s.t. H ⊂ H ′ ∧ H ′ is a seed k-core ofG, then
we say that H is a k-core of G.

Observation 1 Let H be a k-core that contains the vertex
u. Then, H is unique in the sense that there can be no other
k-core that contains u.

k-cores cannot overlap partially, i.e., intersection of two k-
cores is either empty or the k-core with smaller size. In other
words, k-cores form a laminar family, which is a set system
where all pairwise intersections are trivial (either empty or
contains one of the sets). This is due to the maximality prin-
ciple, pointed in Definition 1. We denote the unique k-core
that contains u as Hu

k .

Definition 2 The max-k-core associated with a vertex u,
denoted by Hu , is the k-core that contains u and has the
largest k = δ(Hu), i.e.,�H s.t. u ∈ H ∧ H is an l-core∧ l >

k. The max-k-core number of u (also called the K value of
u), denoted by K (u), is defined as K (u) = δ(Hu).

Observation 2 If H is a k-core in graph G, then there exists
one and only one (k − 1)-core H ′ ⊇ H in G, since k-cores
form a laminar family.

Observation 3 A vertex u with K (u) = k takes part in cores
Hu
k ⊆ Hu

k−1 ⊆ Hu
k−2, . . . ,⊆ Hu

1 by Observation 2.

Building the core decomposition of a graph G is basically
the same problem as finding the set of max-k-cores of all
vertices in G. The following corollary shows that given the
K values of all vertices, k-core of any vertex can be found
for any k.

Corollary 1 Given K (v) for all vertices v ∈ G and assum-
ing K (u) ≥ k, the unique k-core of a vertex u, denoted by Hu

k ,
consists of u as well as any vertex w that has K (w) ≥ k and

Algorithm 1: findKCoreDecomposition(G(V, E))

Data: G: the graph
Compute δG(v) (i.e., the degree) for all vertices v ∈ V
Order the set of vertices v ∈ V in non-decreasing order of δG(v)

for each v ∈ V do
K (v) ← δG(v)

for each (v,w) ∈ E do
if δG(w) > δG(v) then

δG(w) ← δG(w) − 1
Reorder the rest of V accordingly

return K

Fig. 1 Illustration of k-core concepts. The numbers adjacent to vertices
are K values

is reachable from u via a path P such that ∀v∈P , K (v) ≥ k.
The unique k-core Hu

k can be found by traversing G start-
ing at u and including each traversed vertex w to Hu

k if
K (w) ≥ k.

Intuitively, in Corollary 1, all the traversed vertices are in Hu
k

due to maximality property of k-cores, and all the vertices in
Hu
k are traversed due to the connectivity property of k-cores,

both based on Definition 1. Thus, the problem of maintain-
ing the k-core decomposition of a graph is equivalent to the
problem of maintaining its K values, by Corollary 1. The
algorithm for constructing the k-core decomposition of a
graph from scratch is based on the following property [29]:
Tofind the k-cores of a graph, all vertices of degree less than k
and their adjacent edges are recursively deleted. We provide
its pseudocode in Algorithm 1 for completeness.

Corollary 1 is useful to model the incremental k-core
decomposition problem as the maintenance of K values,
which is a simple integer for each vertex. We build our the-
oretical findings and algorithms based on this, and deal with
vertices instead of subgraphs, which is more convenient and
also efficient to work on.

Figure 1 illustrates concepts related to k-core decomposi-
tion. In the sample graph, we see the K values of the vertices
printed next to them, which is simply the k-core decomposi-
tion of the graph. We see a vertex labeled u. A seed 2-core
that contains u is also shown. Moreover, the entire graph is
the 2-core of u, i.e., G = Hu

2 . The figure further shows a
3-core of u, that is Hu

3 , which happens to be its max-k-core,
that is Hu

3 = Hu . Note that Hu
3 ⊆ Hu

2 .
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3 Theoretical findings

In this section, we introduce our theoretical findings. These
results facilitate incremental maintenance of the k-core
decomposition of a graph. Since our incremental algorithms
rely on finding a subgraph and processing it, we prove a
number of theorems that can be used to find a small sub-
graph that is guaranteed to contain all the vertices whose K
values change after an update.

Corollary 2 Let G = (V, E) be a graph and u, v ∈ V . If
there is an edge e ∈ E between u and v and if K (u) > K (v),
then e /∈ Hu and e ∈ Hv , by Corollary 1.

In Corollary 1, it is stated for a vertex u, Hu is found by
traversing the vertices with greater or equal K values. Thus,
for two connected vertices u and v, if K (u) > K (v), then
Hu does not include v (and the edge between u and v).

Theorem 1 If an edge is inserted to or removed from graph
G = (V, E), then the K value of vertex u ∈ V can change
by at most 1.

Proof Wefirst prove the insertion case. Assume that after the
insertion of edge e, K (u) = m is increased by n to K+(u) =
m + n, where n > 1. Let us denote the max-k-core of u after
the insertion as Hu+, and before insertion as Hu . It must be
true that e ∈ Hu+, as otherwise Hu+ forms a seed m + n-core
before the insertion aswell, which is a contradiction. Let Z =
Hu+\e. If Z is not disconnected, then itmust formanm+n−1-
core, since the degree of its vertices can decrease by at most 1
due to the removal of a single edge. This leads to a contradic-
tion sincem + n− 1 > m and Hu is maximal. In the discon-
nected case, each one of the resulting two connected compo-
nents must be a seedm+n−1-core as well, since the degree
of a vertex can reduce by at most one in each component.
Furthermore, since e is the only edge between the two discon-
nected components, the vertices must still have at least m +
n−1 neighbors in their respective components. One of these
components must contain u, which is again a contradiction.

Next, we prove the removal case. Assume K (u) is
decreased by n after edge e is removed, where n > 1. Adding
e back to the graph increases the K value of u by n, which
is not possible, as shown in the first part of the proof, i.e., a
contradiction.

Theorem 2 If an edge (u, v) is inserted to or removed from
G = (V, E), where u, v ∈ V and K (u) < K (v), then K (v)

cannot change.

Proof Wefirst prove the insertion case. Assume that K (v) =
n increases and so becomes K+(v) = n + 1 by Theorem 1.
Then, we have e ∈ Hv+ and consequently u ∈ Hv+. However,
K (u) < n before insertion and K+(u) can be at most n after

insertion (Theorem 1), implying that u cannot be in a seed
n + 1-core, i.e., a contradiction.

For the removal case, assume that K (v) = n decreases and
becomes K−(v) = n−1 by Theorem 1. Inserting (u, v) back
to the graph should increase the K value ofv to K (v) = n.We
must also have e ∈ Hv and thus u ∈ Hv . But this is a contra-
diction due to Corollary 2, since K (u) < K (v) and u /∈ Hv .

From Theorem 2, we can say that when an edge (u, v) is
inserted into or removed from the graph, K (u) can change
by at most 1 if K (u) ≤ K (v), or stay the same otherwise.

Theorem 3 If an edge (u, v) is inserted into G = (V, E),
where u, v ∈ V , then all of the vertices whose K values have
changed should formaconnected subgraphG

′ ⊂ G ∪ (u, v).
Similarly, if an edge (u, v) is removed from G = (V, E),
where u, v ∈ V , then all the vertices whose K values have
changed should form a connected subgraph G

′′ ⊂ G.

Proof We prove the insertion case first. Assume that the
updated vertices do not form a connected subgraph. Then,
there are at least 2 non-overlapping subgraphs of updated
vertices, S1 and S2. Since there is only one edge insertion,
only one of these subgraphs, say S1, can have a vertex who
gets a new neighbor in G. Then, S2 does not have any vertex
that has its degree changed. This is a contradiction, because
if a vertex has its K value increased, then it must have either
gained a new neighbor (increased degree) or at least one of
its existing neighbors must have its K value increased (Note
that while it is necessary to satisfy one of these conditions,
neither of them are sufficient. In other words, a vertex that
has gained a new neighbor may not increase its K value, and
a vertex with a neighbor whose K value has increased may
not increase its K value). Applying this recursively, we must
reach a vertex whose K value is increased due to gaining a
new neighbor. However, for S2, there is no such vertex since
only reachable vertices whose K values have increased are
in S2, and none of them have their degrees changed.

For the removal case, assume that the updated vertices do
not form a connected subgraph. Then, there are at least 2
non-overlapping subgraphs of updated vertices, S1 and S2.
Since there is only one edge removal, only one of these sub-
graphs, say S1, can have a vertex who loses a neighbor in G.
Then, S2 does not have any vertex that has its degree changed.
This is a contradiction, because if a vertex has its K value
decreased, then it must have either lost a neighbor (decreased
degree) or at least one of its existing neighbors must have its
K value decreased. Applying this recursively, we must reach
a vertex whose K value is decreased due to losing an existing
neighbor. However, for S2, there is no such vertex since only
vertices that can be reached andwhose K value has decreased
are in S2, and none of them have their degrees changed.

Theorem 4 Given a graph G = (V, E), if an edge (u, v) is
inserted (removed) and K (u) ≤ K (v), then only the vertices
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w ∈ V that have K (w) = K (u) and are reachable from u
via a path that consists of vertices with K values equal to
K (u),may have their K values incremented (decremented).

Proof Before looking at the insertion and removal, we note
that if the K value of any vertex in G increases (decreases)
due to the insertion (removal) of (u, v), then K (u)must have
increased (decreased) aswell. This follows from the recursive
argument in Theorem 3, as otherwise none of the vertices that
have their K values changed will have their degree changed.

For the insertion case, we first prove that for a vertex w ∈
V such that K (w) = K (u), K (w) = m cannot change. We
consider two cases: (i) where K (w) > K (u) and (ii) where
K (w) < K (u).

For the K (w) > K (u) case, assume K (w) increases
(K+(w) = m+1). We must have (u, v) ∈ Hw+ , as otherwise
Hw would not be a max-m-core before insertion. However,
this is not possible since K+(w) > K+(u), i.e., a contradic-
tion due to Corollary 1.

For the K (w) < K (u) case, assume K (w) increases
(K+(w) = m + 1). Then, we have (u, v) ∈ Hw+ , as oth-
erwise Hw would not be a max-m-core before insertion.
We know that m + 1 ≤ K (u) ≤ K (v), which implies
K+(w) < K+(u) ≤ K+(v). Removing (u, v) from Hw+
decreases the degrees of u and v by one, which can reduce
their K value to at least m + 1. This means Hw+ \(u, v) is a
seedm+1-core before the insertion, which is a contradiction.

We proved that only vertices with K (w) = K (u), say
L ⊆ V , may have their K values incremented. Furthermore,
we know that all those vertices form a connected subgraph
(Theorem 3). Since we have u ∈ L as well, the insertion
proof is complete.

We use similar arguments for the removal case. Again, we
consider two cases.

For the K (w) < K (u) case, assume K (w) decreases
(K−(w) = m − 1). Say that we insert (u, v) back into the
graph. The K value of w cannot increase in this case since
K−(w) < K−(u), and this is a contradiction, as shown in
insertion part above.

For the K (w) > K (u) case, assume K (w) decreases
(K−(w) = m−1).We know that (u, v) /∈ Hw since u /∈ Hw

due to K (u) < K (w). Thus, Hw is still an m-core after the
removal, creating a contradiction.

We proved that only the vertices that have K (w) = K (u),
say L ⊆ V , may have their K values decremented. Further-
more, by Theorem 3, we know that all those vertices form
a connected subgraph. Since we have u ∈ L , the removal
proof is complete.

Summary In this section, we showed that if an edge (u, v)

is inserted into/removed from a graph, then the K value of
u can change only if K (u) ≤ K (v). Let us call u the root.
In case K (u) = K (v), then either u or v is taken as the root.

In addition, we showed that any vertex that may have its K
value updated must have a K value that is equal to that of
the root, and must be connected to the root via a path that
contains only the vertices that have the same K value. We
rely on these results in the next section.

4 Incremental algorithms

In this section, we introduce four algorithms to incremen-
tally maintain the K values of vertices when a single edge
is inserted or removed. The subcore (Sect. 4.1) and purecore
(Sect. 4.2) algorithms are basic applications of the theoretical
results given in the previous section, are easy to implement,
and form a baseline for evaluating the performance of the tra-
versal algorithm (Sect. 4.3). The traversal algorithm relies on
additional ideas that aggressively cut the search space, but is
more involved than the earlier two. For the edge insertion
case, we also introduce the generic multihop traversal algo-
rithm (Sect. 4.5), which generalizes the traversal algorithm
to utilize multihop information.

4.1 The subcore algorithm

Our first algorithm for maintaining the K values of vertices
when a single edge is inserted or removed is based on Theo-
rem 4. We define a subgraph, called subcore, as follows:

Definition 3 Given a graphG = (V, E) and a vertex u ∈ V ,
the subcore of u, also denoted as Su , is a set of verticesw ∈ V
that have K (w) = K (u) and are reachable from u via a path
that consists of vertices with their K values equal to K (u).

Given a graphG = (V, E) and the K values of allw ∈ V ,
if an edge (u1, u2) is inserted to E , Algorithm 3 updates the
K values. Similarly, if an edge (u1, u2) is removed from E ,
Algorithm 4 updates the K values. Both algorithmsmake use
of Definition 3.

The basic idea is to locate the subcore of the root ver-
tex and apply a process very similar to Algorithm 1 on the
subcore. Algorithm2 provides the pseudocode for finding the
subcore. To find the subcore, we perform a BFS traversal and
collect all vertices reachable from the root through vertices
having the same K value as the root. During this process, we
also collect the current degree (cd) values for each vertex in
the subcore. In general, we use the current degree of a vertex
throughout the paper to denote its degree in the new k-core
after the edge insertion or removal operation. Depending on
the context, it might be initialized with a different auxiliary
information associated with a vertex. In Algorithm 2, cur-
rent degree of a vertex is used to accumulate the degree of
the vertex in its max-core and used to detect whether a vertex
can change its K value or not. So, the cd of a vertex simply
counts the number of its neighbors with a K value equal to or
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Algorithm 2: findSubcore(G(V, E), K (), u)
Data: G: the graph, K : max-k values, u: the vertex
H(V ′, E ′) ← empty graph; Q ← empty queue
cd[v] = 0; visited[v] = false,∀v ∈ V � Lazy init
k ← K (u) � Remember K value of the root
Q.push(u); visited[u] ← true
while not Q.empty() do

v ← Q.pop(); V ′.push(v)
for each (v,w) ∈ E do

1 if K (w) ≥ k then
cd[v] ← cd[v] + 1
if K (w) = k and not visited[w] then

Q.push(w); E ′.push((v,w))
visited[w] ← true

return H and cd

greater than the K value of the root. Degree of a vertex in its
max-core helps us to eliminate vertices that cannot be part of
a k+1 core, where k is the K value of the root. In particular,
if the degree of a vertex in its max-core is not larger than
k, we can eliminate the vertex from consideration. Once it
is eliminated, it results in decrementing the current degree
values of its neighbors in the subcore and the process can be
repeated. Similar to Algorithm 1, this has to be performed in
non-decreasing order of the current degree values.

Algorithm 3 shows how the subcore and the cd values are
used to update the K values upon an edge insertion.We order
the cd values of the vertices in the subcore in non-decreasing
order. At each step, we pick the unprocessed vertex with the
smallest cd value from the subcore. If it has a cd value less
than or equal to the root’s K value, say k, then it cannot be
part of a k + 1-core. Thus, for each of its neighbors in the
subcore that have a higher cd, we decrement the neighbor’s
cd by 1, since the vertex being processed cannot be part
of a higher core. We reorder the remaining vertices based
on their updated cd values. Otherwise, that is if the current
vertex has a cd value larger than k, all remaining vertices
must also have their cd values larger than k, which means
we can form a seed k+1 core with them.We increment their
K values, completing the insertion.

Time complexity Algorithm 3 has two parts: (1) finding the
subcore and cd values, and (2) processing them in a loop
to find the new K values. In the worst case, regarding (1),
we can end up traversing the entire graph and report it as
the subcore, where all vertices have same K values in the
graph. It will take O(|E |) time. Regarding (2), we do essen-
tially the same thing with Algorithm 1, which has O(|E |)
time complexity. Therefore, the worst-case time complexity
of Algorithm 3 is O(|E |). It is important to note that the
algorithm is heuristic in nature, and we expect the size of the
subcore to be much smaller than O(|E |) in practice, which
we verify in our experimental evaluation.

Algorithm 3: SUBCORE:
insertEdge(G(V, E), K (), u1, u2)
Data: G: the graph, K : max-k values, (u1, u2): inserted edge
r ← u1 � Set the root
if K (u2) < K (u1) then r ← u2
G ← G ∪ (u1, u2) � Add the edge into G
H,cd ← findSubcore(G, K , r ) � Find subcore
� Now, update the K values of the vertices in H
k ← K (r) � Remember K value of the root
Sort cd values in non-decreasing order (using bucket sort)
for each v ∈ H in order do

if cd[v] ≤ k then � Cannot be part of a k+1-core
for each (v,w) ∈ H do

if cd[w] > cd[v] then
cd[w] ← cd[w] − 1
Reorder cd values accordingly

else � All remaining vertices become part of k+1-core
for each w ∈ H do

K (w) ← k + 1
break

Space complexity In the worst case, the largest data structure
used in Algorithm 3 is the graph H to store the output of
findSubcore procedure. As mentioned above, we can end
up traversing the entire graph to report it as a subcore, and
we would need O(|E |) space to store the graph in this case.
Thus, the worst-case space complexity is O(|E |).

Algorithm 4 shows how the subcore and the cd values are
used to update the K values in the case of a removal. Unlike
Algorithm 3, here we need to perform two subcore searches
when the K values of the vertices incident upon the removed
edge are the same, since the removal separates them. Once
we locate the subcore, the process is very similar to that of
the insertion. We pick the unprocessed vertex with the small-
est cd value from the subcore and if it has a cd value less
than the K value of the root, say k, then it cannot be part of a
k-core anymore. As a result, we decrement its K value, and
for each of its neighbors in the subcore that have a higher
cd, we decrement the neighbor’s cd by one, since the vertex
currently being processed cannot be part of a higher core.
After this, we reorder the remaining vertices based on their
cd values. Otherwise, if the current vertex has a cd value
larger than or equal to k, then all remaining vertices must
also have their cd values larger than or equal to k, which
means that we can still form a seed k-core with them. Thus,
we stop processing and complete the removal.

Time complexity Algorithm 4 is quite similar to Algorithm 3
and only slightly differs in the second part, which does not
affect the worst-case time complexity of O(|E |).
Space complexity Just like the Algorithm 3, the worst-case
space complexity is O(|E |), for which the entire graph is
reported as a subcore at the end of findSubcore procedure.
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Algorithm 4: SUBCORE:
removeEdge(G(V, E), K (), u1, u2)
Data: G: the graph, K : max-k values, (u1, u2): removed edge
r ← u1 � Set the root
if K (u2) < K (u1) then r ← u2
G ← G \ (u1, u2) � Remove the edge from G
if K (u1) = K (u2) then

H,cd ← findSubcore(G, K , r ) � Find subcore
else

H1,cd1 ← findSubcore(G, K , u1) � Find subcore of u1
H2,cd2 ← findSubcore(G, K , u2) � Find subcore of u2
H ← H1 ∪ H2; cd ← cd1 ∪ cd2� Now, update the K values of the vertices in H

k ← K (r) � Remember K value of the root
Sort cd values in non-decreasing order (using bucket sort)
for each v ∈ H in order do

if cd[v] < k then � Cannot be part of a k-core anymore
K (v) ← k − 1
for each (w, v) ∈ H do

if cd[w] > cd[v] then
cd[w] ← cd[w] − 1
Reorder cd values accordingly

else break; � All remaining vertices still in a k-core

4.2 The purecore algorithm

In Sect. 4.1, the subcore algorithm relied only on the K values
of the vertices to locate a small subgraph that contains all the
vertices that can have their K values changed. In this section,
we look at the purecore algorithm that takes advantage of
additional information about each vertex, so that a smaller set
of candidate vertices can be located, reducing the overall cost
of the algorithm. For this purpose, we define the maximum-
core degree of a vertex.

Definition 4 The maximum-core degree of a vertex u,
denoted as MCD(u), is defined as the number of u’s neigh-
bors, w, such that K (u) ≤ K (w).

If theMCD value of a vertex is not greater than its K value
and no new adjacent edge is inserted, then it is impossible for
this vertex to increment its K value. This is simply because
the number of neighbor vertices it has in a higher core will
not be sufficient. Therefore, we can use the MCD value to
test whether a vertex can increment its K value or not, upon
a new edge insertion.

Observation 4 For a given graph G = (V, E) and a vertex
u ∈ V,MCD(u) ≥ K (u).

The observation follows simply from the definition of
k-core, sinceMCD(u) < K (u) would mean u cannot partic-
ipate in a k-core with K (u) = k, leading to a contradiction.
Note that MCD(u) is simply an upper bound on K (u).

We reduce the subcore, described in Definition 3, to a
purecore by putting an extra condition regarding MCD val-
ues. The basic idea is that, if a vertex in the subcore does not

have a MCD value greater than the K value of the root, it
means that the vertex does not have enough neighbors that
can participate in a higher core.

Definition 5 Given a graphG = (V, E) and a vertex u ∈ V ,
the purecore of u, denoted as Pu , is the set of vertices w ∈ V
that have K (w) = K (u) and MCD(w) > K (u), and are
reachable from u via a path that consists of vertices with K
values equal to K (u) and MCD values greater than K (u).

Based on Definition 5, we give the following theorem.

Theorem 5 Given a graph G = (V, E), if an edge (u, v) is
inserted and K (u) ≤ K (v), then only the vertices w ∈ Pu
may have their K values incremented.

Proof When an edge (u, v) is inserted to the graph and
K (u) ≤ K (v), then the K value of a vertex w ∈ Su , where
w = u, cannot increment if MCD(w) = K (w). Assume
K (w) = MCD(w) = k and K (w) increments, becom-
ing k + 1. Then, we have the new MCD(w) ≥ k + 1 by
Observation 4. From the initial assumption, we know that
MCD(w) = k, i.e., w have k neighbors whose K values are
greater or equal to k. Even if all those neighbors increment
their K values, the new MCD(w) can be at most k, which
violates Observation 4, a contradiction.

With purecore, the algorithm to update the K values of
vertices, when edge (u, v) is inserted, is the same as Algo-
rithm3, except thatweuse findPurecoreprocedure in place
ofAlgorithm 2 (findSubcore). findPurecore procedure is
same as the findSubcore, except line 1 (of Algorithm 2).
Instead of checking for K (w) ≥ k, findPurecore checks
whether K (w) > k or (K (w) = k andMCD(w) > k). This
is the condition needed to find the purecore of the root, as
defined in Definition 5.

Time complexity The only difference with Algorithm 3 is the
findPurecore procedure used in place of findSubcore.
The worst case for findPurecore happens when we tra-
verse all edges. Note that, for every edge (u, v), we need to
visit all the neighbors of the vertex v in order to compute
MCD(v). This results in O(|E |∗ (|E |/|V |)) = O(|E2|/|V |)
complexity. However, if we can check the MCD value of a
vertex in constant time (which is possible by residential core
degrees, explained in Sect. 4.3.1), total time complexity will
be reduced to O(|E |).
Space complexityAs with Algorithm 3, in the worst case, the
findPurecore procedure can return the entire graph, and
thus, the space complexity is O(|E |).
When an edge (u, v) is removed from the graph and K (u) ≤
K (v), then the K value of any vertex w ∈ Su can potentially
decrement. Note thatMCD(w) can decrease if eitherw loses
a neighbor, which is the case for u, or K value of some
neighbor of w decrements, which is the case for neighbors
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of u when K (u) decrements. As a result, for removal, we do
not rely on the purecore algorithm.

4.3 The traversal algorithm

We now present the traversal algorithm that visits an even
smaller subgraph to update the k-core decomposition. First,
we introduce an optimization to speedup the computation
of the MCD values and then an additional metric to further
scope the search.

4.3.1 Residential core degrees

In Sect. 4.2, we find a smaller set of candidate vertices to be
updated by using more information about each vertex. Using
more information, such as the MCD values, requires more
computation in findPurecore procedure (Sect. 4.2). Thus,
for a vertex u, when the size of Pu is large and close to the
size of Su , findPurecore procedure turns out to be more
expensive than Algorithm 2. To alleviate this problem, we
have two types of auxiliary information constantly reside in
memory. We call these residential core degrees. Concretely,
we maintain theMCD values, introduced in Definition 4, and
the PCD values of vertices defined as follows:

Definition 6 The purecore degree of a vertex u, denoted as
PCD(u), is the number of u’s neighbors, w, such that either
K (u) = K (w) ∧ MCD(w) > K (u) or K (u) < K (w).

For a vertex v, its purecore degree PCD(v) is the number
of neighbors w it has that either has a higher K value than
v or has the same K value but in turn has enough neighbors
to potentially increase its K value (in case an insertion was
made and the K values are to be updated). The PCD value of
a vertex represents its potential number of neighbors in a next
max-core. It is a stronger indicator than its MCD value for
showing eligibility to increase the K value and also useful,
because if PCD(v) ≤ k where k is the K value of the root,
then v cannot increment its K value.

Maintaining the MCD and PCD values of vertices after
each insertion and removal should be done efficiently. In gen-
eral, theMCD value of a vertex is based on the K values of its
neighbors, as seen from Definition 4, and the PCD value of
a vertex is based on the K andMCD values of its neighbors,
as described in Definition 4. Observation 5 gives a rule of
thumb for MCD and PCD maintenance.

Observation 5 For a graph G = (V, E), when the K value
of a vertex u ∈ V changes, the MCD values of vertices u, v

can change, where (u, v) ∈ E. When the K or MCD value
of a vertex u ∈ V changes, the PCD values of vertices v can
change, where (u, v) ∈ E. As a result, when the K value of
a vertex u ∈ V changes, the PCD values of vertices u, v, w

can change, where (u, v), (v,w) ∈ E.

The observation is the direct result of Definitions 4 and 6.
MCD of a vertex u is a function of K (u) and the K values
of its neighbors, say w. If K (u) or any of the K value of a
neighbor w changes, then MCD(u) may change. It implies
that a change in K value of a vertex may change its own
MCD value as well as its neighbors’MCD values. A similar
argument can be said for PCD values. By Definition 6, PCD
of a vertex u is a function of K (u), and K and MCD values
of its neighbors, say w. Therefore, if K (u) or, K or MCD
value of a neighbor w changes, then PCD(u) may change.
This implies that a change in the K value of a vertex may
change its own PCD value as well as its neighbors’ PCD
values. Note that this change may also affectMCD value of a
neighbor, which in turn may affect PCD value of a neighbor
of a neighbor. In summary, the observation says that a K
value update can result in changes in theMCD values within
the 1-hop neighborhood of the vertex, whereas changes in
the PCD values can happen within the 2-hop neighborhood.

Based on Observation 5, when an edge (u, v) is inserted
into or removed fromagraphG = (V, E),wefirst recompute
the MCD value of the root vertex u and the PCD values of
its neighbors. Next, we apply the algorithm to update the K
values of vertices. Last, we do the following two operations
to adjust theMCD and PCD values:

– Recomputing the MCD values of vertices w, x ∈ V for
which K (w) is updated and (w, x) ∈ E .

– Recomputing the PCD values of verticesw, x, y ∈ V for
which K (w) is updated and (w, x), (x, y) ∈ E

Further shortcuts are possible, based on the K and MCD
values of the updated vertices, to minimize the number of
MCD and PCD re-computations. We defer the details to
“Appendix.”

4.3.2 Root-aware edge insertion

So far, in all our incremental algorithms, we first find a sub-
graph and its corresponding cd values by a BFS traversal
(phase 1). In a second phase, we process that subgraph by
reordering the vertices with respect to their cd values and
remove the vertex with the minimum cd at each step. Tra-
versing the subgraph and computing the cd values should be
done prior to the second phase, since we need all the vertex
degrees in the subgraph. Theorem4 points an interesting fact,
saying that if the K value of some vertex changes, then the K
value of at least one extremity of the inserted/removed edge,
named as the root vertex (say u), must change. For the inser-
tion algorithm, this fact suggests a root-aware approach, in
which all vertices know whether the root still has a chance to
change its K value. Additional operations are avoided once
the algorithm detects that root is not going to change its K
values. If PCD(u) ≤ K (u), then u cannot increment its K
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value. This condition implies that there is no chance for the
root to increase its K value.

We realize this root-aware approach by applying a depth-
first search (DFS) with an eviction mechanism, where the
vertices v ∈ V are evicted if PCD(v) ≤ K (v). By doing
that, we combine phases 1 and 2.

The root-aware insertion procedure does not need the cd
values of all the vertices in the subgraph. As a result, we
create the cd values for each vertex on-the-fly during DFS,
avoiding the first phase of our previous algorithms com-
pletely. We leverage the residential core degrees, introduced
in Sect. 4.3.1, to speed up the creation of cd values. On-the-
fly creation of cd values makes the insertion algorithm more
efficient.

Algorithm 5: TRAVERSAL:
insertEdge(G(V, E), K (), MCD(), PCD(), u1, u2)
Data: G: the graph, K : max-k values, MCD: max-core degrees, PCD:

purecore degrees, (u1,u2): inserted edge
r ← u1 � Set the root
if K (u2) < K (u1) then r ← u2
G ← G ∪ (u1, u2) � Add the edge into G

1 prepareRCDs � Prepares MCDs, PCDs of vertices around inserted
edge
� Perform a traversal over vertices that have root’s K value, while
evicting the ones that cannot be a part of a k+1-core

S ← empty stack � To perform DFS
visited[v] = false,∀v ∈ V � To perform DFS (lazy init)
evicted[v] = false,∀v ∈ V � To remember evicted vert. (lazy init)
cd[v] = 0,∀v ∈ V � To find vertices to be evicted (lazy init)
k ← K (r) � Remember the K value of the root

2 cd[r ] ← PCD(r) � Set cd of root
S.push(r ); visited[r ] ← true
while not S.empty() do � Do a DFS traversal

v ← S.pop()
3 if cd[v] > k then � Vertex is currently part of a k+1-core

for each (v,w) ∈ E do
� Neighboring vertex currently part of a k+1-core

4 if K (w) = k and MCD(w) > k and
not visited[w] then

S.push(w); visited[w] ← true
� Use + as cd[w] may be < 0 due to evictions

5 cd[w] ← cd[w] + PCD(w)

6 else � Vertex cannot be part of a k+1-core
if not evicted[v] then � Recursively perform eviction

propagateEviction(G, K ,cd,evicted, k, v)
for each v s.t. visited[v] do � Find visited vertices

if not evicted[v] then � If not evicted as well
K (v) ← K (v) + 1 � The vertex is part of a k+1-core

7 recomputeRCDs � RecomputesMCDs, PCDs of vertices with
updated K values

Algorithm 5 updates the K values of vertices by utiliz-
ing Algorithm 6, when edge (u, v) is inserted into the graph
G = (V, E). We start with prepareRCDs procedure, which
prepares residential core degrees as explained in Sect. 4.3.1.
Then, we do a DFS starting from the root, say r , and at each

Algorithm 6: propagateEviction(G(V, E), K (),cd[],
evicted[], k, v)
Data: G: the graph, K : max-k values, cd: cd values, evicted:

evicted values, k: max-k of root, v: evicted vertex
evicted[v] ← true
for each (v,w) ∈ E do

if K (w) = k then
1 cd[w] ← cd[w] − 1
2 if cd[w] = k and not evicted[w] then

propagateEviction(G, K ,cd,evicted, k, v)

step, we pop the vertex v from the top of the stack and push
some of its neighbors, say w, into the stack, if v and w are
candidates to be in a k+1-core, where k = K (r). If v cannot
be in a k + 1-core, then we mark it as evicted and initiate
a recursive eviction from v. In a recursive eviction, the cd
values of vertices x are decremented, for (v, x) ∈ E and
K (x) = k. If the cd value of x turns out to be equal to k
and x is not already marked as evicted, then we start another
eviction from x . When DFS finishes, we increment the K
values of all vertices that were visited but not evicted. Last,
we adjust the residential core degrees by recomputeRCDs

procedure as discussed in Sect. 4.3.1.

Theorem 6 Algorithm 5 updates the K values of the vertices
upon an edge insertion.

Proof Algorithm 5 combines the first and the second parts of
the findPurecore procedure. In Algorithm 5, we apply two
principles: (1) we only visit the vertices that are in a subset
of the purecore of the root, thanks to line 4 of Algorithm 5
(see Definition 5), and (2) we mark the vertices recursively
as evicted if their PCD values cannot exceed their K value. If
a vertex is evicted, that means it cannot increase its K value,
and we enforce this by line 6 of Algorithm 5 and line 2 of
Algorithm 6. Furthermore, we propagate this eviction mech-
anism recursively by checking the cd value of neighbors.

Proof of (1) is by Theorem 5. Proof of (2) has two parts.
In part (a), when an edge is inserted, if PCD(u) ≤ K (u) for
a vertex u ∈ V , then u cannot increase its K value as shown
in lines labeled 6 and 2 in Algorithms 5 and 6, respectively.
Assume it does and say that k = K (u). Then, after K (u)

increases, u must have at least k + 1 neighbors with greater
or equal K value, by Observation 4. However, at most k
neighbors of u can have their K values greater than or equal
to k after K (u) increases, since PCD(u) ≤ K (u) before
K (u) is increased, i.e., a contradiction. In part (b), we prove
that if PCD(u) ≤ K (u), where u is the visited vertex, then
PCD(w) must be decremented as shown in line labeled 1 in
Algorithm 6, where w is a neighbor of u having K value of
K (u). Assume that PCD(w) is not decremented. Then, u is
supposed to be in the max-core of w, if w increases its K
value. However, u cannot be in the max-core of w, since it
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cannot increase its K value as proved in the first paragraph
of proof, i.e., a contradiction.

We traverse the graph starting from the root and evict some
of the vertices during this process. Non-evicted and traversed
vertices increment their K values at the end of the algorithm.
This is because all visited vertices will have a positive cd
value, and if a visited vertex is not evicted, that means its cd
value is above k (by line 3 of Algorithm 5).

Time complexity Algorithm 5 is basically doing a depth-
first traversal on vertices whose cd values are greater than
the K value of the root, and evicting the vertices whose
cd values are equal to K of the root. As a result, in the
worst case, we will end up traversing the entire graph. pre-
pareRCDs and recomputeRCDs procedures have O(|E |)
time complexities as well. More generic forms of maintain-
ing RCD values are presented in the “Appendix,” and in the
worst case, they will end up traversing the entire graph for
preparing/recomputingRCD values. In total, worst-case time
complexity for Algorithm 5 is again O(|E |).
Space complexityWemaintain two auxiliary arrays, to main-
tainMCD andPCD values, with size O(|V |). Thus, the space
complexity for Algorithm 5 is O(|V |).

4.3.3 Edge removal

Edge removal using the traversal algorithm employs a similar
on-the-fly updating of the cd values. A key difference from
the edge insertion algorithm is that the edge removal relies
on a simple recursion on the vertices whose K values should
be decremented.

The traversal algorithm for edge removal is presented in
Algorithm 7, with the helper Algorithm 8. We start with
preparing residential core degrees as explained in Sect. 4.3.1.
Depending on the equality of K values of the edge extremi-
ties, i.e.,u1 andu2,we apply oneor two recursive propagation
operations to correctly calculate the K values. In the propa-
gation operation, if the cd value of v turns out to be below
its K value (i.e., K needs to be decremented), we perform
a recursive dismissal operation starting from v, which is
given in Algorithm 8. In the recursive dismissal operation,
we decrement K (v) and the cd values of vertices w, where
(v,w) ∈ E, K (w) = k, and k is the K value of the root. If
w gets a smaller cd value than k and K (w) has not decre-
mented yet, thenwe start another recursive dismissal, but this
time from w. When the recursion completes, we adjust the
residential core degrees as discussed in Sect. 4.3.1.

Theorem 7 Algorithm 7 updates the K values of the vertices
upon an edge removal.

Proof Proof relies on Theorem 4 and Observation 4. Algo-
rithm 7 is basically finding the vertices that have the same

Algorithm 7: TRAVERSAL:
removeEdge(G(V, E), K (), MCD(), PCD(), u1, u2)
Data: G: the graph, K : max-k values, MCD: max-core degrees, PCD:

purecore degrees, (u1,u2): removed edge
r ← u1 � Set the root
if K (u2) < K (u1) then r ← u2
G ← G \ (u1, u2) � Remove the edge from G
prepareRCDs � Prepares MCDs, PCDs of vertices around removed
edge
� Perform a DFS traversal over vertices that have root’s K value,
while dismissing the ones that cannot be a part of a k-1-core

visited[v] = false,∀v ∈ V � To perform DFS (lazy init)
dismissed[v] = false,∀v ∈ V � To remember dis. vertices (lazy
init)
cd[v] = 0,∀v ∈ V � To find vertices to be dismissed (lazy init)
k ← K (r) � Remember the K value of the root
if K (u1) = K (u2) then

visited[r ] ← true
1 cd[r ] ← MCD(r)
2 if cd[r ] < k then

propagateDismissal(G, K , MCD,cd,dismissed,

visited, k, r )
else

visited[u1] ← true
3 cd[u1] ← MCD(u1)
4 if cd[u1] < k then

propagateDismissal(G, K , MCD,cd,dismissed,

visited, k, u1)
visited[u2] ← true

5 cd[u2] ← MCD(u2)
6 if not dismissed[u2] and cd[u2] < k then

propagateDismissal(G, K , MCD,cd,dismissed,

visited, k, u2)
recomputeRCDs � RecomputesMCDs, PCDs of vertices with
updated K values

K value as the root (by Theorem 4), detecting the ones
contradicting Observation 4, and decrementing their K val-
ues. Throughout the removal process, we make sure that
the vertices that have the same K value as the root follows
Observation 4. To do that, we maintain current degree (cd)
values of vertices by initializing them via MCD values at
the beginning (lines 1, 3 and 5 of Algorithm 7), increasing
when we first visit (line 1 of Algorithm 8), and decrementing
when K value of a neighbor changes (line 2 of Algorithm 8).
Lines 2, 4, and 6 of Algorithm 7, and line 3 of Algorithm 8
checks ifMCD of a vertex is less than its K value (Observa-
tion 4), and decrements its K value if so.

Time complexity Algorithm 7 is quite similar to Algorithm 5
in that it is a depth-first search traversal on vertices whose cd
values are less than the K value of the root. In the worst case,
we will end up traversing the entire graph. prepareRCDs
and recomputeRCDs procedures have O(|E |) time com-
plexities, and in total, the worst-case time complexity for
Algorithm 7 is O(|E |).
Space complexity Similar to Algorithm 5, we maintain two
auxiliary arrays, for MCD and PCD values, each with size
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Algorithm 8: propagateDismissal(G(V, E), K (),

MCD(),cd,dismissed,visited, k, v)
Data: G: the graph, K : max-k values, MCD: max-core degrees, cd:

cd values, dismissed: dismissed values, visited: visited
values, k: max-k of root, v: dismissed vertex

dismissed[v] ← true
K (v) ← K (v) − 1 � The vertex is part of a k-1-core
for each (v,w) ∈ E do

if K (w) = k then
if not visited[w] then

1 cd[w] ← cd[w] + MCD(w)

visited[v] ← true
2 cd[w] ← cd[w] − 1
3 if cd[w] < k and not dismissed[w] then

propagateDismissal(G, K , MCD,cd,dismissed,

visited, k, w)

O(|V |). The space complexity for Algorithm 7 is O(|V |).
In the removal algorithm, we do not need to use PCD val-
ues. PCD of a vertex gives an estimate about how likely the
K value of a vertex can increase. However, it does not say
anything about the decrease in a K value, since there is no
relationship between K and PCD value of a vertex that can
be used in place of Observation 4.

4.4 Illustrative example

Figure 2 illustrates the subcore, purecore, and traversal algo-
rithms using a sample graph. The edge drawn using a dashed
bold line is the one that is being inserted into the graph. The
vertex shown in black is the root vertex. The graph shows
the K values and theMCD values for each vertex before the
insertion. The set of vertices visited by each one of the sub-
core, purecore, and the traversal algorithms, for the purpose
of updating the K values, is shown in the figure. The subcore
algorithm visits the vertices with K value of 2, which are
reachable from the root. The purecore algorithm visits the
vertices with K value of 2 and MCD value of greater than 2
that are reachable from the root.

The traversal algorithm starts by updating theMCD value
of the root to 5, due to the new edge. Then, DFS starts and
pushes the root to the stack. When the root is popped from
the stack, its two neighbors with (K ,MCD) values of (2, 3)
are pushed to the stack (MCD values greater than K value
of the root, indicating that they can potentially be part of a
larger core). Say that those vertices are x at the top and y at
the bottom in Fig. 2. Based on Definition 6, the cd values of
x and y are updated to 2 since their PCD values are 2. After
that, we move to the next iteration and pop vertex x from the
stack. The cd value of x is 2, which is not greater than the
K value of the root. This means that it cannot participate in
a higher core. As a result, no neighbors of x are visited and
propagateEviction is initiated for x . In propagateEvic-
tion, x is evicted and the cd values of all neighbors of x are

Fig. 2 Illustration of the vertices visited by the subcore, purecore, and
the traversal algorithms

decremented, since all neighbors have a K value of 2 (same
as root). Furthermore, propagateEviction is not initiated
for any neighbor of x , since the cd value of the root (one
of x’s neighbors) becomes 4, and the cd value of other two
neighbors of x becomes −1, all of which are different than
the K value of the root.

In the next step, the DFS pops vertex y from the stack.
Similar to x , the cd value of y is 2, which is not greater
than the K value of the root. As a result, no neighbors of
y are visited and propagateEviction is initiated for y. In
propagateEviction, y is evicted and the cd values of all
neighbors of y are decremented, since they have a K value
of 2 (same as root). Furthermore, propagateEviction is
not initiated for any neighbor of y, since the cd value of y’s
neighbors differs from the K value of the root. After these
operations, the stack is empty, and the only vertex that is
visited but not evicted is the root. As a result, the K value of
the root is incremented. As the last step, theMCD and PCD
values of vertices are updated as explained in Sect. 4.3.1.

We can easily see that the set of vertices visited by the sub-
core algorithm is larger than that of the purecore algorithm,
whereas the traversal algorithm visits the smallest number of
vertices compared to the other two.

4.5 Generic multihop traversal algorithm for insertion

The traversal algorithm that handles edge insertions, pre-
sented in Sect. 4.3, makes use of the MCD and PCD values
of the vertices. MCD value of a vertex contains information
from the 1-hop neighborhood, whereas PCD value contains
information from the 2-hop neighborhood. However, the
traversal algorithm can be generalized to utilize multihop
information (greater than 2-hops). Higher hop counts enable
faster detection of vertices that cannot appear in a larger core,
yet increase the time spent to maintain the residential core
degrees.As such, it involves a trade-off. Yet, in order to inves-
tigate this trade-off, we need to support using information
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Fig. 3 Illustration of RCD values of the vertices in the sample graph

from arbitrary number of hops. Accordingly, in this section,
we present the generic traversal algorithm for edge insertion,
which leverages the multihop residential information of ver-
tices for potentially faster calculation of K values.

First, we present the generic definition for n-hop residen-
tial core degrees.

Definition 7 The n-core degree of a vertex u, denoted as
RCD(u, n) where n ≥ 0, is defined in terms of the num-
ber of u’s neighbors, w, such that either K (u) = K (w) ∧
RCD(w, n − 1) > K (u) or K (u) < K (w). When n =
0,RCD(·, n) of a vertex is defined to be ∞.

For a vertex v, its n-core degree is defined recursively. It
is simply the number of neighborsw it has with either higher
K value than v’s K value or has equal K value and higher
(n − 1)-core degree than v’s K value. With higher values of
n, RCD(·, n) value of a vertex becomes a stronger indicator
of eligibility to increase its K value. Value of n implies the
extent of neighborhood information being used. For n = 1,
only the information on 1-hop neighbors is used, and for
n = 2, the information on hop-1 and hop-2 neighbors is
utilized. Note that, when n = 1,RCD(·, n) definition reduces
toMCD (maximum-core degree), given inDefinition 4. Also,
when n = 2, it has the same definition as the PCD (pure-core
degree), given in Definition 6.

Observation 6 For a given graph G = (V, E) and a vertex
u ∈ V,RCD(u, n) ≥ RCD(u, n + 1) for n ≥ 0.

The observation is a direct result of Definition 7. Increas-
ing n values decreases the number of neighbors that can
satisfy K (u) = K (w) and RCD(w, n − 1) > K (u).

Figure 3 shows an example graph to illustrate the
RCD(u, n) definition. K ,RCD(·, 1) (MCD),RCD(·, 2)
(PCD), and RCD(·, 3) values of vertices are shown next to
them. For example, the RCD(·, 3) value of the black vertex is
computed as follows: There are three neighbors (vertices 2, 3,
and4)with a K value of 5,which is greater than the K value of
black vertex. The RCD(·, 3) value is then incremented by 3.

Vertices 1, 7, and 8 have smaller K values than the black ver-
tex; thus, they are not counted. The K value of vertices 5 and
6 is equal to the K value of the black vertex, and therefore, we
check whether their RCD(·, 2) values are greater than their
K values. However, it is not the case, since RCD(·, 2) value
of both vertices is 3 and both vertices have a K value of 4.
As a result, RCD(·, 3) value of the black vertex is set to 3.

The generalized traversal algorithm for insertion, Mul-

tihopTraversalInsertEdge, which utilizes the multihop
information based on a given hop distance n (where n > 1),
is quite similar to Algorithm 5. The main difference in the
multihop traversal algorithm is that we use RCD(·, n) values
instead of PCD values and RCD(·, n − 1) values in place of
MCD values. Differences between Algorithm 5 andMulti-

hopTraversalInsertEdge are on lines 1, 2, 4, 5, and 7 (of
Algorithm 5).

Instead of lines 1 and 7, we use multihopPrepareRCDs
Insertion and multihopRecomputeRCDs procedures,
respectively, for the generalized version of RCD mainte-
nance for multihop residential core degrees. The details of
generalized RCD maintenance are given in “Appendix.” In
lines 2, 4, and 5, RCD values of hop n are used to reduce
the traversal space. We use RCD(r, n) in place of PCD(r)
in line 2, where n is the number of hops and parameter of
the algorithm. Likewise, RCD(w, n − 1) is put in place of
MCD(w) in line 4 and RCD(w, n) to replace PCD(w) in
line 5. As stated earlier, RCDs with increasing hop values
become stronger indicators of whether the K value of a ver-
texwill increase or not. ByObservation 6,wemay have lower
values for RCD(·, n) for higher n values. Keeping RCD(·, n)

values low will help us to terminate MultihopTraversal

InsertEdge algorithm earlier, due to the condition in line 3.

Time complexity The only difference between Multihop-

TraversalInsertEdge and Algorithm 5 is the use of
RCD(·, n) values in place of MCD and PCD, and the
generic multihopPrepareRCDsInsertion and multiho-

pRecomputeRCDs procedures. Using RCD(·, n) values
does not bring any additional complexity. The generic ver-
sions for preparing and recomputing RCDs has O(h · |E |)
complexity, and since h (number of hops) is small, total
worst-case complexity of insertion is O(|E |).
Space complexity Different than Algorithm 5, we maintain h
number of auxiliary arrays, for RCD values, where each has
a size of O(|V |). Thus, the space complexity for Algorithm 7
is O(h · |V |). However, since h is small, the overall space
complexity is given as O(|V |).
We expect that the traversal algorithm will explore a smaller
space with higher n values. However, higher n values result
in increasedRCDmaintenance cost.We experimentally eval-
uated our multihop traversal algorithm for different n values
to find the optimal hop value. As discussed later in Sect. 6.5,
the optimal value changes based on the dataset.
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5 Implementation

In this section, we provide details about efficient implemen-
tations of the incremental algorithms presented. In particular,
we discuss two main issues: the lazy initialization of arrays
used in the algorithms, and the repeated sorting of the cd
(current degree) arrays.

5.1 Lazy arrays

The non-incremental algorithms for computing the k-core
decomposition perform work that is proportional to the size
of the graph. As a result, our incremental algorithms should
avoid any operation that requires work in the order of the
size of the graph. However, several of our algorithms include
arrays like visited, evicted,cd that are initialized to
a default value and accessed using vertex indices. For these,
we use lazy arrays to avoid allocations and initializations in
the order of the graph size.

A lazy array employs a hash map-based data structure to
implement a sparse array. For a given vertex, if its value is
not currently being stored in the hash map, it is assumed to
have the designated default value. When a different value for
the vertex needs to be stored, the entry for it is created in the
hash map.

Since hash maps provide constant lookup time, using lazy
arrays achieves significant speedup when the number of ver-
tices visited by the incremental algorithms is smaller than the
graph size. On the other hand, when the number of vertices
visited gets large, relative to the graph size, lazy arrays start
performing worse, since the constant overhead of accessing
a data item in a hash map is significantly higher than that
of regular arrays. We checked the existing implementations
for hash maps and used dense_hash_map library1 for better
performance.

Given that our algorithms locate a small subset of vertices
for updating the k-core decomposition of a graph, the use of
lazy arrays is almost always beneficial. For graphs that have
very large subcores, relative to the graph size (whichwe show
to be an uncommon occurrence in practice), an implemen-
tation of lazy arrays that switches to a dense representation
when the occupation percentage of the array gets larger can
be an effective solution, even though we do not implement
that variation in this study.

5.2 Bucket sort

Several of our algorithms require reordering the set of
unprocessed vertices in a subgraph (such as a subcore or
a purecore) based on their cd values. In the worst case, this
subgraph could be as large as the graph itself (again, this is

1 https://github.com/sparsehash/sparsehash.

uncommon in real-world graphs). To perform this re-sorting
efficiently, we use bucket sort. Note that the cd values have
a very small range, and thus bucket sort not only provides
O(N ) sort time for the initial sort (where N is the subcore or
purecore size), but it also enables O(1) updateswhen a vertex
changes its cd value (in our case, the values only decrease).
We use a bucket data structure that relies on linked lists for
storing its bucket contents and on a hash map to quickly
locate the link list entry of any given vertex.

6 Experimental evaluation

In this section, we evaluate how the proposed algorithms
behave under different scenarios. The first set of experiments
shows the scalability of our best performing algorithm by
studying its runtime performance as the size of the synthetic
datasets increases. The second set of experiments compares
the performance of our incremental algorithms with respect
to each other on real datasets. The third experiment investi-
gates the performance variation depending on the K values
of u and v, when an edge (u, v) is inserted/removed. The
last set of experiments examines the performance trade-offs
associated with the multihop traversal insertion and generic
RCD maintenance algorithms.

Our algorithms are implemented in C++ and compiled
with gcc 4.4.4 at –O2 optimization level. All experi-
ments are executed sequentially on a Linux operating system
running on a machine with two Intel Xeon E5520 2.27GHz
CPUs, with 48GB of RAM.

6.1 Datasets

Our dataset includes synthetic and real-world graphs. For
synthetic graphs, we use the SNAP library [30] to gen-
erate networks following three different models. The first
is the Erdős–Renyi (ER) model, which generates random
graphs [15]. The second is the Barabasi–Albert (BA) pref-
erential attachment model [6], which follows a power
law for the vertex degree distributions. The third model,
generated with SNAP’s R-MAT generator [9], follows a
power law vertex degree distribution and also exhibits
small-world properties. We set the partition probabilities as
[0.45, 0.25, 0.20, 0.10], to approximate the k-core distribu-
tion of real citation graphs in our dataset. For all synthetic
graphs, we specify the average degree as 8 so that different
synthetic graphs with same number of vertices also have the
same number of edges.

Figures 4 and 5 show the cumulative distribution of K
values and purecore sizes (i.e., number of edges of the
purecore subgraph of each vertex in the graph) for the syn-
thetic datasets with 224 vertices. For a graph G = (V, E),
we calculate the purecore of each vertex u ∈ V by using
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Fig. 4 Cumulative K value distribution for synthetic graphs

Fig. 5 Cumulative purecore size distribution for synthetic graphs

findPurecore procedure, explained in Sect. 4.2. These fig-
ures reveal the structure of the generated graphs and how it
impacts the incremental k-core decomposition performance.
The K value distribution is an indication of the connectiv-
ity of the graph, while the purecore size is an indication of
the potential runtime of our incremental algorithms when an
edge incident upon a given vertex is inserted/removed.

As shown inFig. 4, the graphbasedon theBarabasi–Albert
model (BA_24) has 100%of its verticeswith K = 4. In addi-
tion, all of its vertices result in a purecore size of over 100
million edges. These properties of the BA graphs are due to
the graphgeneration algorithmof theBAmodel,where newly
inserted edges are likely to connect high-degree vertices. As
we will see shortly, real-world graphs do not follow such
properties, and the figure shows that the BA model is very
poor in approximating real-world graphs in terms of the K
value distribution. The RMAT-generated graph (RMAT_24)
has nearly 60% of its vertices with very low K values. As
the K value increases, the percentage of vertices with that K

value decreases. Furthermore, 98% of its vertices have very
small purecore sizes. The ER-generated graph (ER_24) has
K values up to 6, and as the K value increases, the percent-
age of vertices with that K value also increases. The latter
behavior is unlike the RMAT-generated graph. As we will
see shortly, most real-world graphs of interest behave more
closely to the RMAT-generated graphs with respect to their
K value distribution.

The real graphs we use are from the 10th DIMACS Graph
Partitioning and Graph Clustering Implementation Chal-
lenge repository [11] and include Internet router level and
European domain computer network graphs (caidaRouter-
Level and eu-2005), co-author and citation network graphs
(citationCiteseer, coAuthorsCiteseer, coAuthorsDBLP,
coPapersCiteseer), condensed matter collaboration network
graphs (cond-mat), power grid network graphs (power), and
protein interaction network graphs (protein interaction 1).
Table 1 provides the details about each used graph, including
their vertex and edge set size,maximumand average degrees,
and their maximum k value. All graphs are undirected.

Figure 6 shows the K value distribution for all graphs in
Table 1. The figure shows that the vertices of both coPaper-
sCiteseer and eu-2005 have highly variant K values. Figure 7
shows the purecore size distribution for our real datasets.
The data indicate that all of the graphs have at least 80% of
their vertices with corresponding purecore sizes of less than
100. This is an indication that our incremental algorithms are
expected to perform well on these graphs.

As all our graphs are originally static, we emulate an incre-
mental algorithm by considering that the whole set of edges
and vertices constitutes a sliding window snapshot. For eval-
uating algorithm execution,we first evict a randomedge from
the current graph in the window. This emulates the behavior
of a full sliding window, which must open space for inserting
a new data item. We then insert a new edge between two ran-
dom vertices. We also evaluated worst-case execution times
by inserting and removing edges from vertices that have top
purecore sizes. Such results had similar trends as the ran-
dom insertion case and are omitted for brevity. Note that we
do not assume any specific data distribution with respect to
which edges get inserted or deleted. In addition, we make no
assumptions regarding edge arrival rates. Instead, we eval-
uate the performance of our algorithms by determining the
maximum update rate they support. For all experiments, we
remove a randomly selected edge from the graph, and then
insert the same edge tomake a fair comparison between inser-
tion and removal behavior. We repeat these removals and
insertions 500 times.

6.2 Scalability

In this experiment, we evaluate the performance of the tra-
versal algorithm (Sect. 4.3) as the size of the synthetic graphs
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Table 1 Real-world graph datasets and their properties

Graph file Number of vertices Number of edges Maximum degree Average degree Max k

caidaRouterLevel 192,244 609,066 1071 6.336 32

eu-2005 862,664 16,138,468 68,963 37.415 388

citationCiteseer 268,495 1,156,647 1318 8.616 15

coAuthorsCiteseer 227,320 814,134 1372 7.163 86

coAuthorsDBLP 299,067 977,676 336 6.538 114

coPapersCiteseer 434,102 16,036,720 1188 73.885 844

cond-mat 16,726 47,594 107 5.691 17

power 4941 6594 19 2.669 5

protein interaction 1 9673 37,081 270 7.667 14

Fig. 6 Cumulative K value distribution for real-world graphs

Fig. 7 Cumulative purecore size distribution for real-world graphs

increase. We first report relative throughput numbers, which
are obtained by comparing the traversal runtimes with our
baseline—the non-incremental version of k-core decomposi-
tion (Algorithm 1)—and then present the update rates, which
show the number of edge removals/insertions processed per

Fig. 8 Relative throughput of incremental insertion and removal algo-
rithms for synthetic graphs when varying the graph size from 215 to
224. Relative throughput is the ratio of the non-incremental algorithm
runtime to the given incremental algorithm runtime. Removal scales
better than insertion, reaching around 106 relative throughput

second. Testing the algorithm under different graph sizes
emulates the scenario where an incremental algorithm uses
different sliding window sizes.

Figure 8 shows the relative throughput of our incremen-
tal insertion and removal algorithms when the number of
vertices from the graph ranges from 215 to 224. For the
insertion algorithm, the RMAT graph shows the best scal-
ability, with relative throughputs ranging from 1865× to
2,624,690× (6 order of magnitude). This drastic relative
throughput is because the K values of the vertices in the
graph have high variability and majority of the vertices have
very small purecore sizes, as shown in Figs. 4 and 5 for the
RMAT graph with size 224. Such factors result in very fast
insertions. The insertion of edges into the graph following the
Erdős–Renyi model (ER) shows relative throughputs rang-
ing from 63× to 53,968×. Although it also scales well with
the size of the graph, the relative throughputs are not as high
as the ones observed for the RMAT graph. This behavior
can be explained by the fact that the ER graph has a more
uniform K value distribution when compared to the RMAT
graph. Furthermore, when the graph has size of 224, over
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Fig. 9 Update rates of incremental insertion and removal algorithms
for synthetic graphs when varying the graph size from 215 to 224

40% of its insertions may result in touching purecores of
over 1 million edges. When inserting edges into graph based
on the Barabasi–Albert model (BA), our incremental algo-
rithm is only slightly better than the non-incremental one.
As we discussed earlier, in these graphs all vertices have the
same K value initially, resulting in subcore sizes that are
almost equal to the graph size. In this case, the incremental
algorithm does not provide much benefit on top of the base
one, yet brings additional computation overheads (such as
due to lazy arrays). As we will show shortly, this nature of
the BA graphs is not found in real-world graphs.

The removal algorithm scales for all three synthetic
graphs, where the relative throughput ranges from 259× to
1,321,200×. For the ER and BA graphs, the removal algo-
rithm scales better than the insertion one because it has much
lower cost (see Sect. 4.3). At large scales, we notice that the
use of incremental algorithms becomes even more critical,
since the cost of the baseline is linear in the size of the graph.

The scalability experiments indicate how good our incre-
mental algorithm can perform for different graph sizes when
there are k-core decomposition queries (read queries) inter-
spersed with edge insertion and removal (write queries). An
example scenario is when the updates are coming in a batch,
and the k-core decomposition is requested after each batch,
we say b =write/read, where b is the batch size. Taking the
RMAT graph with size of 224 vertices as an example, we
can see that if the write/read ratio (batch size) is less than
1,972,945 (the average relative throughput of one removal
and one insertion), it is better to use the incremental algo-
rithm than to compute the k-core decomposition from scratch
after inserting new edges and removing the oldest ones from
the graph (sliding window scenario).

Figure 9 shows the update rates, i.e., number of edges
processed per second, for our incremental insertion and
removal algorithms when the number of vertices in the graph
ranges from 215 to 224. For RMAT graphs, both insertion and
removal rates reach up to 205,000 and 87,000 updates/sec,

Fig. 10 Subcore algorithm relative throughput for real datasets when
compared to the baseline. Our incremental algorithm runs up to
14,000× faster than the non-incremental algorithm

and more importantly, update rates do not change when the
graph size increases. ER graphs have lower update rates for
both insertion and removal. Removal rates for ER graphs
stay stable as the graph size increases and insertion rates
only decrease by a factor of 3 (from 4478 to 1867) when
the graph size increases from 215 to 224. For BA graphs,
update rates for removal decreases from 33,547 to 25,222
when the graph size increases. Insertion rate has a similar
decreasing behavior with the graph size. However, the rates
are lower—starting from 1809 and decreasing to 62 when
the graph size gets bigger. The decreasing trend for the BA
graphs is due to the large purecore sizes that are proportional
to the graph size. Again, we will show that real-world graphs
do not exhibit this behavior.

6.3 Performance comparison

In this experiment, we analyze how our three incremental
algorithms perform when processing one edge removal and
one edge insertion (i.e., one sliding window operation) on
the real datasets described in Table 1. This helps us to see
whether the algorithm that is expected to give the best results,
traversal, shows the best performance for all the real datasets
we have.

Figure 10 shows the performance of the subcore algorithm
(Sect. 4.1) considering the average time taken by one graph
update. The performance is shown in terms of the relative
throughput provided by the incremental algorithm compared
to the non-incremental one. The relative throughputs vary
from6.2× to 14,000×. The datasets inwhich the incremental
algorithm performs the best are the eu-2005 and coPaper-
sCiteseer. Similar to the results obtained in the synthetic
graphs, the performance of the subcore algorithm benefits
from the high variability in the K value distribution of the
graph. The dataset in which the subcore algorithm performs
the worst is power. This is because 63.19% of the vertices
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Fig. 11 Average update time comparison of incremental algorithms
when processing real datasets. Times are normalized by the average
update time of the subcore algorithm. Traversal algorithm shows the
best performance for all datasets

in the power graph have the same K value, yielding large
subcore sizes.

Figure 11 shows the average update time of each algorithm
normalized by the update time of the subcore algorithm. Each
group of three columns shows the results for a given dataset.
For each group, the results are displayed in the following
order: subcore (Sect. 4.1), purecore (Sect. 4.2), and traver-
sal (with residential core degrees) (Sect. 4.3). The stacked
columns represent the update time attributed to the removal
(bottom) and insertion operations (top).

The results show that the purecore algorithm can perform
worse than the subcore one for some datasets (eu-2005) even
though the purecore of a vertex is always smaller than or
equal to the subcore of a vertex. This is due to the additional
work performed to locate a smaller subgraph. This additional
work is not always worth it if the purecore is not sufficiently
small compared to the subcore. The figure also displays that
the traversal algorithm shows the best performance for all
datasets, being up to 73× better than the subcore algorithm.
The traversal algorithm shows dramatic improvement com-
pared to subcore when processing eu-2005 and cond-mat
graphs. Our results also show that the traversal algorithm has
the most efficient removal for all datasets.

We also investigate the impact of residential core degrees
on synthetic graphs generated using the Erdős–Renyi model.
Table 2 shows the average time in seconds spent for one edge
removal plus one edge insertion with the traversal algorithm.
For each graph, we ran the traversal algorithmwith and with-
out the Residential CoreDegrees. The results show that using
Residential Core Degrees provides up to 81% reduced run-
ning time. The results for RMAT show less improvement.We
expect that this is due to their small-world property, which

Table 2 Average runtimes (s) for one edge removal plus one edge
insertion with traversal algorithm on Erdős–Renyi graphs

Graph scale With RCD (ratio) Without RCD

16 0.019 (28%) 0.067

18 0.082 (24%) 0.335

20 0.396 (19%) 2.047

22 2.039 (24%) 8.600

24 1.914 (21%) 8.991

Ratio shows with RCD runtimes relative to without

Fig. 12 Edge insertion and removal execution times of the traversal
algorithm for different K values. Runtime shows low variability in gen-
eral with higher runtimes when K values are high and/or equal

creates an advantage for manually computing MCD/PCD
values.

6.4 Performance variation

In this section, we evaluate the performance of the traver-
sal algorithm when inserting and removing random edges
into vertices with varying K values. The objective was to
understand how the execution time varies as edge insertions
and removals are performed on different parts of the graph
with different connectivity characteristics. For instance, per-
formance implications of adding an edge between a vertex
that has a high K value and one with a low K value versus
between two vertices having close K values.

Figure 12 shows the performance results for the cita-
tionCiteseer graph, which serves as a good representative
for our real dataset. This graph has vertices with K values
varying from 1 to 15. A bubble in the graph indicates the
time taken to insert or remove an edge between two random
vertices u and v. If K (u) ≤ K (v), K (u) is displayed on the
x axis, while K (v) is displayed on the y-axis. The size of the
bubble indicates the average execution time for the insertion
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(pink) and removal (green) of an edge. The larger the bubble
is, the greater the execution time is.

The graph shows that the runtime of the traversal algo-
rithm has low variability. This is a good property, as it means
that the algorithm is able to locate a small subgraph to tra-
verse irrespective of the properties of the neighborhoods of
the two vertices u and v. Our algorithm shows low runtime
variability, as we consistently traverse subgraphs using the
vertex with the lowest K value as root.

Execution times vary more when the K values of the dif-
ferent vertices are the same (diagonal). The reason is that
the traversal algorithm visits the subgraphs associated with
both vertices affected by the new edge, resulting in longer
execution times. We also see that insertions between vertices
with large K values have large execution times. In general,
the execution times we see are proportional to the sizes of
the subcores and not to the max-cores. In other words, what
affects the execution time are the sizes of the subgraphs with
the same K value. For small K values, such subgraphs are
small, because they are bounded by higher K -valued ver-
tices, which in turn belong to their max-core. For large K
values, subcores are bigger, because large K -valued vertices
tend to be close to each other due to the definition of k-core.
Although their max-core sizes are small relative to that of
small K -valued vertices, their subcore sizes turn out to be
larger.

6.5 Multihop performance

In this set of experiments, we evaluate the impact of hop
distance on the performance of multihop traversal insertion
algorithm, given in Sect. 4.5, on real-world networks.We also
evaluate the RCD maintenance algorithms. The goal was to
observe how the maintenance times are affecting the total
runtime for different hop distances and how the traversal
space and time are reduced with increasing hop counts.

We show the normalized maintenance (black) and traver-
sal (white) times for different hop counts (x axis) in Fig. 13.
Normalization is done with respect to 2-hop results for each
graph. We refer to the processing time taken by multihop-

PrepareRCDsInsertion and multihopRecomputeRCDs
procedures of MultihopTraversalInsertEdge as “main-
tenance” time and to the time taken by the rest of the
algorithm as “traversal” time. For a given graph, we inserted
the same set of 500 edges for each hop count, which are ran-
domly selected at the start, so that the comparison is fair. Note
that the bars corresponding to 2-hops represent the traversal-
based insertion algorithm, given in Sect. 4.3.

From thefigure,we observe that themaintenance times are
increasing with higher hop counts. For instance, 3-hop main-
tenance time is 2.4× more than the one for 2-hops, whereas
the 4-hop and 5-hop times are 5.3× and 11.1× larger.

Fig. 13 Maintenance times increase with the higher hop counts, yet
the traversal times decrease in general. When the running time of the
2-hop variant is dominated by the traversal time, increasing hop counts
brings significant improvement in terms of the traversal times. 3-hop
variants are shown to give the best overall performance for 4 of the
graphs, out of 9 total

On the other hand, traversal times, shown with white bars,
present a different picture. Higher number of hops results
in reduced traversal spaces and thus lower running times.
On average, 3-hop and 4-hop traversals are .16× and 2.4×
faster than the 2-hop one. We observe that if the traversed
graph space is high for the 2-hop algorithm (which is indi-
cated by the long traversal times), it is likely to get better
relative throughput with higher hop counts. For example,
citationCiteseer (cit) graph requires large traversals when the
2-hop algorithm is applied. On average, the 2-hop traversal
algorithm visits 340.9 vertices, and this number goes down
to 169.2 and 101.3 with 3 and 4 hops, respectively. On the
other hand, caidaRouterLevel (cai) graph requires 4.4 vertex
traversals on average for the 2-hop algorithm, and this num-
ber is going down to 1.5with higher hop counts. Therefore, if
the 2 hop algorithm traverses significant space, then there is
room for improvement, and this opportunity is leveragedwell
by the higher hop count algorithms. Otherwise, maintenance
times become the bottleneck.

If we look at the total times, we see that 4 of the 9 graphs
benefit from the higher hop counts, and best performance
is obtained by 3-hop algorithms for those graphs. One dis-
tinguishing feature of these four graphs is that their 2-hop
traversal times are more than 85% of the total time, which
means that there is a significant room for improvement over
the 2-hop variant.

To understand the running time changes with varying
number of hops in a better way, we plotted the maximum,
90%, and median times for the real-world graphs in Fig. 14.
We normalized all the times with respect to the 2-hopmedian
times.Median times for all graphs are around 0.01ms, so they

123



Incremental k-core decomposition: algorithms and evaluation 443

Fig. 14 Detailed running time comparison for varying hop counts.
Given 500 edge insertions, max bar shows the longest time taken by an
edge insertion, whereas median bar shows the median of the insertion
times. 90% bar shows the running time value such that 90 percentile
of the edge insertions takes at most that much time

do not differ significantly for different hop counts. When we
look at the 90 percentile bars, citationCiteseer (cit) and pro-
tein interaction 1 (pro) graphs show that 3-hop variant is
superior to the 2-hop variant. Maximum times are ranging
from 0.2 to 132ms. The interesting thing is that maximum
time bars for caidaRouterLevel (cai), eu-2005 (eu), and cond-
mat (con) show that 3-hop and 4-hop variants result in better
running times compared to the 2-hop variants, which cannot
be observed for the total times shown in Fig. 13. This means
that the larger hop counts reduce the variance in the edge
insertion times, as they prevent very large traversals that the
2-hop variant sometimes encounters. These results confirm
the fact that if there is a significant amount of work to do in
order to adjust the k-core decomposition, then higher hops
will provide better running times. Overall, we suggest to use
3-hops or 4-hops when the graph dataset used results in large
traversals.

7 Related work

k-core concept is first introduced by Erdős andHajnal [14] as
the “degeneracy number” of graph, which is the largest k for
which there is a non-empty k-core. The definition of k-core
subgraph is first introduced by Seidman [29] to characterize
the cohesive regions of graphs. Batagelj and Zaversnik [7]
developed an efficient algorithm to find the k-core decompo-
sition of a graph. In our work, we build upon these works to
develop k-core decomposition algorithms that are incremen-
tal in nature, making it possible to apply these algorithms in
dynamic settings where edge insertions and removals happen

frequently, such as maintaining a recent history of a dynamic
graph.

There aremany application areas of k-core decomposition
including but not limited to social networks [19,32], visual-
ization of large networks [2,17,34], and protein interaction
networks analysis [4,33]. In social network analysis, k-cores
have beenused for community detection [19], clustering [32],
and criminal network detection [25].

Thanks to its well-defined structure, k-cores have been
used extensively to analyze the structure of certain types
of networks [12,23] and to generate graphs with specific
properties [8]. Many graph problems such as maximal clique
finding [5], dense subgraph discovery [3], and betweenness
approximation [20] use k-core decomposition as a subrou-
tine.

In terms of algorithms specific to finding k-core decompo-
sitions, an external memory algorithm for k-core decomposi-
tion is introduced in [10]. Authors propose several heuristics
to bound K values of vertices and shares similar ideas with
our RCD definitions. There are also studies about k-core
decomposition on directed [18] and weighted [19] networks.
As an effort to incremental k-core decomposition, Aksu et
al. [1] introduced dense k-core subgraph maintenance algo-
rithms in distributed settings. In their work, theymaterialized
the k-core subgraph with large K values and maintain them
for dynamic graphs.However, they ignore themaintenance of
small K -valued dense subgraphs. In this respect, our work is
unique in the sense that we provide maintenance of all dense
subgraphs in a given graph.

Concurrently with our first work [28], Li et al. [22]
published a report on incremental algorithms for core decom-
position. Our algorithms differ from theirs in two important
aspects: (1) They propose quadratic complexity incremental
algorithms, whereas our algorithms have linear complexity.
(2) The relative throughput results achieved by our algo-
rithm outperform theirs. For instance, their best algorithm
has 6.3× relative throughput on the cond-mat graph, while
our best algorithm (traversal) achieves a relative throughput
of 19,272×, which is more than three orders of magnitude
higher.

8 Conclusion

In this paper, we have introduced incremental algorithms
for k-core decomposition of graphs. The key feature of
these algorithms is their incremental nature—the ability to
update the k-core decomposition quickly when a new edge
is inserted or removed, without having to traverse the entire
graph. Our experimental evaluation shows that these incre-
mental algorithms can perform significantly better than their
batch alternatives, where the relative throughput in execu-
tion time increases with the increasing graph size. Given the
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importance of k-core decomposition in detection of dense
regions and communities, maximum clique finding, and
graph visualization, we believe these incremental algorithms
will serve as a fundamental building block for future incre-
mental solutions for other graph problems, where the updates
are coming in a batch.
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Appendix: Generic RCD maintenance

As stated earlier in Sect. 4.3.1, maintaining RCD values is a
non-trivial operation. Yet, it is critical in reducing the scopes
of the traversals, potentially bringing down the cost of edge
modifications. Overall, efficientmechanisms formaintaining
RCD values is needed. Here, we introduce the generic ver-
sions of the RCD maintenance algorithms, which update the
RCD values of vertices up to the given hop count n. In other
words, given the number of hops, n, the proposed algorithms
maintain the RCD values for n, n − 1, . . . , 1.

multihopPrepareRCDsInsertion (Algorithm 9) is
used at the beginning of the multihop traversal-based edge
insertion algorithm, explained in Sect. 4.5. It prepares the
RCD values before the multihop traversal operation is per-
formed for the inserted edge, (u1, u2), and the given hop
distance, n. This preparation is needed as the RCD values
of the root(s) may have changed due to the updated degrees,
and this change may have propagated to RCD values of other
vertices. The preparation phase is performed assuming that
the K values are intact. Those will be updated during the
traversal, and a re-computation of RCDs would be required
at the end (multihopRecomputeRCDs procedure).

The preparation starts with determining the root vertices
based on their K values. If the K values of the extremities of
the inserted edge are not equal, we increment the RCD(r, h)

value of root for all h ≤ n. The rationale behind this is that
the root vertex gains a new neighbor with a higher K value,
and by Definition 7, it increases all RCD values of root by
one. Following this increment operation, we check whether
the RCD(r, h) has exceeded k, because this implies further
changes in RCD(·, h + 1) values of r ’s neighbor vertices (by
Definition 7). In the preparation phase, RCD(·, n) of a vertex
only changes when RCD(·, n−1) of a neighbor changes and
that iswhatwe are checking for. Remember thatRCD(u, n) is
the number of u’s neighbors, w, where either K (u) < K (w)

Algorithm 9: MULTIHOP RCD MAINTENANCE:
multihopPrepareRCDsInsertion

(G(V, E), K (), RCD(, ), n, u1, u2)
Data: G: the graph, K : max-k values, RCD: residential core degrees, n:

number of hops (> 1), (u1,u2): inserted edge
r ← u1 � Set the root
if K (u2) < K (u1) then r ← u2
k ← K (r) � Remember the K value of the root
roots ← empty set
frontiers ← n number of empty sets
if K (u1) = K (u2) then

for each h ∈ [1..n] do � For each hop
� r gets a new neig. with higher K value
RCD(r, h) ← RCD(r, h) + 1
if h < n and RCD(r, h) = k + 1 then

� If the RCD value exceeds k, it is pushed to frontiers. RCD of
neigs will be updated in the next iteration

frontiers[h + 1].push(r )
if h > 1 then

� Neigs of the vertices in frontiers are explored to update their
RCD values

for each v ∈ frontiers[h] do
for each (v, w) ∈ E do

if K (w) = k then
� RCD value of every neig, with same K value, is
incremented

RCD(w, h) ← RCD(w, h) + 1
if h < n and RCD(w, h) = k + 1 then

� If the RCD value exceeds k, neigs will be
updated in the next iteration

frontiers[h + 1].push(w)

else
for each h ∈ [1..n] do � For each hop

if h = 1 then � MCD computation
� u1 and u2 get a new neig with equal K value
� If the RCD value exceeds k, it is pushed to frontiers. RCD of
neigs will be updated in the next iteration

RCD(u1, h) ← RCD(u1, h) + 1
if RCD(u1, h) = k + 1 then

frontiers[h + 1].push(u1)
RCD(u2, h) ← RCD(u2, h) + 1
if RCD(u2, h) = k + 1 then

frontiers[h + 1].push(u2)
else

� Handle the newly inserted edge
if RCD(u2, h − 1) > k then

RCD(u1, h) ← RCD(u1, h) + 1
if h < n and RCD(u1, h) = k + 1 then

frontiers[h + 1].push(u1)
if RCD(u1, h − 1) > k then

RCD(u2, h) ← RCD(u2, h) + 1
if h < n and RCD(u2, h) = k + 1 then

frontiers[h + 1].push(u2)
� Neigs of the vertices in frontiers are explored to update their
RCD values

for each v ∈ f rontiers[h] do
for each (v, w) ∈ E do

� Exclude the newly inserted edge
if not (v = u1 and w = u2) and
not (v = u2 and w = u1) and
K (w) = k then

RCD(w, h) ← RCD(w, h) + 1
if h < n and RCD(w, h) = k + 1 then

f rontiers[h + 1].push(w)

or K (u) = K (w) and RCD(w, n − 1) > K (u). Throughout
the algorithm, we accumulate the vertices whose RCD(·, h)

values just exceed k in the next frontiers set, where h is the
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hop number. We avoid this accumulation operation if the last
hop number h is being processed, since there is no need for
further processing in that case. When the hop number h is
greater than 1, we process the neighbors (with the same K
value) of the vertices in the current frontiers set by incre-
menting their RCD(·, h) values. We also perform checks to
see whether k is exceeded and accordingly populate the next
frontiers set.

If the K values of the extremities of the inserted edge
are equal, we do different operations for h = 1 and h >

1, where h is the current hop number. For h = 1, where
RCD(u, 1) is actually equal to MCD(u), we just increment
the RCD(·, 1) values of both extremities of the inserted edge
(by Definition 7) and perform checks to see whether k is
exceeded and accordingly populate the next frontiers set. If
h > 1, we need to handle the new inserted edge separately.
Let us say u1 and u2 are the extremities of the inserted edge.
We first check the RCD(u1, h−1) [and dually RCD(u2, h−
1)] is greater than k. If so, we increment the RCD(u2, h)

[and dually RCD(u1, h)] and perform the k value checks to
populate the next frontier as needed. After that, we process
the neighbors (with the same K value) of the vertices in
current frontiers set. One important difference in this step is
that we exclude the edge between u1 and u2, because that
edge is already handled.

Multihop algorithms are only applicable for the edge
insertion operation. For removal, using 1-hop information
(MCD values) is necessary and sufficient, as stated in the
last paragraph of Sect. 4.3.3. Therefore, going for multihop
information does not bring any additional benefit in terms of
the running time. However, given that we are interested in
sliding window scenarios, where removals happen together
with insertions, we need to accommodate the maintenance of
RCD values when there is an edge removal. For this purpose,
we develop themultihopPrepareRCDsRemovalmethod.
Detailed pseudocode and explanation can be found in “RCD
maintenance for edge removal” of appendix.

After the multihop traversal, if the K values of some ver-
tices are incremented, then this will create a cascading effect
on RCD values of the vertices around. Efficiently handling
the cascades and doing the update operations is again of
great importance. Algorithm 10 finds those vertices whose
RCD values need to be updated and efficiently updates these
RCD values. It has two main parameters: the set of vertices
whose K values are updated (changed), and the hop dis-
tance until which RCD values are to be updated (n). We
start the algorithm by marking the changed vertices as vis-
ited. Throughout the algorithm, we mark the vertices via the
visited array to prevent duplicates during the update proce-
dure. In the main for loop (the second one), we process the
updates for each hop, in order. At each iteration, we pop-
ulate the changed set with the updated vertices and then
update the RCD values of the vertices in changed. Cas-

Algorithm 10: MULTIHOP RCD MAINTENANCE:
multihopRecomputeRCDs

(G(V, E), K (), RCD(, ), n,changed)
Data: G: the graph, K : max-k values, RCD: residential core degrees,

n: number of hops (> 1), changed: set of vertices with
updated K value

visited[v] = false,∀v ∈ V � Lazy init
for each v ∈ changed do

visited[v] = true
for each h ∈ {1...n} do

updated ← empty set
for each v ∈ changed do

for each (v,w) ∈ E do
if not visited[w] and
� For insertion

(K (w) = K (v) or K (w) = K (v) − 1) then
� For removal
� (K (w) = K (v) or K (w) = K (v) + 1)
updated.push(w)
visited[w] = true

for each v ∈ updated do
changed.push(v)

for each v ∈ changed do
RCD(h)(v) ← computeRCD (v, K, RCD, h)

cading effect propagates by a single hop neighborhood at
each iteration. In other words, if we assume that a vertex u
has its K value updated, and we want 3-hop distance RCD
values to be updated; RCD(1), RCD(2) and RCD(3) of u
will be updated. Furthermore, RCD(2) and RCD(3) values
of some vertices in u’s hop-1 neighborhood will be updated,
and RCD(3) values of some vertices in u’s hop-2 neighbor-
hood will be updated.

Pruning the vertices in the neighborhood is critical inmak-
ing the procedure efficient. For the edge insertion case, given
vertex v, we prune the neighborhood vertices by checking
whether they are visited previously and whether the K value
of the neighbor vertex is either equal to K value of v or
equal to K value of v minus 1 (plus 1 for the edge removal
case). The reason behind this check is based on Definition 7.
RCD(n) of a neighbor vertexmay change iff the K values are
equal. For the edge insertion case, given that there are also
some vertices whose K values are incremented, we need to
consider them as well by checking the neighbor vertices with
one less K value. Likewise, for the edge removal, we check
the neighbor vertices with one more K value, as stated with
comments in the pseudocode of Algorithm 10. We accumu-
late the vertices to be updated in changed set and update
their RCD values for the hop distance at that iteration. com-
puteRCD procedure at the end finds the RCD values for
all hop numbers up to h. It basically makes use of Defini-
tion 7. In summary, we handle the cascading effect of RCD
maintenance efficiently by the aforementioned pruning tech-
niques.
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RCD maintenance for edge removal

Algorithm11adjusts theRCDvalueswhen there is an edge
removal and is very similar to Algorithm 9. One important
difference is that, instead of incrementing the RCD values,
we need to decrement them whenever necessary. We also

Algorithm 11: MULTIHOP RCD MAINTENANCE:
multihopPrepareRCDsRemoval

(G(V, E), K (), RCD(, ), n, u1, u2)
Data: G: the graph, K : max-k values, RCD: residential core degrees,

n: number of hops (> 1), (u1,u2): inserted edge
r ← u1 � Set the root
if K (u2) < K (u1) then r ← u2
k ← K (r) � Remember the K value of the root
roots ← empty set
f rontiers ← n number of empty sets
if K (u1) = K (u2) then

for each h ∈ [1..n] do � For each hop
RCD(r, h) ← RCD(r, h) − 1
if h < n and RCD(r, h) = k then

f rontiers[h + 1].push(r )
if h > 1 then

for each v ∈ f rontiers[h] do
for each (v,w) ∈ E do

if K (w) = k then
RCD(w, h) ← RCD(w, h) − 1
if h < n and RCD(w, h) = k then

f rontiers[h + 1].push(w)

else
� Remember the old RCD values of u1 and u2
old_RCD ← empty set for u1 and u2
for each h ∈ [1..n] do � For each hop

old_RCD(u1, h) ← RCD(u1, h)

old_RCD(u2, h) ← RCD(u2, h)

for each h ∈ [1..n] do � For each hop
if h = 1 then

RCD(u1, h) ← RCD(u1, h) − 1
if RCD(u1, h) = k then

f rontiers[h + 1].push(u1)
RCD(u2, h) ← RCD(u2, h) − 1
if RCD(u2, h) = k then

f rontiers[h + 1].push(u2)
else

if old_RCD(u2, h − 1) > k then
RCD(u1, h) ← RCD(u1, h) − 1
if h < n and RCD(u1, h) = k then

f rontiers[h + 1].push(u1)
if old_RCD(u1, h − 1) > k then

RCD(u2, h) ← RCD(u2, h) − 1
if h < n and RCD(u2, h) = k then

f rontiers[h + 1].push(u2)
for each v ∈ f rontiers[h] do

for each (v,w) ∈ E do
if not (v = u1 and w = u2) and
not (v = u2 and w = u1) and
K (w) = k then

RCD(w, h) ← RCD(w, h) − 1
if h < n and RCD(w, h) = k then

f rontiers[h + 1].push(w)

check whether the RCD(·, h) value goes below k + 1, which
implies changes inRCD(·, h+1) values of neighbor vertices.
Another difference betweenAlgorithms 11 and 9 exists when
the K values of the removed edge extremities are equal. In
this case, we need to remember the RCD values for all hop
numbers before the edge removal operation. This enables us
to process the hop numbers h > 1.
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