
J. Parallel Distrib. Comput. 96 (2016) 106–120
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Pipelined fission for stream programs with dynamic selectivity and
partitioned state
B. Gedik ∗, H.G. Özsema, Ö. Öztürk
Department of Computer Engineering, Bilkent University, 06800, Ankara, Turkey

h i g h l i g h t s

• Formalizes the pipelined fission problem for streaming applications.
• Models the throughput of pipelined fission configurations.
• Develops a three-stage heuristic algorithm to quickly locate a close to optimal pipelined fission configuration.
• Experimentally evaluates the solution and demonstrate its efficacy.

a r t i c l e i n f o

Article history:
Received 19 February 2015
Received in revised form
2 December 2015
Accepted 3 May 2016
Available online 14 May 2016

Keywords:
Data stream processing
Auto-parallelization
Pipelining
Fission

a b s t r a c t

There is an ever increasing rate of digital information available in the form of online data streams. Inmany
application domains, high throughput processing of such data is a critical requirement for keeping up
with the soaring input rates. Data stream processing is a computational paradigm that aims at addressing
this challenge by processing data streams in an on-the-fly manner, in contrast to the more traditional
and less efficient store-and-then process approach. In this paper, we study the problem of automatically
parallelizing data stream processing applications in order to improve throughput. The parallelization
is automatic in the sense that stream programs are written sequentially by the application developers
and are parallelized by the system. We adopt the asynchronous data flow model for our work, which
is typical in Data Stream Processing Systems (DSPS), where operators often have dynamic selectivity
and are stateful. We solve the problem of pipelined fission, in which the original sequential program is
parallelized by taking advantage of both pipeline parallelism and data parallelism at the same time. Our
pipelined fission solution supports partitioned stateful data parallelism with dynamic selectivity and is
designed for shared-memorymulti-coremachines.We first develop a cost-based formulation that enables
us to express pipelined fission as an optimization problem. The bruteforce solution of this problem takes
a long time for moderately sized stream programs. Accordingly, we develop a heuristic algorithm that
can quickly, but approximately, solve the pipelined fission problem. We provide an extensive evaluation
studying the performance of our pipelined fission solution, including simulations as well as experiments
with an industrial-strength DSPS. Our results show good scalability for applications that contain sufficient
parallelism, as well as close to optimal performance for the heuristic pipelined fission algorithm.

© 2016 Elsevier Inc. All rights reserved.
1. Introduction

We are experiencing a data deluge due to the ever increasing
rate of digital data produced by various software and hardware
sensors present in our highly instrumented and interconnected
world. This data often arrives in the form of continuous streams.

∗ Corresponding author.
E-mail addresses: bgedik@bilkent.edu.tr (B. Gedik),

habibe.ozsema@bilkent.edu.tr (H.G. Özsema), ozturk@bilkent.edu.tr (Ö. Öztürk).

http://dx.doi.org/10.1016/j.jpdc.2016.05.003
0743-7315/© 2016 Elsevier Inc. All rights reserved.
Examples abound, such as ticker data [41] in financial markets,
call detail records [7] in telecommunications, production line
diagnostics [3] in manufacturing, and vital signals [35] in
healthcare. Accordingly, there is an increasing need to gather and
analyze data streams in near real-time, detect emerging patterns
and outliers, and take automated action. Data stream processing
systems (DSPSs) [37,20,36,1,5] enable carrying out these tasks in
a natural way, by taking data streams through a series of analytic
operators. In contrast to the traditional store-and-processmodel of
datamanagement systems, DSPSs rely on the process-and-forward
model and are designed to provide high throughput and timely
response.

http://dx.doi.org/10.1016/j.jpdc.2016.05.003
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2016.05.003&domain=pdf
mailto:bgedik@bilkent.edu.tr
mailto:habibe.ozsema@bilkent.edu.tr
mailto:ozturk@bilkent.edu.tr
http://dx.doi.org/10.1016/j.jpdc.2016.05.003

B. Gedik et al. / J. Parallel Distrib. Comput. 96 (2016) 106–120 107
Since performance is one of the fundamental motivations for
adopting the stream processing model, optimizing the throughput
of stream processing applications is an important goal of
many DSPSs. In this paper, we study the problem of pipelined
fission, that is automatically finding the best configuration of
combined pipeline and data parallelism in order to optimize
application throughput. Pipeline parallelism naturally occurs in
stream processing applications [39]. As one of the stages is
processing a data item, the previous stage can concurrently
process the next data item in line. Data parallelization, aka.
fission, involves replicating a stage and concurrently processing
different data items using these replicas. Typically, data parallelism
opportunities in streaming applications need to be discovered (to
ensure safe parallelization) and require runtimemechanisms, such
as splitting and ordering, to enforce sequential semantics [33,15].

Our goal in this paper is to determine how to distribute
processing resources among the data and pipeline parallel aspects
within the stream program, in order to best optimize the
throughput. While pipeline parallelism is very easy to take
advantage of, the amount of speed-up that can be obtained is
limited by the pipeline depth. On the other hand, data parallelism,
when applicable, can be used to achieve higher levels of scalability.
Yet, data parallelism has limitations as well. First, the mechanisms
used to establish sequential semantics (e.g., ordering) have
overheads that increase with the number of replicas used. Second,
and more importantly, since data parallelism is applied to a subset
of operators within the chain topology, the performance is still
limited by other operators for which data parallelism cannot be
applied (e.g., because they are arbitrarily stateful). The last point
further motivates the importance of pipelined fission, that is the
need for performing combined pipeline and data parallelism.

The setting we consider in this paper is multi-core shared-
memory machines. We focus on streaming applications that pos-
sess a chain topology, where multiple stages are organized into a
series, each stage consuming data from the stage before and feed-
ing data into the stage after. Each stage can be a primitive operator,
which is an atomic unit, or a composite [22] operator, which can
contain a more complex sub-topology within. In the rest of the pa-
per, we will simply use the term operator to refer to a stage. The
pipeline and data parallelism we apply are all at the level of these
operators.

Our work is applicable to and is designed for DSPSs that have
the following properties:

• Dynamic selectivity: If the number of input data items con-
sumed and/or the number of output data items produced by
an operator are not fixed and may change depending on the
contents of the input data, the operator is said to have dynamic
selectivity. Operators with dynamic selectivity are prevalent in
data-intensive streaming applications. Examples of such oper-
ators include data dependent filters, joins, and aggregations.
• Backpressure: When a streaming operator is unable to con-

sume the input data items as fast as they are being produced, a
bottleneck is formed. In a system with backpressure, this even-
tually results in an internal buffer to fill up, and thus an up-
stream operator blockswhile trying to submit a data item to the
full buffer. This is called backpressure, and it recursively prop-
agates up to the source operators.
• Partitioned processing: A stream thatmultiplexes several sub-

streams,where each sub-stream is identified by its unique value
for the partitioning key, is called a partitioned stream. An opera-
tor that independently processes individual sub-streamswithin
a partitioned stream is called a partitioned operator. Partitioned
operators could be stateful, in which case they maintain in-
dependent state for each sub-stream. DSPSs that support par-
titioned processing can apply fission for partitioned stateful
operators—an important class of streaming operators [34,4].
There are several challenges in solving the pipelined fission
problemwe have outlined. First, we need to formally definewhat a
valid parallelization configuration is with respect to the execution
model used by the DSPS. This involves defining the restrictions
on the mapping between threads and parallel segments of the
application. Second,weneed tomodel the throughput as a function
of the pipelined fission configuration, so as to compare different
pipelined fission alternatives among each other. Finally, even for a
small number of operators, processor cores, and threads, there are
combinatorially many valid pipelined fission configurations. It is
important to be able to quickly locate a configuration that provides
close to optimal throughput. There are two strong motivations
for this. The first is to have a fast edit–debug cycle for streaming
applications. The second is to have low overhead for dynamic
pipelined fission, that is being able to update the parallelization
configuration at run-time. Note that, the optimal pipelined fission
configuration depends on the operator costs and selectivities,
which are often data dependent, motivating dynamic pipelined
fission. In this paper, our focus is on solving the pipelined fission
problem in a reasonable time, with high accuracy with respect to
throughput.

Our solution involves three components. First, we define
valid pipelined fission configurations based on application of
fusion and fission on operators. Fusion is a technique used for
minimizing scheduling overheads and executing stream programs
in a streamlined manner [25,13]. In particular, series of operators
that form a pipeline are fused and executed by a dedicated thread,
where buffers are placed between successive pipelines. On the
other hand, using fission, series of pipelines that form a parallel
region are replicated to achieve data parallelism.

Second, we model concepts such as operator compatibility
(used to define parallel regions), backpressure (key factor in defin-
ing throughput), and system overheads like the thread switching
and replication costs (factors impacting the effectiveness of paral-
lelization), and use these to derive a formula for the throughput.

Last, and most importantly, we develop a heuristic algorithm
to quickly locate a pipelined fission configuration that provides
close to optimal performance. The algorithm relies on three main
ideas: The first is to form regions based on the longest compatible
sequence principle, where compatible means that a formed region
carries properties that make it amenable to data parallelism as
a whole. The second is to divide regions into pipelines using a
greedy bottleneck resolving procedure. This procedure performs
iterative pipelining, using a variable utilization-based upper bound
as the stopping condition. The third is another greedy step, which
resolves the remaining bottlenecks by increasing the number of
replicas of a region.

We evaluate the effectiveness of our solution based on exten-
sive analytic experimentation.We also use IBM’s SPL language and
its runtime system to perform an empirical evaluation. Our SPL-
based evaluation shows that we can quickly locate a pipelined fis-
sion configuration that is within 5%–10% of the optimal using our
heuristic algorithm.

In summary, we make the following contributions:

• We formalize the pipelined fission problem for streaming appli-
cations that are organized as a series of stages and can poten-
tially exhibit dynamic selectivity, backpressure, and partitioned
processing.
• We model the throughput of pipelined fission configurations

and cast the problem of locating the best configuration as a
combinatorial optimization one.
• We develop a three-stage heuristic algorithm to quickly locate

a close to optimal pipelined fission configuration and evaluate
its effectiveness using analytical and empirical experiments.

108 B. Gedik et al. / J. Parallel Distrib. Comput. 96 (2016) 106–120
Fig. 1. Pipelined fission terminology.

2. Background

In this section, we summarize the terminology used for the
pipelined fission problem, and outline a system execution model
that will guide the problem formulation and solution used in the
rest of the paper.

2.1. Terminology and definitions

A stream graph is a set of operators connected to each other
via streams. As mentioned earlier, we consider graphs with chain
topology in this work. Fig. 1 summarizes the terminology used to
define our pipelined fission problem.

There are two operator properties that play an important role
in pipelined fission, namely selectivity and state.

• Selectivity of an operator is the number of items it produces per
number of items it consumes. It could be less than one, inwhich
case the operator is selective; it could be equal to one, in which
case the operator is one-to-one; or it could be greater than one,
in which case the operator is prolific.
• State specifies whether and what kind of information is main-

tained by the operator across firings. An operator could be state-
less, inwhich case it does notmaintain any state across firings. It
could be partitioned stateful, inwhich case itmaintains indepen-
dent state for each sub-stream determined by a partitioning key.
Finally, an operator could be statefulwithout a special structure.

We name a series of operators fused together as a pipeline.
A series of pipelines replicated as a whole is called a parallel
region. Series of pipelines that fall between parallel regions form
simple regions. Each replica within a parallel region is called
a parallel channel. A parallel channel contains replicas of the
pipelines and operators of a parallel region. In order to maintain
sequential program semantics under selective operators, split and
merge operations are needed before and after a parallel region,
respectively. The split operation assigns sequence numbers to
tuples and distributes them over the parallel channels, such as a
hash-based splitter for a partitioned stateful parallel region. The
merge operation unions tuples from different parallel channels
and orders them based on their sequence numbers. A parallel
region cannot contain a stateful (non-partitioned) operator [33]
and thus such regions are formed by stateless and partitioned
stateful operators.

Listing 1 shows a toy SPL (Stream Processing Language) [21]
application for illustrating some of the concepts introduced. This
application counts the number of appearances of each word in
a file. It consists of 4 operators organized into a chain. The first
operator, named Lines, is a source operator producing lines of
text. The second operator, named Words, divides each line into
words, and outputs one tuple for eachword. Note that this operator
has a selectivity value over 1. The exact selectivity value is not
known at development time, as it is dependent on the data. As
stream<rstring line> Lines = FileSource() {
param file: "in.txt";
}
stream<rstring word> Words = Custom(Lines) {

logic
onTuple Lines:

for (rstring word in tokenize(line, " \t", false))
submit({word=word}, Words);

onPunct Lines:
submit(currentPunct(), Words);

}
stream<rstring word, uint32 count> Counts = Aggregate(Words) {

window
Words: tumbling, punct(), partitioned;

param
partitionBy: word;

output
Counts: count = Sum(1u);

}
() as Results = FileSink(Counts) {

param file: "counts.txt";
}

Listing 1: Sample SPL application.

such, this stream program does not follow the synchronous data
flow model and cannot be scheduled statically at compile-time.
TheWords operator is stateless, as it does notmaintain state across
tuple firings. The next operator in line is the Counts operator,
which performs a simple Sum aggregation over the window of
tuples. Importantly, this operator is partitioned stateful and it
is highly selective. Finally, the last operator is named Results,
which is a file sink. In this application the pipeline formed by the
Words and Counts operators can be made into a parallel region.
Since the Counts operator is partitioned on the word attribute,
we should have a hash-based split before the parallel region, and a
re-orderingmerge after it.

2.2. Execution model

A distributed stream processing middleware typically executes
data flow graphs by partitioning them into basic units called
processing elements. Each processing element contains a sub-graph
and can run on a different host. For small and medium-scale
applications, the entire graph can bemapped to a single processing
element. Without loss of generality, in this paper we focus on a
single multi-core host executing the entire graph. Our pipelined
fission technique can be applied independently on each host when
the whole application consists of multiple distributed processing
elements.

In this paper, we follow an execution model based on the SPL
runtime [20], which has been used in a number of earlier studies as
well [39,33,15,32,13]. In this model, there are two main sources of
threading, which contribute to the execution of the stream graph.
The first one is operator threads. Source operators, which do not
have any input ports, are driven by their own operator threads.
When a source operator makes a submit call to send a tuple to its
output port, this same thread executes the rest of the downstream
operators in the stream graph. As a result, the same thread can
traverse a number of operators, before eventually coming back to
the source operator to execute the next iteration in its event loop.
This behavior is because the stream connections in a processing
element are implemented via function calls. Using function calls
yields fast execution, avoiding scheduler context switches and
explicit buffers between operators. This optimization is known as
operator fusion [25,13].

The second source of threading is threaded ports. Threaded ports
can be inserted at any operator input port. When a thread reaches
a threaded port, it inserts the tuple at hand into the threaded
port buffer, and goes back to executing upstream logic. A separate

B. Gedik et al. / J. Parallel Distrib. Comput. 96 (2016) 106–120 109
Fig. 2. A chain topology with 5 operators.

thread, dedicated to the threaded port, picks up the queued tuples
and executes the downstream operators. In pipelined fission, we
use threaded ports to ensure that each pipeline is run by a separate
thread. For instance, in Fig. 1 there are 8 threads. The scheduling of
threads to the processor cores is left to the operating system.

The goal of our pipelined fission solution is to automatically de-
termine a parallelization configuration, that is the pipelines, re-
gions, and number of replicas, so as tomaximize the throughput. It
is important to note that our solution is designed for asynchronous
data flow systems [36,31,38,20,37,5,1] that support dynamic selec-
tivity and partitioned stateful operators. In contrast, synchronous
data flow systems (SDF) [16,28] assume that the relative flow rates
(selectivities) are specified at development time. They produce a
static schedule at compile-time, which is executed at runtime. We
assume a programming model that does not require specification
of selectivities and accordingly, a runtime system that does not rely
on a static schedule. We emphasize the speed of finding a paral-
lelization configuration, as this has to be performed at runtime.1
Wemodel backpressure in our solution in order to handle rate dif-
ferences at runtime. Furthermore, data parallelism in SDF systems
is limited to stateless operators. Our work supports partitioned
stateful operators [34,4], which are typical in asynchronous data
flow systems.

3. Problem formulation

In this section, we model the pipelined fission problem and
present a brute-force approach to find a parallelization configura-
tion that maximizes the throughput.

3.1. Application model

We start with modeling the topology, the operators, and the
parallelization configuration.
Topology. We consider applications that have a chain topology.
The operators that participate in the chain can be composite and
have more complex topologies within, as long as they fit into one
of the operator categories described below.

Let O = {oi | i ∈ [1..N]} be the set of operators in the
application. Here, oi ∈ O denotes the ith operator in the chain. o1
is the source operator and oN is the sink operator. For 1 < i ≤ N ,
operator oi has oi−1 as its upstream operator and for 1 ≤ i < N , oi
has oi+1 as its downstream operator. Fig. 2 shows an example chain
topology with N = 5 operators.
Operators. For o ∈ O, k(o) ∈ {f, p, s} denotes the operator kind:
f is for stateful, p is for partitioned stateful, and s is for stateless.
For a partitioned stateful operator o (that is k(o) = p), a(o)
specifies the partitioning key, which is a set of stream attributes.
s(o) denotes the selectivity of an operator, which can go over 1 for
prolific operators—operators that can produce one or more tuples
per input tuple consumed. As an example, the Words operator
from Listing 1 is a prolific operator and the operator Counts is a
partitioned stateful operator with a partitioning attribute of word
and selectivity of less than 1. We use c(o) to denote the per-tuple
cost of an operator.

1 It has been shows that lightweight profiling can be used to determine
selectivities and costs at runtime [39].
For o ∈ O, f ⟨o⟩ : N+ → R is a base scalability function for
operator o. Here, f ⟨o⟩(x) = y means that x copies of operator
o will raise the throughput to y times the original, assuming no
parallelization overhead. We have k(oi) = s ⇒ f ⟨oi⟩ = fl, where
fl is the linear scalability function, that is fl(x) = x. In other words,
for stateless operators, the base scalability function is linear. For
partitioned stateful operators, including parallel sources and sinks,
bounded linear functions are more common, such as:

fb(x; u) =

x if x ≤ u
u otherwise.

Here, fb(; u) is a bounded linear scalability function, where u
specifies the maximum scalability value. For partitioned stateful
operators, the size of the partitioning key’s domain could be a
limiting factor on the scalability that could be achieved. For parallel
sources and sinks, the number of distinct external sources and
sinks could be a limiting factor (e.g., number of TCP/IP end points,
number of data base partitions, etc.).
Parallelization configuration. Let us denote the set of threads
used to execute the stream program as T = {ti | i ∈ [1..|T |]}. The
number of replicas for operator o ∈ O is denoted by r(o) ∈ N+.
Note that, we have k(o) = f ⇒ r(oi) = 1, as stateful operators
cannot be replicated.

Let us denote the jth replica of an operator oi as oi,j and the set
of all operator replicas as V = {oi,j | oi ∈ O ∧ j ∈ [1..r(oi)]}. We
define m : V → T as the operator to thread mapping that assigns
operator replicas to threads. m(oi,j) = t means that operator
oi’s jth replica is assigned to thread t . An operator is assigned
to a single thread, but multiple operators can be assigned to the
same thread. There are a number of rules about this mapping that
restrict the set of possible mappings to those that are consistent
with the execution model we have outlined earlier. We first define
additional notation to formalize these rules.

GivenO′ ⊆ O, we define a Boolean predicate L(O′) that captures
the notion of a sequence of operators. Formally, L(O′) ≡ {oi1 , oi2} ⊂
O′ ⇒ ∀i1≤i≤i2 , oi ∈ O′. There are two kinds of sequences we
are interested in. The first one is called a non-replicated sequence
and is defined as Ls(O′, r) ≡ L(O′) ∧ ∀o∈O′ , r(o) = 1. In a
non-replicated sequence, all operators have a single replica. The
second is called a replicated sequence and is defined as Lp(O′, r) ≡
L(O′) ∧ ∀o∈O′ , (k(o) ≠ f ∧ r(o) = l) ∧

o∈O′,k(o)=p a(o) ≠ ∅.

That is, a group of operators are considered a replicated sequence
if and only if they form a sequence, they do not include a
stateful operator, they all have the same number of replicas, and if
there are any partitioned stateful operators in the sequence, they
have compatible partitioning keys.2 We will drop r , that is the
function that defines the replica counts for the operators, from the
parameter list of the sequence defining predicates, Ls and Lp, when
it is obvious from the context.

With these definitions, we list the following rules for the
operator replica to thread mapping function,m:

• m(oi1,j1) = m(oi2,j2) ⇒ j1 = j2. I.e., operator replicas from
different channels are not assigned to the same thread. Here,
channel corresponds to the replica index.
• t = m(oi1,j) = m(oi2,j) ⇒ ∃O

′ s.t. {oi1 , oi2} ⊆ O′ ⊂ O ∧
(Ls(O′) ∨ Lp(O′)) ∧ (∀oi∈O′ ,m(oi,j) = t). I.e., if two operator
replicas are assigned to the same thread, they must be part of
a replicated or non-replicated sequence and all other operator
replicas in between these two on the same channel should be
assigned to the same thread.

2 In practice, there is also the requirement that these keys are forwarded by the
other operators in the sequence [33], but such details do not impact our modeling.

110 B. Gedik et al. / J. Parallel Distrib. Comput. 96 (2016) 106–120
(a) Regions. (b) Pipelines.

Fig. 3. Regions and pipelines.
• m(oi1,j) = m(oi2,j) ⇒ ∀l∈[1..r(oi1)], m(oi1,l) = m(oi2,l). I.e, if
two operator replicas are assigned to the same thread, their sib-
ling operator replicas should share their threads as well. For in-
stance, if o1,1 and o2,1 bothmap to t1, then their siblings o1,2 and
o2,2 should share the same thread, say t2.

Regions and Pipelines. The above rules divide the program into
regions and these regions into sub-regions that we call pipelines, as
shown in the example in Fig. 3.

In this example, we have 3 parallel regions: P1 = {P1,1, P1,2},
P2 = {P2,1, P2,2}, and P3 = {P3,1}. The first region P1 has a single
replica, that is r(P1) = 1 and it consists of two pipelines, namely
P1,1 and P1,2. The first pipeline has a single operator inside,whereas
the second one has two operators. Concretely, we have P1,1 = {o1}
and P1,2 = {o2, o3}. The second region has r(P2) = 3, as there are
3 parallel channels, and it consists of 2 pipelines, namely P2,1 and
P2,2. We have P2,1 = {o4, o5} and P2,2 = {o6}. Finally, the third
region is P3 = {P3,1}, where r(P3) = 1 and P3,1 = {o7}.

Given the thread mapping function m and the replica function
r , the set of regions formed is denoted byP (m, r) orP for short. To
find the first region, P1 ∈ P , we start from the source operator o1
and locate the longest sequence of operators O′ ⊂ O s.t. o1 ∈ O′ ∧
(Ls(O′) ∨ Lp(O′)). We can apply this process successively, starting
from the next operator in line that is not part of the current set of
regions, until the set of all regions,P , is formed. The pipelines for a
given region are formed by grouping operatorswhose replicas for a
parallel channel are assigned to the same thread by themappingm.

For each pipeline Pi,j ∈ Pi ∈ P , there are r(Pi) replicas and
a different thread executes each pipeline replica. Then the total
number of threads used is given by

Pi∈P

r(Pi)·|Pi|. In the example
above, we have 9 threads and 13 operator replicas.

3.2. Modeling the throughput

Our goal is to define the throughput of a given configuration
P . Once the throughput is formulated, we can cast our problem
as an optimization one, where we aim to find the thread mapping
function (m) and the operator replica counts (r) that maximize the
throughput.

To formalize the throughput, we start with a set of helper
definitions. We denote the kind of a region as k(Pi), and define:

k(Pi) =

f if ∃ ok ∈ Pi,j ∈ Pi s.t. k(ok) = f
s if ∀ok∈Pi,j∈Pi k(ok) = s
p otherwise.

(1)

For instance, in Fig. 3, if o4 and o6 are stateless, and o5 is par-
titioned stateful, then the parallel region P2 becomes partitioned
stateful (p). As another example, if o2 is stateful, then the region P1
becomes stateful.

We denote the selectivity of a pipeline Pi,j as s(Pi,j) =
ok∈Pi,j

s(ok), the selectivity of a region Pi as s(Pi) =

Pi.j∈Pi
s(Pi,j),
and the selectivity of the entire flow P as s(P) =

Pi∈P
s(Pi). We

denote the cost of a pipeline as c(Pi,j) and define it as:

c(Pi,j) =

ok∈Pi,j

sk(Pi,j) · c(ok). (2)

Here, sk(Pi,j) =

ol∈Pi,j,l<k s(ol) is the selectivity of the sub-pipeline
up to and excluding operator ok.
Region throughput. We first model a region’s throughput in
isolation, assuming no other regions are present in the system.
Let R(Pi) denote the maximum input throughput supported by a
region under this assumption. And let Rj(Pi) denote the output
throughput of the first j pipelines in the region assuming the
remaining pipelines have zero cost. Furthermore, let R(Pi,j) denote
the input throughput of the pipeline Pi,j if all other pipelines had
zero cost (making it the bottleneck of the system).

We have R0(Pi) = ∞ and also for j > 0:

Rj(Pi) =

s(Pi,j) · Rj−1(Pi) if Rj−1(Pi) < R(Pi,j)
s(Pi,j) · R(Pi,j) otherwise. (3)

In essence, Eq. (3) models backpressure. If the input throughput
of a pipeline, when considered alone, is higher than the output
throughput of the sub-region formed by the pipelines before it,
then the latter throughput is used to compute the pipeline’s output
throughput when it is added to the sub-region. This represents
the case when the pipeline in question is not the bottleneck.
The other case is when the pipeline’s input throughput, when
considered alone, is lower than the output throughput of the sub-
region formed by the pipelines before it. In this case, the former
throughput is used to compute the pipeline’s output throughput
when it is added to the sub-region. This represents the case when
the pipeline in question is the bottleneck within the sub-region.
Modeling the backpressure is important, as most real-word data
stream processing systems rely on it. As a concrete example,
the lack of back-pressure in the popular open-source stream
processing system Storm [36] has resulted in the development of
Heron [29].

The throughput of a pipeline by itself, that is R(Pi,j), can be
represented as:

R(Pi,j) = (c(Pi,j)+ h(Pi,j))−1, (4)

where h(Pi,j) is the cost of switching threads between sub-regions,
defined as:

h(Pi,j) = δ · (1(j > 1)+ 1(j < |Pi|) · s(Pi,j)). (5)

Here, δ is the thread switching overhead due to the queues involved
in-between. The input overhead is incurred for the pipelines except
the first one, and the output overhead is incurred for the pipelines
except the last one.

With these definitions at hand,we candefine the input through-
put R(Pi) as the output throughput of the region divided by the re-
gion’s selectivity. That is:

R(Pi) = R|Pi|(Pi)/s(Pi). (6)

B. Gedik et al. / J. Parallel Distrib. Comput. 96 (2016) 106–120 111
Parallel region throughput. The next step is to compute the
throughput of a parallel region. For that purpose, we first define
an aggregate scalability function f ⟨Pi⟩ for the region Pi as:

f ⟨Pi⟩(x) = min
ok∈Pi,j∈Pi

f ⟨oi⟩(x). (7)

The aggregate scalability function for a region simply takes the
smallest scalability value from the scalability functions of the con-
stituent operators within the region.

We denote the parallel throughput of a region Pi as R∗(Pi) and
define it as follows:

R∗(Pi) =

cp · log2(r(Pi))+

1
R(Pi) · f ⟨Pi⟩(r(Pi))

−1
. (8)

Here, cp is the replication cost factor for a parallel region. Recall
that a parallel region needs to reorder tuples. In the presence
of selectivity, this often requires attaching sequence numbers to
tuples and re-establishing order at the end of the parallel region.
The re-establishment of order takes time that is logarithmic in the
number of channels, per tuple. However, such processing typically
has a low constant compared to the cost of the operators.

Let R+(Pi) be the parallel throughput of the region when it
is considered within the larger topology that contains the other
regions, albeit assuming that all other regions have zero cost. We
have:

R+(Pi) =

h(Pi)+

1
R∗(Pi)

−1
. (9)

Here, h(Pi) is the cost of switching threads between regions,
which can be expressed as:

h(Pi) = δ · (1(i > 1)+ 1(i < |P |) · s(Pi)). (10)

Throughput of a program. Given these definitions, we are ready
to define the input throughput of a program, denoted as R(P).
We follow the same approach as we did for regions formed out of
pipelines.

Let us define the output throughput of the first k regions as
Rk(P), assuming the downstream regions have zero cost. We have
R0(P) = ∞, and for i > 0:

Ri(P) =

s(Pi) · Ri−1(P) if Ri−1(P) < R+(Pi)
s(Pi) · R+(Pi) otherwise. (11)

By dividing the output throughput of the program to its selec-
tivity, we get:

R(P) = R|P |(P)/s(P). (12)

Bounded throughput. So far we have computed the unbounded
throughput. In other words, we have assumed that each thread has
a core available to itself. However, in practice, there could be more
threads than the number of cores available. For instance, replicat-
ing a regionwith 3 pipelines 3 timeswill result in 9 threads, but the
system may only have 8 cores. However, replicating the region 2
timeswill result in an underutilized system that has only 6 threads
and thus not all cores can be used.

Let C denote the number of cores in the system. We denote
the bounded throughput of a program with parallelization config-
uration of m (the thread mapping function) and r (the operator
replica counts) as R(P (m, r), C). The bounded throughput is sim-
ply computed as the unbounded throughput divided by the utiliza-
tion times the number of cores. Formally,

R(P , C) = R(P) ·
C

U(P)
. (13)

Here U(P) is the utilization for the unbounded throughput.
Eq. (13) simply scales the unbounded throughput by multiplying
Fig. 4. # of parallel program configurations as a function of # of threads (M) and #
of operators (|O|).

it with the ratio of the maximum utilization that can be achieved
(which is C) to the unbounded utilization.We assume that the cost
due to scheduling of threads by the operating system is negligible.
For instance, if the unbounded throughput is 3 units, but results in
a utilization value of 6 and the system has only 4 cores, then the
bounded throughput is given by 3 · (4/6) = 2 units.

The computation of the utilization, U(P), is straightforward.
We already have a formula for the input throughput of the pro-
gram, which can be used to compute the input throughputs of the
parallel regions and the pipelines. Multiplying input throughputs
of the pipelines with the pipeline costs would give us the utiliza-
tion, after adding the overheads for the thread switching and scal-
ability. Overall utilization can be expressed as:

U(P) = R(P) ·

1≤i<|P |

si(P) ·

cp · log2(r(Pi))

+ h(Pi)+

1≤j<|Pi|

sj(Pi) ·

h(Pi,j)+ c(Pi,j)

. (14)

Here, sj(Pi) =

1≤l<j s(Pi,l) is the selectivity of the region Pi up
to and excluding the jth pipeline, and sj(P) =

1≤l<j s(Pl) is the

selectivity of the program P up to and excluding the jth region.

Optimization. Our ultimate goal is to find argmaxm,rR(P (m, r), C),
where m is subject to the rules we have outlined earlier. One way
to solve this problem is to combinatorially generate all possible
parallel configurations. This can be achieved via a recursive pro-
cedure that takes the maximum number of threads M and the set
of operators O as input, and generates all valid parallelization con-
figurations of the operators that uses at most M threads. Let us
denote the set of configurations generated by such a generator as
D(O,M). Thenwe can compute argmax(m,r)∈D(O,M)R(P (m, r), C) as
the optimal configuration. There are two problems with this ap-
proach. First, and the more fundamental one, is that, the computa-
tion of D(O,M) takes a very long time even for a small number of
threads andoperators; and this time grows exponentially, since the
number of variations increases exponentially (bothwith increasing
number of operators and maximum number of threads).

Fig. 4 shows the number of parallel configurations as a function
of the number of operators and the maximum number of threads
used. Second, we need to pick a reasonable value for M , which is
typically greater than C . It can be taken as a constant times the
number of cores, that is k · C . Unfortunately, using a large constant
will result in an excessively long running time for the configuration
generation algorithm. On the other hand, using a small constant
will have the risk of finding a sub-optimal solution.

112 B. Gedik et al. / J. Parallel Distrib. Comput. 96 (2016) 106–120
Algorithm 1: PipelinedFission(O,M ,α)
Data: O: operators (with their costs, c; selectivities, s; and state

kinds, k), M: number of cores, α: fusion cost threshold
Result: Pipelined fission configuration
R← ConfigureRegions(O, α) ◃ Configure regions
t ← 0; P ← ∅; r ← ∅ ◃ Initialize best settings
for s ∈ 0.1 · [0..10] do ◃ Range of utilization scalers

P ′ ← ConfigurePipelines(R, s ·M) ◃ Configure pipelines
r ′ ← ConfigureReplicas(R, P ′,M) ◃ Configure # of replicas
t ′ ← ComputeTput(R, P ′, r ′) ◃ Compute the throughput
if t ′ > t then t ← t ′; P ← P ′; r ← r ′

return ⟨R, P, r⟩ ◃ Return the final configuration

4. Heuristic solution

In this section we present an algorithm to quickly solve the
pipelined fission problem that was formalized in Section 3. Our al-
gorithm is heuristic in nature and trades off throughput optimality
to achieve reasonable performance in terms of solution time. De-
spite this, our results, presented later in Section 5, show that not
only does our algorithm achieve close to optimal throughput, but
also it outperforms optimal versions of fission-only and pipelining-
only alternatives.

4.1. Overview

Algorithm 1 presents our solution, which consists of three
phases, namely (i) region configuration, (ii) pipeline configuration,
and (iii) replica configuration. The region configuration phase di-
vides the chain of operators into chains of regions. This is done
based on the compatibility of the successive operators in terms of
their state, while avoiding the creation of small regions that can-
not achieve effective parallelization. The second and third phases
are used to configure pipeline and data parallelism, respectively.
That is, pipeline configuration creates pipelineswithin regions, and
replica configuration determines the number of replicas for the re-
gions. These two phases are run multiple times, each time with a
different amount of CPU utilization reserved for them, but always
summing up to the number of CPUs available in the system. In par-
ticular, we range the fraction of the CPU utilization reserved for
pipelining from 0% to 100%, in increments of 10%. The reason for
running the pipeline and region configuration phases with differ-
ing shares of CPU utilization is that, we do not know, a priori, how
much parallelism is to be reserved for pipelining versus howmuch
for fission, in order to achieve the best performancewith respect to
throughput. Among the multiple runs of the second and the third
phases, we pick the one that gives the highest throughput as our
final pipelined fission solution. Internally, pipeline configuration
phase and replica configuration phase work similarly. In pipeline
configuration, we repeatedly locate the bottleneck pipeline and
divide it. In replica configuration, we repeatedly locate the bot-
tleneck region and increase its replica count. In what follows, we
further detail the three phases of the algorithm.

4.2. Region configuration

Algorithm 2 presents the region configuration phase, where we
divide the chain of operators into a chain of regions. The algorithm
consists of two parts. In the first part, we form effectively paral-
lelizable regions. This may leave out some operators unassigned.
In the second phase, we merge the consecutive unassigned opera-
tors into regions as well.

The first for loop in Algorithm 2 represents the first step. We
form regions by iterating over the operators. We keep accumulat-
ing operators into the current region, as long as the operators are
Algorithm 2: ConfigureRegions(O,α)
Data: O: operators, α: fusion cost threshold
Result: Regions
R← {} ◃ The list of regions that will hold the final result
C ← {} ◃ The list of operators in the current potential region
for i← 1; i ≤ |O|; i← i+ 1 do ◃ For each operator
◃ The current region borrows the operator’s properties
if k(oi) ≠ f ∧ (|C | = 0 ∨ k(C) = s) then

k(C)← k(oi) ◃ Update the region’s kind
if k(oi) = p then ◃ If oi is partitioned

a(C)← a(oi) ◃ Update current region’s key

◃ The current region stays partitioned, possibly with a
broadened key

else if k(oi) = p ∧ a(oi) ⊆ a(C) then
a(C)← a(oi) ◃ Update current region’s key

◃ The current region and the operator are incompatible
else if k(oi) ≠ s then

if ComputeCost(C) > α then ◃ Region is costly enough
R← R ∪ {C} ◃Materialize the region in R
d(o)← 1,∀o∈C ◃Mark region’s operators as assigned

C ← {} ◃ Reset the current region
if k(oi) ≠ f then ◃ Parallelizable operator

i← i− 1 ◃ Redo iteration with empty current region
continue

C ← C ∪ {oi} ◃ Add the operator to the current region
◃ Handle the pending region at loop exit
if ComputeCost(C) > α then ◃ Region is costly enough

R← R ∪ {C} ◃Materialize the region in R
d(o)← 1,∀o∈C ◃Mark region’s operators as assigned

◃Merge all consecutive unassigned ops to a region
C ← {} ◃ Reset the current region
for i← 1; i ≤ |O|; i← i+ 1 do ◃ For each operator

if d(oi) = 1 ∧ |C | > 0 then ◃We have a complete run
R← R ∪ {C} ◃Materialize the region in R
C ← {} ◃ Reset the current region

else ◃ Run of unassigned operators continues
C ← C ∪ {oi} ◃ Add the operator to the current region

return R ◃ The final set of regions

not stateful or incompatible. Stateless operators are always com-
patible with the current region. Partitioned stateful operators are
only compatible if their key is the same as the key of the active re-
gion so far, or broader (has less attributes). In the latter case, the
region’s key is updated accordingly. When an incompatible opera-
tor is encountered, the current region that is formed so far is com-
pleted. However, this region is discarded if its overall cost is below
the fusion cost threshold, α. The motivation behind this is that, if a
region is too small in terms of its cost, parallelization overheadwill
dominate and effective parallelization is not attainable.

Once a region is completed, the algorithm continues with a
fresh region, starting from the next operator in line (the one
that ended the formation of the former region). The first step
of the algorithm ends, when all operators are processed. In the
second step, the operators that are leftwithout a region assignment
are handled. Such operators are either stateful or cannot form a
sufficiently costly region with the other operators around them.
In the second step, consecutive operators that are not assigned
a region are put into their own region. However, these regions
cannot benefit from parallelization in the pipeline and replica
configuration phases that are described next.

4.3. Pipeline configuration

Algorithm 3 describes the pipeline configuration phase. We
start with each region being a pipeline and iteratively split

B. Gedik et al. / J. Parallel Distrib. Comput. 96 (2016) 106–120 113
Algorithm 3: ConfigurePipelines(R,M)
Data: R: regions,M: number of cores
Result: Pipeline configuration
P ← R ◃ Initialize the set of pipelines to regions
◃ Find the bottleneck pipeline (C), and compute the total utilization
(U)
⟨C,U⟩ ← FindBottleneckPipeline(R, P)
while U ≤ M do ◃ System is not fully utilized
◃ Find the best split for the pipeline (maximizes throughput)
oi ← argmaxok∈C ComputeTput({oj∈C | j<k}, {oj∈C | j≥k})
C0 ← {oj ∈ C | j < i} ◃ First half of the best split
C1 ← {oj ∈ C | j ≥ i} ◃ Second half of the best split
if ComputeTput({C0, C1}) ≤ ComputeTput(C) then

break ◃ No further improvement is possible
P ← P \ {C} ∪ {C0, C1} ◃ Split the pipeline
⟨C,U⟩ ← FindBottleneckPipeline(P) ◃ Re-eval. for next iter.

return P ◃ The final set of pipelines

Algorithm 4: ConfigureReplicas(R, P,M)
Data: R: regions, P: pipelines,M: number of cores
Result: Set of number of replicas of each region
r[C] ← 1,∀C∈R ◃ Initialize the replica counts to 1
◃ Find the bottleneck region (C), and compute the total utilization
(U)
⟨C,U⟩ ← FindBottleneckRegion(R, P, r)
while U ≤ M do ◃ System is not fully utilized

t ← CalculateTput(R, P, r) ◃ Baseline throughput
r[C] ← r[C] + 1 ◃ Increase the channel count
if t ≥ CalculateTput(R, P, r) then ◃ Throughput decreased

r[C] ← r[C] − 1 ◃ Revert back
break ◃ No further improvement is possible

⟨C,U⟩ ← FindBottleneckRegion(R, P) ◃ Re-eval. for next iter.
return r ◃ Return the replica counts

the bottleneck pipeline. The FindBottleneckPipeline procedure
is used to find the bottleneck pipeline. This procedure simply
computes the unbounded throughput of the program as new
pipelines are successively added, using the formalization from
Section 3, and selects the last pipeline that resulted in a reduction
in the unbounded throughput as the bottleneck one. It then
reports this bottleneck pipeline, together with the utilization of
the current configuration. If the utilization is above or equal to
the total utilization reserved for the pipeline configuration phase
(recall Algorithm 1), then the iteration is terminated and the
pipeline configuration phase is over. Otherwise, i.e., if there is room
available for an additional pipeline, we find the best split within
the bottleneck pipeline. This is done by considering each operator
as a split point and picking the split that provides the highest
unbounded throughput. However, if the unbounded throughput
of this split configuration of two consecutive pipelines is lower
compared to the original single pipeline (which might happen
for low cost pipelines due to the impact of thread switching
overhead), we again terminate the pipeline configuration phase.
This is because, if the bottleneck pipeline cannot be improved, then
no overall improvement is possible.

4.4. Replica configuration

Algorithm 4 describes the replica configuration phase. It is sim-
ilar in structure to the pipeline configuration phase. However, it
works on regions, rather than pipelines. It iteratively finds the bot-
tleneck region and increases its replica count. The FindBottle-
neckRegion procedure is used to find the bottleneck region. This
procedure simply computes the unbounded throughput of the pro-
gram as new regions are successively added, using the formaliza-
tion from Section 3, and selects the last region that resulted in a
reduction in the unbounded throughput as the bottleneck one. It
then reports this bottleneck region, together with the utilization of
the current configuration. If the utilization is above the number of
CPUs available, then the iteration is terminated and the replica con-
figuration phase is over. Otherwise, i.e., if there is room available
for an additional parallel channel, we increment the replica count
of the bottleneck region. However, if the unbounded throughput of
this parallel region with an incremented replica count has a lower
unbounded throughput compared to the original parallel region
(which might happen for low cost regions due to the impact of
replication cost factor and thread switching overhead), we again
terminate the region configuration phase. This is because if the bot-
tleneck region cannot be improved, then no overall improvement
is possible.

5. Evaluation

In this section, we evaluate our heuristic solution and showcase
its performance in terms of the achieved throughput, as well as the
time it takes to locate a parallelization configuration. We perform
two kinds of experiments. First, we evaluate our pipelined fission
solution using model-based experiments under varying workload
and system settings. Second, we evaluate our algorithm using
stream programs written in IBM’s SPL language [20] and executed
using the IBM InfoSphere Streams [12] runtime.

In our experiments, we compare our solution against four
different approaches, namely: optimal, sequential, fission-only,
and pipelining-only.

• Sequential solution is the configuration with no parallelism.
• Optimal solution is the configuration that achieves the maxi-

mum throughput among all possible parallel configurations.
• Fission-only optimal solution is the configuration that achieves

the highest throughput among all possible parallel configura-
tions that do not involve pipeline parallelism (that is, each par-
allel channel is executed by a single thread).
• Pipelining-only optimal solution is the configuration with the

highest throughput among all possible parallel configurations
that do not involve data parallelism.

5.1. Experimental setup

For themodel-based experiments,we used the analyticalmodel
presented in Section 3 to compare alternative solutions. The five
alternative solutions we study were all implemented in Java.
The SPL experiments rely on the parallelization configurations
generated by these solutions to customize the runtime execution
of the SPL programs. The SPL programs are compiled down to C++
and executed on the Streams runtime [12].

We describe the experimental setup for the model based ex-
periments in Table 1. Each model based experiment was repeated
1000 times, whereas SPL based experiments were repeated 50
times. All experiments were executed on a Linux system with 2
Intel Xeon E5520 2.27 GHz CPUs with a total of 12 cores and 48 GB
of RAM.

We discuss the thread switching overhead and replication cost
factor for the SPL experiments later in Section 5.3.

5.2. Model-based experiments

Streaming applications contain operators with diverse prop-
erties. Accordingly, the throughput of the topology is highly de-
pendent on the properties of the operators involved. Hence, we
evaluate our solution by varying operator selectivity, operator

114 B. Gedik et al. / J. Parallel Distrib. Comput. 96 (2016) 106–120
Table 1
Experimental parameters: default values and ranges for model based experiments.

Name Range Default value

Operator cost mean [50, 250] 200
Operator cost stddev – 100
Number of operators [1, 8] 8
Number of cores [1, 12] 4
Selectivity mean [0.1, 1] 0.8
Selectivity stddev – 0.4
Stateless operator fraction [0, 0.8] 0.4
Stateful operator fraction [0, 0.8] 0.4
Partitioned stateful operator fraction [0, 0.8] 0.2
Thread switching overhead [10, 210] 1
Replication cost factor [10, 190] 50

Fig. 5. The impact of selectivity.

Fig. 6. The impact of operator cost.

cost, and operator kind with respect to state. Our default settings
use an operator cost that is 200 times the thread switching over-
head. When projected on SPL, this corresponds to a per-tuple op-
erator cost of 19 µs, which is quite reasonable based on our obser-
vation of real-world operator costs (see Fig. 17 for a sample real-
world application and its operator costs). In addition, a variety of
other factors impact the throughput of the topology, among which
fourmost important ones are replication cost factor, thread switch-
ing overhead, number of cores, and the number of operators. Ac-
cordingly, we also perform experiments on these.

5.2.1. Operator selectivity
The impact of operator selectivity on the performance of our

solution is shown in Fig. 5. The figure plots the throughput
(y-axis) as a function of the mean operator selectivity (x-axis)
Fig. 7. The impact of the operator kind.

for different approaches. We observe that for the entire range of
selectivity values, our solution outperforms the fission-only and
pipelining-only optimal approaches, and provides up to 2.7 times
speedup in throughput compared to the sequential approach. The
throughput provided by our approach is also consistent within
5% of the optimal solution, for the entire range of selectivity
values. Interestingly,we observe that the pipelining-only approach
provides reduced performance compared to fission-only approach,
for low selectivity values. This is because with reducing selectivity,
the performance impact of the operators that are deeper in the
pipeline reduces, which takes away the ability of pipelining to
increase the throughput (as speedup due to pipelining is limited
by the pipeline depth).

5.2.2. Operator cost mean
The impact of operator cost on the performance of our solution

is shown in Fig. 6. The figure plots the throughput (y-axis) as a func-
tion of the mean operator cost (x-axis) for different approaches.
Again we observe that the pipelined fission solution is quite ro-
bust, consistently outperforming fission-only and pipelining-only
optimal solutions, and staying within 5% of the optimal solution.
It achieves up to 2.5 times speedup in throughput compared to
the sequential approach. One interesting observation is that, for
smaller mean operator cost values, the performance of the fission-
only approach is below the pipelining-only approach, but gradu-
ally increases and passes it as the mean operator cost increases.
The reason is that, the fission optimization has a higher overhead
due to the replication cost factor, and thus, for small operator costs,
it is not beneficial to apply fission. As the operator cost increases,
fission becomes more effective.

5.2.3. Operator kind
The impact of the operator kind on the performance of our

solution is shown in Fig. 7. Recall that operators can be stateful,
stateless, or partitioned stateful. Fig. 7 plots the throughput
(y-axis) as a function of the fraction of stateless operators (x-axis)
for different approaches. While doing this, we keep the fraction
of partitioned stateful operators fixed at 0.2. We observe that the
percentage of stateless operators do not impact the pipelining-only
solution. The reason is that pipeline parallelism is applicable for
both stateful and stateless operators. On the other hand, fission-
only solution improves as the percent of the stateless operator
increases. The reason is that data parallelism is not applicable
for stateful operators. We also observe that our pipelined fission
solution stays close to the optimal throughout the entire range
of the stateless operator fraction. Again, pipelined fission clearly
outperforms pipelining-only and fission-only approaches.

B. Gedik et al. / J. Parallel Distrib. Comput. 96 (2016) 106–120 115
Fig. 8. The impact of replication cost factor.

Fig. 9. The impact of the thread switching overhead.

5.2.4. Replication cost factor
The impact of the replication cost factor on the performance

of our solution is shown in Fig. 8. The figure plots the throughput
(y-axis) as a function of the replication cost factor (x-axis) for dif-
ferent approaches. The results indicate that our solution consid-
erably outperforms pipelining-only and fission-only approaches,
providing up to 25% higher throughput compared to pipelining-
only optimal approach and up to 30% higher throughput compared
to fission-only optimal approach. Note that our pipelined fission
approachprovides performance as good as fission-only optimal ap-
proach when the replication cost factor is close to 0 and as good as
pipelining-only optimal approach when the replication cost factor
is very high. In effect, our solution switches from using fission to
using pipelining as the replication cost factor increases. We also
observe that the optimal solution’s throughput advantage is big-
ger for small replication cost factors, yet the gap with pipelined
fission quickly closes as the replication cost factor increases. In the
SPL based experiments presented later, we show that for realistic
replication cost factors, our solution provides performance that is
very close to the optimal.

5.2.5. Thread switching overhead
The impact of the thread switching overhead on the perfor-

mance of our solution is shown in Fig. 9. The figure plots the
throughput (y-axis) as a function of the thread switching overhead
(x-axis) for different approaches. We observe that the throughput
of all solutions, except the sequential one, decreases as the thread
switching overhead increases. It is an expected result as all so-
lutions benefit from parallelism via using threads, except the se-
quential solution. Again, our pipelined fission solution outperforms
Fig. 10. The impact of the number of cores.

Fig. 11. The impact of the number of operators.

pipelining-only and fission-only optimal solutions, and is able to
stay close to the optimal performance throughout the entire range
of thread switching overhead values. We also observe that as the
thread switching overhead increases, all approaches start to get
closer in terms of the throughput. This is due to the reducing paral-
lelization opportunities, as a direct consequence of the high thread
switching overhead values.

5.2.6. Number of cores
The impact of the number of cores on the performance of

our solution is shown in Fig. 10. The figure plots the throughput
(y-axis) as a function of the number of cores (x-axis) for different
approaches. We observe that for all approaches, the throughput
only increases to a certain degree, after which it stays flat. There
are two reasons for not being able to achieve linear speedup: (i)
not all operators are parallelizable, (ii) the thread switching and
replication cost factor introduce overheads in parallelization. We
again observe that our pipelined fission approach outperforms
the pipelining-only and fission-only optimal solutions. With
increasing number of cores, the gap between the optimal approach
and alternatives increases, as the search space gets bigger.
However, since the throughput flattens quickly, the increase in the
gap eventually stops. At that point, our approach is still within 8%
of the optimal.

5.2.7. Number of operators
The impact of the number of operators on the performance of

our solution is shown in Fig. 11. The figure plots the throughput
(y-axis) as a function of the number of operators (x-axis) for

116 B. Gedik et al. / J. Parallel Distrib. Comput. 96 (2016) 106–120
Fig. 12. Running time (in milliseconds).

different approaches. We observe that as the number of operators
increases, the performance of the pipelining-only solution relative
to the fission-only solution increases. The reason is that the
pipeline parallelism cannot help a single operator, so it is not
as effective for small number of operators. Our pipelined fission
solution provides up to 18% higher throughput compared to the
closest alternative. While the gap between the optimal solution
and ours increaseswith increasing number of operators, eventually
throughput flattens due to the fixed number of cores available.
Importantly, our approach stays within 5% of the optimal solution.

5.2.8. Running time
We also evaluate the running time of our pipelined fission

algorithm. Fig. 12 plots running time in terms of milliseconds,
for our pipelined fission solution and the exhaustive optimal
approach. Unfortunately, the running time of the optimal solution
dramatically increases with increasing number of operators and
cores. For 9 operators and 9 cores, the running time reaches 2 min,
which makes it inapplicable for runtime adaptation. Furthermore,
the time grows very quickly, reaching hours for 10 operators and
10 cores (not shown), and becomes practically unusable even for
static optimization for larger setups. However, even if the number
of operators and cores are high, our pipelined fission algorithm
completes much faster (under 5 ms).

5.3. SPL experiments

In our second set of experiments, we use IBMs SPL language
and its InfoSphere Streams runtime to evaluate the effectiveness
of our solution. In order to perform this experiment, we need to
determine the value of the replication cost factor and the thread
switching overhead for the InfoSphere Streams runtime.

5.3.1. Thread switching overhead
For determining the thread switching overhead,weuse a simple

pipeline of two operators. We run this topology twice, once with
a single thread and again with two threads. Let c be the cost of
the operator. For the case of two threads, the throughput achieved,
denoted as Tp, is given by:

Tp = 1/(c + δ). (15)

On the other hand, for the case of a single thread, the throughout
achieved, denoted as Ts, is given by:

Ts = 1/(2 · c). (16)
By using Ts and Tp, we can compute the thread switching
overhead, δ, without needing to know the operator cost c. More
specifically,

δ =
1
Tp
−

1
2 · Ts

. (17)

In order to calculate the thread switching overhead for our
SPL experiments, we measure the throughput of the topology
with and without pipeline parallelism for varying tuple sizes, and
use Eq. (17) to compute the thread switching overhead. The use
of different tuple sizes is due to the implementation of thread
switchingwithin the SPL runtime, which requires a tuple copy (the
cost of which depends on the tuple size).

5.3.2. Replication cost factor
For determining the replication cost factor, we use a simple

pipeline of three operators, where the first and the last operators
are the source and the sink operators with no work performed and
the middle operator has cost c. We then run this topology with
different number of parallel channels used for themiddle operator.
Let n denote the number of channels used. We can formulate the
throughput as:

Tp(n) =

2 · δ + c

n
+ log2 n · cp

−1
. (18)

If we know the throughput for two different number of
channels, say T (n1) and T (n2), thenwe can compute the replication
cost factor, cp, independent of other factors, such as the cost c , as
follows:

cp =
1

n2·Tp(n1)
−

1
n1·Tp(n2)

log2 n1
n2
−

log2 n2
n1

. (19)

In order to calculate the replication cost factor for our SPL
experiments, we measure the throughput of our sample topology
with different number of replicas for varying tuple sizes, and use
Eq. (19) to compute the replication cost factor.

By using the calculated thread switching overhead and repli-
cation cost factor values, we perform SPL experiments to evaluate
our solution for varying operator count, selectivity, cost, and kind.
Throughput is again our main metric for evaluation. The applica-
tions used for these experiments are similar to the ones from the
model-based experiments, but are written using the SPL language.
The operators used are busy operators that perform repeated mul-
tiplication operations to emulate work (the cost is the number
of multiplications performed). To emulate selectivity, they draw
a random number for each incoming tuple and compare it to the
selectivity value to determine if the tuple should be forwarded or
not. This setup enables us to study a wide range of parameter set-
tings. To further strengthen the evaluation, we have also applied
our pipelined fission solution to a real-world application called
LogWatch, which we detail later in this section.

5.3.3. Operator selectivity
Fig. 13 plots throughput (y-axis) as a function of the mean

operator selectivity (x-axis) for the optimal, pipelined fission, and
sequential solutions using SPL. We see that all approaches achieve
lower throughput as the operator selectivity increases. Pipelined
fission solution provides practically the same performance as the
optimal solution for selectivities beyond 0.7 and is within 15% of
the optimal for selectivities as small as 0.3. When the selectivity
gets very low, the variance in results significantly increases as very
few tuples make it through the pipeline.

B. Gedik et al. / J. Parallel Distrib. Comput. 96 (2016) 106–120 117
Fig. 13. Impact of selectivity (using SPL).

Fig. 14. The impact of operator cost (using SPL).

Fig. 15. The impact of the number of operators (using SPL).

5.3.4. Operator cost mean
Fig. 14 plots throughput (y-axis) as a function of the mean

operator cost (x-axis) for the optimal, pipelined fission, and
sequential solutions using SPL. It is not surprising that the
throughput decreases as the mean operator cost increases, for all
approaches. More interestingly, our approach again performs as
good as the optimal approach throughout the entire cost range, for
which we are still within 10% of the optimal.
Fig. 16. The impact of the operator kind (using SPL).

5.3.5. Number of operators
Fig. 15 plots throughput (y-axis) as a function of the number of

operators (x-axis) for the optimal, pipelined fission, and sequential
solutions using SPL. As expected, as the number of operators in
a topology increases, throughput of a topology decreases for all
approaches. Even for high number of operators, the throughput
achieved by pipelined fission solution is as good as the optimal one.

5.3.6. Operator kind
Fig. 16 plots throughput (y-axis) as a function of the fraction of

stateless operators. The change in operator kind does not affect the
sequential solution as in Fig. 16. On the other hand, as the percent-
age of stateless operators increases, the throughput achieved in-
creases. The reason is that stateless operators can benefit fromboth
data and pipeline parallelism. As it can be seen from the figure, our
pipelined fission solution again performs close to the optimal so-
lution, providing the same throughput when the stateless fraction
is 0.7 or more, and within 10% of the optimal for smaller fractions.

5.3.7. The LogWatch application
The LogWatch application is an SPL application that monitors

Linux login audits, looking for logins that were preceded by many
failed login attempts from the same host. Such logins are flagged as
break-ins. The input is synthetic data based on real data collected
from a public-facing server which experienced a break-in attempt
about every 2 s for a 12 h period. The real data has been modified
with several fake break-ins, and the 12 h period is cycled through
2000 times. The application was first used in [15], but has been
modified for this work. The modification involves reworking a
branch in the application flow to put it into chain topology.
Fig. 17 lists the operators (in left-to-right order) in the LogWatch
application, including their kind with respect to state, selectivity
(between 0 and 1), and cost (in terms of microsecs/tuple). Note
that while the kinds of the operators Range and Breakins are both
partitioned stateful, they are partitioned on different attributes
(denoted by r (host) and u (user) in the table).

Fig. 18 plots the throughput of the LogWatch application
as a function of the number of cores used, for the sequential,
pipelined fission, and optimal approaches. We observe that the
pipelined fission and the optimal approaches perform similarly.
This is consistent with the results from our synthetic application
experiments. We also observe that our approach has good
scalability. Going from 1 core to 12 cores (max available on our
machine), the throughput reaches 9.7× the throughput of the
sequential application.

118 B. Gedik et al. / J. Parallel Distrib. Comput. 96 (2016) 106–120
Fig. 17. Operators in the LogWatch application (in left-to-right order, cost inmicro
seconds per tuple).

Fig. 18. The number of cores vs. LogWatch throughput.

6. Related work

Our work belongs to the general area of auto-parallelization.
We first overview prior work in this area, and then focus on work
related to the core subject of our paper: auto-parallelization in
streaming systems.

6.1. Multi-threaded concurrency platforms

Determining parallelizable code regions and appropriately
assigning those regions to computing units for execution are
the two major issues that must be addressed by any automatic
parallelization system.

Multi-threaded concurrency platforms, such as Cilk++ [24],
OpenMP [30], and x10 [8], decouple expressing a program’s
innate parallelism from its execution configuration. OpenMP and
Cilk++ are widely used language extensions for shared memory
programs, which help express parallel execution in a program at
development-time and take advantage of it at run-time.

Various platforms are proposed in the literature for automati-
cally finding parallelizable program regions. One example is Krem-
lin [11], which is an auto-parallelization framework that comple-
mentsOpenMP [30]. Kremlin recommends to programmers a list of
regions for parallelization, which is ordered by achievable program
speedup. The speedup is calculated based on an improved critical
path analysis.

Cilkview [19] is a Cilk++ analyzer of program scalability in terms
of number of cores. Cilkview performs system-level modeling of
scheduling overheads (e.g., the bookkeeping costs to set up context
and the overhead of cache misses), and predicts program speedup.
Bounds on the speedup are presented to programmers for further
analysis.
Autopin [26] is an auto-configuration framework for finding
the best mapping between system cores and threads. Using profile
runs, Autopin exhaustively probes all possible mappings and finds
the best pinning configuration in terms of performance. Then,
threads are re-pinned using the best mapping found.

Alchemist [42] is a dependence profiling technique based on
post-dominance analysis and is used to detect candidate regions
for parallel execution. It is based on the observation that a
procedure with few dependencies with its continuation benefits
more from parallelization.

There has been extensive research in the literature on com-
piler support for instruction-level or fine-grained pipelined par-
allelism [27]. In our work, we look at coarse-grained pipelining
techniques that address the problem of decomposing an applica-
tion into higher-level pieces that can execute in pipeline as well as
data parallel. Relevant to our study is the work in [10], which pro-
vides compiler support for coarse-grainedpipelinedparallelism. To
automate pipelining, it selects a set of candidate filter boundaries
(a middleware interface exposed by DataCutter [6]), determines
the communication volume for these boundaries, and performs de-
composition and code generation in order to minimize the exe-
cution time. To select the best filters, communication costs across
each filter boundary are estimated by static program analysis and
a dynamic programming algorithm is used to find the optimal de-
composition. In comparison, ourwork performs combined pipelin-
ing and fission and has support for partitioned stateful operators.

6.2. Pipelining/fusion in streaming systems

Inmost streaming systemsoperators that are fused together use
the same thread, whereas nonfused operators can be run in paral-
lel. The key problem is to divide a program into fused pieces that
can be run in parallel, typically in a pipelined configuration. For in-
stance, StreamIt [16], which is a language for creating streaming
applications, uses fusion to coarsen the granularity of the graph to
the target number of cores, based on cost estimates [18]. This is
somewhat similar to our region configuration step, but is limited
to stateless operators or operators that only have read-only sliding
window state.

Aurora data stream management system uses fusion to
minimize scheduling overhead [2]. Based on a similar model of
streaming, SPADE [14] uses the COLA [25] fusion optimizer to
combine operators as much as possible, until a single processing
element fills the entire capacity of a core. A different approach
is taken by Tang and Gedik [39], where the stream program
initially runs as completely fused, and an auto-pipeliner is used to
detect bottlenecks and inject new threads into the runtime system
to improve throughput. With the exception of StreamIt, which
we further cover shortly, these systems are limited to pipelined
parallelism, and do not perform combined pipelining and fission.

6.3. Fission in streaming systems

StreamIt [17] performs both pipelining and fission. It addresses
the safety question of fission by only replicating operators that
are either stateless or whose operator state is a read-only sliding
window. Assuming the same model of synchronous data flow
(SDF), Kudlur and Mahlke present a solution for orchestrating
the execution of stream programs on multicore platforms [28]. It
uses an integrated unfolding and partitioning based integer linear
programming solution for this purpose. As opposed to SDF based
systems, our work targets data stream management systems that
typically contain operators that are partitioned stateful and exhibit
dynamic selectivity. Thus, rather than having a static schedule
based execution model, we adopt a backpressure based runtime
system.Wemodel its throughput in order to formulate a pipelined

B. Gedik et al. / J. Parallel Distrib. Comput. 96 (2016) 106–120 119
fission configuration that can provide optimal throughput. Work
on elastic operators [32] also generalizes fission beyond the SDF
setting to work on stateful operators with dynamic data rates.
However, the work is limited to fission only and does not support
pipelining.

A related problem is to perform fission dynamically, that is
to adjust the width of the parallel region based on the changing
runtime andworkload conditions. SEDA achieves this via a thread-
pool controller, which can adjust the number of threads to increase
parallelism, while preserving locality [40]. MapReduce systems
dynamically adjust the number of workers assigned to the map
tasks [9]. Elastic operators [32] adjust the number of threads
assigned to an operator by using a control loop. An extension of
it [15] applies similar kind of control in a distributed setup, where
replication is not limited to a single operator and replicas can
run across different hosts. While our paper does not particularly
deal with the adaptation aspect, its model based approach and
efficient heuristic solver makes it perfectly suitable for runtime
optimization based on feedback from a performance profiler.

A general overview of optimizations in streaming systems,
including parallelization, is given in [23]. Overall, our work is
distinguished from earlier work on streaming systems, as it is the
only work that combines pipelining and fission in the context of
partitioned stateful operators with dynamic selectivity.

7. Conclusion

Weproposed a pipelined fission solution that can quickly locate
a parallelization configuration for accelerating data stream pro-
cessing applications, and can provide throughput close to the opti-
mal. In order to achieve this aim, our algorithm incorporates stages
that greedily perform data and pipeline parallelism with a vary-
ing fraction of resources dedicated to the two different paralleliza-
tion approaches. Our model based experimental evaluation shows
that our proposed algorithm is effective both in terms of running
time and throughput under varying operator, system, and work-
loadproperties. Our evaluationusing an industrial-strength stream
processing engine showcases strong results as well, where our
pipelined fission solution provides throughput that is very close
(5%–10%) to that of the optimal.

References

[1] D. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel, M. Cherniack, J.-H. Hwang,
W. Lindner, A. Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, S. Zdonik, The
design of the Borealis stream processing engine, in: Innovative Data Systems
Research Conference, CIDR, 2005.

[2] D.J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee,
M. Stonebraker, N. Tatbul, S. Zdonik, Aurora: A new model and architecture
for data stream management, VLDB J. 12 (2) (2003) 120–139.

[3] H. Andrade, B. Gedik, D. Turaga, Fundamentals of Stream Processing:
Application Design, Systems, Analytics, first ed., Cambridge Press, Cambridge,
UK, 2014, (Chapter 12.4)—The Semiconductor Process Control application.

[4] H. Andrade, B. Gedik, K.-L. Wu, P.S. Yu, Processing high data rate streams in
systems, J. Parallel Distrib. Comput. (JPDC) 71 (2011) 145–156. Special Issue
on Data Intensive Computing.

[5] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, R. Motwani, I. Nishizawa,
U. Srivastava, D. Thomas, R. Varma, J. Widom, STREAM: The Stanford stream
data manager, IEEE Data Eng. Bull., Vol. 26, no. 1.

[6] M.D. Beynon, T.M. Kurç, Ü.V. Çatalyürek, C. Chang, A. Sussman, J.H. Saltz,
Distributed processing of very large datasetswithDataCutter, Parallel Comput.
J. 27 (11) (2001) 1457–1478.

[7] E. Bouillet, R. Kothari, V. Kumar, L. Mignet, S. Nathan, A. Ranganathan,
D.S. Turaga, O. Udrea, O. Verscheure, Processing 6 billion CDRs/day: from
research to production (experience report), in: International Conference on
Distributed Event Based Systems, DEBS, 2012.

[8] P. Charles, C. Grothoff, V.A. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu,
C. von Praun, V. Sarkar, X10: An object-oriented approach to non-
uniform cluster computing, in: International Conference on Object-Oriented
Programming, Systems, Languages & Applications, OOPSLA, 2005.
[9] J. Dean, S. Ghemawat,Mapreduce: Simplified data processing on large clusters,
in: USENIX Symposium on Operating Systems Design and Implementation,
OSDI, 2004, pp. 137–150, 2008.

[10] W. Du, R. Ferreira, G. Agrawal, Compiler support for exploiting coarse-grained
pipelined parallelism, in: Supercomputing Conference, SC, 2003, p. 8.

[11] S. Garcia, D. Jeon, C.M. Louie, M.B. Taylor, Kremlin: Rethinking and rebooting
gprof for the multicore age, in: International Conference on Programming
Language Design and Implementation, PLDI, 2011.

[12] B. Gedik, H. Andrade, A model-based framework for building extensible, high
performance stream processing middleware and programming language for
IBM InfoSphere Streams, Software: Practice and Experience 42 (11) (2012)
1363–1391.

[13] B. Gedik, H. Andrade, K.-L. Wu, A code generation approach to optimizing
high-performance distributed data stream processing, in: ACM International
Conference on Information and Knowledge Management, CIKM, 2009.

[14] B. Gedik, H. Andrade, K.-L.Wu, P.S. Yu,M. Doo, SPADE: The systems declarative
stream processing engine, in: ACM International Conference on Management
of Data, SIGMOD, 2008, pp. 1123–1134.

[15] B. Gedik, S. Schneider, K.-L.W.M. Hirzel, Elastic scaling for data stream
processing, IEEE Trans. Parallel Distrib. Syst. (TPDS). http://dx.doi.org/10.1109/
TPDS.2013.295.

[16] M.I. Gordon, W. Thies, S. Amarasinghe, Exploiting coarse-grained task, data,
and pipeline parallelism in stream programs, in: International Conference on
Architectural Support for Programming Languages and Operating Systems,
ASPLOS, 2006.

[17] M.I. Gordon, W. Thies, S. Amarasinghe, Exploiting coarse-grained task, data,
and pipeline parallelism in stream programs, in: International Conference on
Architectural Support for Programming Languages and Operating Systems,
ASPLOS, 2006, pp. 151–162.

[18] M.I. Gordon, W. Thies, M. Karczmarek, J. Lin, A.S. Meli, A.A. Lamb,
C. Leger, J. Wong, H. Hoffmann, D. Maze, S. Amarasinghe, A stream compiler
for communication-exposed architectures, in: International Conference on
Architectural Support for Programming Languages and Operating Systems,
ASPLOS, 2002, pp. 291–303.

[19] Y. He, C.E. Leiserson,W.M. Leiserson, The cilkview scalability analyzer, in: ACM
Symposium on Parallelism in Algorithms and Architectures, SPAA, 2010.

[20] M. Hirzel, H. Andrade, B. Gedik, G. Jacques-Silva, R. Khandekar, V. Kumar,
M. Mendell, H. Nasgaard, S. Schneider, R. Soule, K.-L. Wu, Streams processing
language: Analyzing big data in motion, IBM J. Res. Dev. 57 (2013) 7:1–7:11.

[21] M. Hirzel, H. Andrade, B. Gedik, V. Kumar, G. Losa, M. Mendell, H. Nasgaard, R.
Soule, K.-L. Wu, SPL language spec., Tech. Rep. RC24897, IBM, 2009.

[22] M. Hirzel, B. Gedik, Streams that compose using macros that oblige, in: ACM
Workshop on Partial Evaluation and Program Manipulation, PEPM, 2012.

[23] M. Hirzel, R. Soule, S. Schneider, B. Gedik, R. Grimm, A catalog of stream
processing optimizations, ACM Comput. Surv., Vol. 46, no. 4.

[24] Intel cilk++. http://software.intel.com/en-us/articles/intel-cilk-plus/ (re-
trieved October, 2014).

[25] R. Khandekar, K. Hildrum, S. Parekh, D. Rajan, J. Wolf, K.-L. Wu,
H. Andrade, B. Gedik, COLA: Optimizing stream processing applications
via graph partitioning, in: ACM/IFIP/USENIX Middleware Conference, Middle-
ware, 2009.

[26] T. Klug,M.Ott, J.Weidendorfer, C. Trinitis, Autopin: Automated optimization of
thread-to-core pinning onmulticore systems, Trans. High-Perform. Embedded
Archit. Compil. (HiPEAC) 3 (2011) 219–235.

[27] S.M. Krishnamurthy, A brief survey of papers on scheduling for pipelined
processors, ACM SIGPLAN Not. 25 (7) (1990) 97–106.

[28] M. Kudlur, S.A. Mahlke, Orchestrating the execution of stream programs on
multicore platforms, in: International Conference on Programming Language
Design and Implementation, PLDI, 2008, pp. 114–124.

[29] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal, J.M.
Patel, K. Ramasamy, S. Taneja, Twitter heron: Stream processing at scale,
in: ACM International Conference on Management of Data, SIGMOD, 2105,
pp. 239–250.

[30] Openmp. http://www.openmp.org (retrieved October, 2014).
[31] Samza project. http://samza.apache.org/ (retrieved Nov., 2014).
[32] S. Schneider, H. Andrade, B. Gedik, A. Biem, K.-L. Wu, Elastic scaling of data

parallel operators in stream processing, in: IEEE International Parallel and
Distributed Processing Symposium, IPDPS, 2009.

[33] S. Schneider, M. Hirzel, B. Gedik, K.-L. Wu, Safe data parallelism for general
streaming, IEEE Trans. Comput. (TC), Vol. 64, no. 2.

[34] M.A. Shah, J.M. Hellerstein, S. Chandrasekaran, M.J. Franklin, Flux: An adaptive
partitioning operator for continuous query systems, in: IEEE International
Conference on Data Engineering, ICDE, 2003.

[35] D.M. Sow, A. Biem, M. Blount, M. Ebling, O. Verscheure, Body sensor data
processing using stream computing.

[36] Storm project. http://storm-project.net/ (retrieved Nov., 2013).
[37] StreamBase Systems. http://www.streambase.com (retrieved Nov., 2013).
[38] S4 distributed stream computing platform. http://www.s4.io/ (retrieved May,

2012).
[39] Y. Tang, B. Gedik, Auto-pipelining for data stream processing, IEEE Trans.

Parallel Distrib. Syst. (TPDS) 24 (12) (2013) 2344–2354.
[40] M. Welsh, D. Culler, E. Brewer, SEDA: An architecture for well-conditioned,

scalable Internet services, in: ACM Symposium on Operating Systems
Principles (SOSP), 2001, pp. 230–243.

http://refhub.elsevier.com/S0743-7315(16)30033-8/sbref2
http://refhub.elsevier.com/S0743-7315(16)30033-8/sbref3
http://refhub.elsevier.com/S0743-7315(16)30033-8/sbref4
http://refhub.elsevier.com/S0743-7315(16)30033-8/sbref6
http://refhub.elsevier.com/S0743-7315(16)30033-8/sbref12
http://dx.doi.org/10.1109/TPDS.2013.295
http://dx.doi.org/10.1109/TPDS.2013.295
http://dx.doi.org/10.1109/TPDS.2013.295
http://dx.doi.org/10.1109/TPDS.2013.295
http://dx.doi.org/10.1109/TPDS.2013.295
http://dx.doi.org/10.1109/TPDS.2013.295
http://dx.doi.org/10.1109/TPDS.2013.295
http://dx.doi.org/10.1109/TPDS.2013.295
http://dx.doi.org/10.1109/TPDS.2013.295
http://refhub.elsevier.com/S0743-7315(16)30033-8/sbref20
http://refhub.elsevier.com/S0743-7315(16)30033-8/sbref21
http://software.intel.com/en-us/articles/intel-cilk-plus/
http://refhub.elsevier.com/S0743-7315(16)30033-8/sbref26
http://refhub.elsevier.com/S0743-7315(16)30033-8/sbref27
http://www.openmp.org
http://samza.apache.org/
http://storm-project.net/
http://www.streambase.com
http://www.s4.io/
http://refhub.elsevier.com/S0743-7315(16)30033-8/sbref39

120 B. Gedik et al. / J. Parallel Distrib. Comput. 96 (2016) 106–120
[41] X.J. Zhang, H. Andrade, B. Gedik, R. King, J.F. Morar, S. Nathan, Y. Park,
R. Pavuluri, E. Pring, R. Schnier, P. Selo, M. Spicer, V. Uhlig, C. Venkatramani,
Implementing a high-volume, low-latency market data processing system
on commodity hardware using IBM middleware, in: Workshop on High
Performance Computational Finance, SC-WHPCF, 2009.

[42] X. Zhang, A. Navabi, S. Jagannathan, Alchemist: A transparent dependence
distance profiling infrastructure, in: International Symposium on Code
Generation and Optimization, CGO, 2009, pp. 47–58.

Buǧra Gedik is an Associate Professor in the Department
of Computer Engineering, Bilkent University, Turkey. He
holds a Ph.D. degree in Computer Science from Georgia
Institute of Technology. His research interests are in data-
intensive distributed systems.
Habibe Güldamla Özsema is a graduate student in the
Department of Computer Engineering, Bilkent University,
Turkey. Her research interest is in parallel stream process-
ing systems.

Özcan Öztürk is an Associate Professor in the Department
of Computer Engineering, Bilkent University, Turkey.
He holds a Ph.D. degree in Computer Science from
Pennsylvania State University. His research interests are
in parallel systems, computer architecture, and compilers.

	Pipelined fission for stream programs with dynamic selectivity and partitioned state
	Introduction
	Background
	Terminology and definitions
	Execution model

	Problem formulation
	Application model
	Modeling the throughput

	Heuristic solution
	Overview
	Region configuration
	Pipeline configuration
	Replica configuration

	Evaluation
	Experimental setup
	Model-based experiments
	Operator selectivity
	Operator cost mean
	Operator kind
	Replication cost factor
	Thread switching overhead
	Number of cores
	Number of operators
	Running time

	SPL experiments
	Thread switching overhead
	Replication cost factor
	Operator selectivity
	Operator cost mean
	Number of operators
	Operator kind
	The LogWatch application

	Related work
	Multi-threaded concurrency platforms
	Pipelining/fusion in streaming systems
	Fission in streaming systems

	Conclusion
	References

