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Abstract—With the popularization of mobile phone usage, telecommu-
nication networks have turned into a socially binding medium. Consid-
ering the traces of human communication held inside these networks,
telecommunication networks are now able to provide a proxy for human
social networks. To study degree characteristics and structural proper-
ties in large-scale social networks, we gathered a tera-scale dataset of
call detail records that contains ~ 5 x 107 nodes and ~ 3.6 x 1010
links for three GSM (mobile) networks, as well as ~ 1.4 x 107 nodes
and ~ 1.9 x 10? links for one PSTN (fixed-line) network. In this paper,
we first empirically evaluate some statistical models against the degree
distribution of the country’s call graph and determine that a Pareto log-
normal distribution provides the best fit, despite claims in the literature
that power-law distribution is the best model. We then question how
network operator, size, density, and location affect degree distribution
to understand the parameters governing it in social networks. Our em-
pirical analysis indicates that changes in density, operator and location
do not show a particular correlation with degree distribution; however,
the average degree of social networks is proportional to the logarithm
of network size. We also report on the structural properties of the
communication network. These novel results are useful for managing
and planning communication networks.

Index Terms—social networks, degree analysis, call graph, empirical
analysis, tera-scale dataset

1 INTRODUCTION

HUMAN communication behavior is the root of the
usage pattern in physical and virtual communi-
cation networks, including telecommunication (telco)
networks and online social networks. While fixed-line
phones and shared computers in homes and offices
reflect family or colleague behavior; mobile phones
and portable computers better reflect individual usage
behavior. Technological developments in the last two
decades have resulted in two significant trends in human
behavior: 1) going frequently online and 2) owning
personal mobile computing and communication devices.
Thus, the end-user behavior of communication networks
has changed from group behavior to individual behavior.

Human communication behavior is highly related to
underlying social network relationships. Mobile phone
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communication patterns provide strong insights into hu-
man social relationships [28]. For instance, person A calls
person B usually because of a social relationship, e.g., B
is a friend of A or B does business with A. The more
social interactions dominate communication networks
and online media, the more user behavior on those
networks is dominated by human social relationships
and networks. Hence, managing and planning today’s
communication networks require a deep understanding
of user behavior on those networks and their social
structures.

Early studies on social networks were limited by
manual data collection and considered at most hun-
dreds of individuals [39]. Later, social network analy-
sis (SNA) became an interesting topic for many other
sectors and research fields, including recommender sys-
tems [31], [24]; marketing [7]; intelligence analysis [35];
network structure [16]; modeling epidemics spreading
[44]; clustering and community detection [6], [17], [18],
[15], @], [23] and complex systems [19]. Massive use
of electronic devices and online communication leaves
traces of human interaction and relationships, such as
phone call records, e-mail records, etc. Using these traces,
collective human behavior and social interactions can be
understood on a large scale, which was previously im-
possible [40]. Recently telecommunication datasets with
location information have been used to conduct research
on human behavioral patterns [8]], [21], [22], [41], [13],
[25], [42], mobile network behavior [43] and inferring
hierarchies [3§].

Social network analysis tries to understand the char-
acteristics a social network exhibits. The first and most-
cited characteristic among others is degree distribution of
nodes constituting a social network. A bulk of studies in
the literature on this topic reports that power-law best
fits with certain parameters [1]], [30], [10]. Other studies,
however, propose different statistical fit models [4], [36],
[34].

Since current studies are limited by the used datasets
from which their proposals are derived/obtained, it is
necessary to explore the influence of dataset specific
parameters on discovered social network characteristics.
This observation motivates us to conduct research on de-
gree distribution on larger scales to discover the param-
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eters governing degree distribution in social networks.
Among many current research issues to be investigated,
we prefer this less studied problem which requires a
complete dataset.

Therefore, we explore how

» network operator,

¢ network size,

o population density and

 geographic location
affect degree distribution in social networks.

To investigate these issues, we perform degree analysis
on different social networks derived from the telecom-
munication network call data of a country’sﬂ different
mobile (GSMEI) and fixed-line (PSTNEI) telco operators.
We obtain degree distribution results for these networks
to understand how well existing distribution models fit
reality.

In this study, our scope is limited to empirically re-
vealing the parameters that govern degree distribution,
and comparing a limited number of structural properties
with other studies.

Our paper contributes to the field in the following
ways:

o We first construct a countrywide call graph utilizing

a full call detail record (CDR) set of all mobile and
fixed-line telco network operators. This comprehen-
sive dataset allows us to analyze a social network
without wondering about possible bias from single-
operator, size, location or density-limited datasets.

o We question the root cause of different conclusions
in the literature about degree distribution in social
networks, suggesting that they might be related to
utilized datasets” density, location, size and source
operator.

o We perform controlled empirical analyses for var-
ious densities, sizes, locations, and operators,
and form conclusions on density-degree, location-
degree, size-degree and operator-degree distribution
relations.

o We analyze call graph for structural properties and
compare it with other social graphs.

The paper proceeds as follows: In Section 3, we de-
scribe the dataset used in this study and highlight its
unique features. In Section |4 we discuss the statistical
modeling of degree distribution in social networks and
report the results of our empirical analysis. We also
provide an analysis and interpretation for each of the
following factors, any or all of which may affect social
network characteristics: network operator, network size,
network density and network location. Then we provide
structural properties of the communication network in

!Data was provided on the condition of anonymization, including
country anonymity.

2Global System for Mobile Communications (GSM) is a digital cellular
network standard used by mobile phones.

3Public switched telephone network (PSTN) stands for the circuit
switched telephone network and in this paper all PSTN data is
originated from fixed-line telephone networks.

Section [5| Finally, in Section [6, we present our conclu-
sions.

2 RELATED WORK

Aiello et al. [1]] study the statistics of phone call graphs
for long-distance fixed-lines and report that in-degree
distribution is fitted by power-law distribution with
exponent v = 2.1. In [30], Onnela et al. work on mo-
bile phone data containing N = 4.6 x 10° nodes and
L = 7.0 x 10° links and report a power-law distribution
fit with exponent v = 8.4. They describe the dataset as
"all mobile phone call records of calls among ~ 20%
of the entire population of the country", which implies
that they used a sub-network of a country’s operator
network. Dasgupta et al. [10] present another study on
mobile phone data, with a reciprocal call graph contain-
ing N = 2.1x10° nodes and L = 9.3x10° directed edges.
That dataset belongs to one of the world’s largest mobile
operators. The authors report that degree distribution
is fitted well by power-law distribution with exponent
v = 2.91. Another study by Nanavati et al. [29] reports
similar results. On the other hand, Bi et al. [4] propose
the discrete Gaussian exponential (DGX) and report
that it provides a very good fit with many datasets,
including telco data. Moreover, Seshadri et al. [36], using
mobile phone data from an anonymous operator in the
US, study modeling degree characteristics and report
that degree distribution significantly deviates from what
would be expected by power-law and log-normal dis-
tributions. Their findings suggest that double Pareto
log-normal distribution (DPLN) provides better fits for
degree distribution. In [34], Sala et al. analyze Facebook’s
social network data and report that Pareto log-normal
(PLN) distributions are much better predictors of degree
distributions in real graphs than power-law distributions
are.

3 DATASET

Obtaining necessary and sufficient data is one of the
most difficult steps in social network analysis. Until the
current pervasive use of mobile phones, the lack of large-
scale data has limited our knowledge regarding human
relationships and social networks. Now, however, the
situation has changed. Call detail records (CDR) are
records of communication traces stored by operators
primarily for billing purposes. Mobile phone companies
can collect CDRs for all subscriber calls going through
their networks, and this CDR database is the most
exhaustive dataset to date on human mobility and social
interactions. For billing purposes, GSM networks record
the base station each mobile phone call is made from,
and this data thus holds the details of individual user
movements. Having almost 100% penetration of mobile
phones, the GSM network can now function as the most
comprehensive proxy of a large-scale social network
available today [37].
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Lack of large and comprehensive data was one of the
main reasons for doubts behind social network claims
like Milgram’s six degrees of separation (his small-
world experiment) [27]. Now, however, one can (with
permission) access anonymized CDRs from all network
carriers providing service in a country.  Particularly,
European Union Data Retention Directive 2006/24/EC
requires “the retention of data generated or processed
in connection with the provision of publicly available
electronic communications services or of public com-
munications networks” [14] and each country has its
own specific application of this requirement. In this
study case, application of this direction is managed by
a government agency which stores and processes the
data of all network operators in its data-center. Upon
our request to access the data for academic research
purpose, we are granted access to anonymized data with
a non-disclosure agreement and a data access agreement
which limits study to be done on their own premises, i.e.,
no data movement, and limits access time to a specific
duration. Thus, we can extract information about social
interactions and construct a social network of the whole
country from data provided by all mobile and fixed-line
operators. This situation has the following advantages
over previous studies:

o To the best of our knowledge, the dataset we use
is much larger than the largest dataset contain-
ing trajectories and social interactions analyzed to
date [37].

o Our data represents all country communication in-
teraction, which is free from bias for a particular
operator, size, location or density.

o The data contains spatial positions so we can also
analyze the effect of location on social networks.

We are aware of the following limitations of our
dataset:

o It covers calls of a one-month period and therefore
some infrequent links might be missing.

o It comprises data from only voice and SMS com-
munications. People might be using many other
communication channels including e-mails, instant
messaging tools, smartphone apps, etc.

Consequently, our dataset does not contain whole
social network but a projection of it. It also contains
many non-social entities.

TABLE 1: Structure of data used in this work

Field name [ Value description |

source
destination

source party of communication: calling party
destination party of communication: called party

operator network operator ID

communication type | voice, SMS services, etc.

date time time of communication in seconds resolution
duration duration of communication in seconds resolution
cell ID location of communication in connected base-

station location resolution

The dataset used in this study covers all GSM (three
networks) and PSTN (one network) CDRs for a whole

country between 1 January 2010 and 31 January 201
Data is anonymized and used solely for this research.
The structure of the data is presented in Table [I} The
dataset contains N ~ 5 x 107 nodes and L = 3.6 x 10'°
links for the GSM networks, and N = 1.4x 107 nodes and
L ~ 1.9x10? links for the PSTN network. In this dataset,
GSM penetration was approximately 82% while PSTN
penetration was 23% in 2010. We compute penetration
as the ratio of phone users to the total population of 10+
years oldsﬂ Assuming single subscription per user, 82%
mobile penetration covers 70% of the total population.
In this study, we also refer to this dataset as the SNA
(social network analysis) database.

4 ANALYSIS

For a sound and complete understanding of degree
distribution in a large-scale social network, we inves-
tigate the effects of the following factors: 1) network
operator to which the dataset belongs; 2) size of the
community network; 3) population density; 4) location
of the community live. For each factor, we perform an
analysis to determine how it affects degree distribution.

41

A call graph is a projection of a social graph and reflects
some properties of it (i.e., a call graph is considered to
reveal citizens’ social interactions). Our dataset consists
of call traces from the one PSTN and the three GSM
operators in the country. Hence, we separately construct
call graphs of the whole country for the three GSM op-
erators and one PSTN operator. We also construct a call
graph of the whole country for all GSM networks. Then
we try to analyze degree distribution characteristics.

We first compute the degree distribution of the call
graph with no filtering. We call such a network 0-
Core network. Then we filter out automated one-way
calls which may not imply a work-, family-, leisure- or
service-based relationship [30]. To eliminate the auto-
mated calls, we use our so-called 1-Core network (recipro-
cal network) to also characterize degree distribution. if A
has called B then 0-Core network has an edge. However,
each pair of nodes (A, B) in the 1-Core network has an
edge if and only if A has called B and B has called A at
least once in the observation duration. Please note that
this filtering eliminates only non-social entities which
make one-way calls. Still, there may be many non-social
entities in the dataset like customer support lines and
business lines.

When we plot the degree distributions (i.e., degree
versus frequency of appearance of that degree in the
call graph) on linear x-y scales, all distributions resemble
an L shape (the curve quickly declines and most of
the x-axis is close-to-zero valued). Visually, it is hard

Social Network Modeling

4Unfortunately, we cannot make this dataset available due to a non-
disclosure agreement signed.
5The country population of 10+ years olds was 61M in 2010.
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to interpret behavior from these plots. If we plot the
degree distributions in log-log scales, however, the plots
are easier to follow. Thus, we use log-log plots in this
study. Degree distributions in Fig. [1| are heavy tailed
until a certain degree; then it takes an out-of-pattern fat-
tail like shape. This means that the probability of having
very high degree nodes is higher than what you would
expect under a model fitting low-degree nodes. In Fig.
(a) we see a slope change around degree 5000 where
1/105 of the nodes are covered. We can see a similar
situation in parts (b), (c), and (d). Nodes with large
degrees present a particular behavior, which we think
is caused by non-social entities (e.g., business-related
phone numbers, customer support lines, etc.). Compar-
ing 0-C GSM, 1-C GSM, 0-C PSTN and 1-C PSTN graphs,
we see that out-of-pattern vertex ratio is higher in the
PSTN network than the GSM network. Also in both
PSTN and GSM networks, 1-C networks show lower
out-of-pattern vertex ratio compared to 0-C networks.
This observation supports that out-of-pattern vertices are
business phones or automated agents since 1-C networks
cover less number of such non-social entities. Moreover,
the horizontal nature of the tails on 0-C networks can be
explained by the fact that automated agents may call
fixed numbers of people in a 30 day period.

The literature related to degree distribution in call
graphs and social networks includes various works on
power-law distributions, power-law with cutoff distri-
butions, log-normal distributions, exponential distribu-
tions, DPLN distributions and PLN distributions. All
these distributions are possible candidates to statistically
model degree distribution in a complex network with an
L-shape-like degree-frequency distribution.

For each constructed social network (call graph) in
our dataset, we try to fit all candidate distributions and
compute their goodness of fit. For each hypothesized
distribution, we modeled datasets with the distribution
and then solved least-squares estimates of the distribu-
tion parameters of the nonlinear model using Gauss-
Newton algorithm [5]. We used the R language [32]
for statistical computations and graphics. All analysis
code including our fitness function implementation is
available onlin€®|

Fig. |1} shows GSM 0-Core, GSM 1-Core, PSTN 0-Core
and PSTN 1-Core network fit results. In GSM 0-Core
and 1-Core networks, power-law distribution provides
the worst fit, while DPLN and PLN provide the best fit.
When we look at each operator network shown in Fig.
DPLN and PLN continue to be the best-fitting models.

It is clear that none of the curves fit the tail of the net-
work particularly for degree 2 150. The tail of network
for such large degrees, i.e.,degree 2 150, represents less
than one percent of nodes. Dunbar’s study [12], [20] on
the maximum number of individuals with whom any
person can maintain stable social relationships suggests
that number lies between 100 and 230; it is usually

6see www.cs.bilkent.edu.tr/~haksu/ callgraph/|

assumed to be 150. Considering Dunbar’s study, the tail
of the network most probably represents non-human
complex nodes. Since in this study our scope is social
networks with human subjects, curve fitting to the net-
work body is sufficient to model the social network.

We also evaluate the fit success of these distribution
models numerically. Table [2| summarizes the residual
sum of squares (RSS)-based fit success values for each
network-distribution pair. The best fits are shown in bold
in the table. To compute model fit success (p-value), we
first compute normalized distance where distance is the
residual sum-of-squares, then subtract it from 1. Thus
we get a p-value which measures how tight the model
fits the real dataset. A large p-value indicates better fit
to the empirical data.

The fit success results in Table ] put forward two
distributions: DPLN and PLN. The former provides the
best fit for three social networks (0C PSTN, 1C PSTN,
and 1C GSM C), while the latter provides the best fit for
four social networks (0C GSM A, 0C GSM ALL, 1C GSM
Aand 1C GSM B). Both distributions provide equally
good fits for three social networks (1C GSM ALL, 0C
GSM BOC GSM Q). There is no significant difference in
their fit success; PLN is only slightly better than DPLN.
In fact, DPLN and PLN do not lead to significantly better
fits than the other models except power-law distribution.
It is only a marginal improvement and should not be
accepted as a generalized improvement. power-law with
cutoff, log-normal, exponential, PLN and DPLN are possible
representative distributions. Nevertheless, considering
its lower number of parameters than DPLN and its
slightly better fits than other distributions, we choose
PLN distribution as the representative distribution for
our social network datasets. Hereafter, when we need to
model a network, we will use PLN.

4.1.1  Working With Large Datasets

We encountered some limitations while working with
large datasets. Initially, we started with a commercial
relational database management system (RDBMS) on
high-end hardware with ~ 45 terabyte disk, 24 CPU
cores, and 96 GB memory. Extract, transform, and load
processes take three days and require careful perfor-
mance tuning. Using this RDBMS solution, we are able
to compute and export the degree distributions used in
Section 8 GB memory is sufficient for R
programs to compute our fitting models, statistics, and
plots. On the other hand, relational databases perform
poorly on graph traversal operations, i.e., multiple self-
joins of large edges table become computationally infea-
sible. In order to be able to compute traversal-based net-
work properties (e.g., clustering-coefficients) we setup
a Hadoop/HBase cluster and loaded our dataset into
HBase tables. We then implemented network analysis
algorithms for graphs stored in HBase (see [2] for used
platform details). Hadoop/HBase cluster solution en-
ables us to compute the network properties reported in
this study.
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Fig. 1: Network degree distributions and model fits for (a) 0-Core GSM ALL network (b) 1-Core GSM All network
(c) 0-Core PSTN ALL network (d) 1-Core PSTN All network. Qualitative visual analysis suggest that PNL and
DPLN distributions provides tightest fit while power-law distribution deviates most. See Table 2| for p-value based

quantitative results.

4.2 Network Operator

By comparing the degree distribution characteristics of
social networks derived from different operator data, we
try to answer the question of whether characteristics are
dependent on network operators or not. Doing so will
clarity if investigating one operator’s social network of
users is sufficient for social network analysis.

To analyze the effect of the network operator, we
again use the social networks constructed in Section
i.e.,, three GSM operators’ social networks, one PSTN
operator’s social network and the GSM operators’ joint
social network. Fig. 3| illustrates and compares degree
distribution in the GSM and PSTN networks. The for-
mer displays a higher density for lower degrees, while

the latter displays a higher density for degrees larger
than 122. We think that the high density for higher
degrees in the PSTN network might be because fixed-line
phones are used as household items rather than personal
belongings, and are shared by many members in the
house. Thus, PSTN node degrees can be considered
as the sum of social degrees of multiple individuals.
Fig. [ shows the degree distributions of the various GSM
operator networks. We can see that there is no significant
difference between degree distributions of the three GSM
operators’ networks and the joint network derived from
the three operators. We also apply the Kruskal-Wallis
Test to compare the degree distribution of complex com-
munication networks breakdown by network-operator.
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Fig. 2: Model fits for 0-Core and 1-Core variations of GSM A, GSM B and GSM C networks are illustrated. In all
networks DPLN and PLN models perform better than the rest of models. See Table 2| for p-value based quantitative
results.
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TABLE 2: Numerical distribution fit success results for various networks

[ Network \ Distribution | Power-law [ Power-law with cutoff [ Exponential | Log-normal (DGX) | DPLN [ PLN ]
1-Core GSM ALL 0.8597156 0.9980274 0.9983446 0.9954544 0.9999636 | 0.9999639
1-Core GSM B 0.8579531 0.9985913 0.9976061 0.9978552 0.9999707 | 0.9999709
1-Core GSM A 0.8579372 0.9981947 0.997876 0.9950699 0.9999429 | 0.9999432
1-Core GSM C 0.8799332 0.9977323 0.9991961 0.9961851 0.9999637 | 0.9999612
1-Core PSTN ALL 0.8473295 0.9991812 0.9955966 0.9976018 0.9999069 | 0.9996437
0-Core GSM ALL 0.7714906 0.9966974 0.9953066 0.991538 0.999826 0.9998263
0-Core GSM B 0.7733198 0.994963 0.9966673 0.9902132 0.9999488 | 0.9999488
0-Core GSM A 0.7642553 0.997863 0.9933416 0.993648 0.9997411 | 0.9997416
0-Core GSM C 0.7957198 0.9938651 0.997852 0.9879222 0.9997517 | 0.9997517
0-Core PSTN ALL 0.7228171 0.986819 0.9904483 0.9867846 0.9969739 | 0.9946071

As the result of this test, the p-value turns out to be

greater than the 0.05 significance level (p-value=0.84). ~

Hence, we conclude that the degree distributions of $7 T o guared =007

the analyzed social networks at network-operator break- AN prvalue=0.9587

down are statistically identical. M,

5, ] == R chi-squared = 19.43 g.:; :;":‘-'
2 N df=1 - 8 R
\ p.value =1.045e-05 a 1', *
N e’ \\\ 5 1-C GSM ALL koo
g N 2 | -- 1casma [
El \ - 1-CGSMB
g ‘\ ‘- 1-CGSMC ‘ ‘ : :
E gl | .~\|" 1 10 100 1000 10000
= - degree
k. (b) 1-C GSM networks
i s Fig. 4: Degree distributions for different network opera-
- - 1GReTAL tors are compared. Degree distributions are statistically
T T T T T . . .
! 10 100 1000 10000 identical for different network operators.

degree

Fig. 3: 1-Core GSM and PSTN network operators” degree
pdf distribution. Test shows that GSM and PSTN are not
identical distribution at 0.05 significance.

4.3 Network Size

To analyze the effect of network size on degree distri-
bution, we start with a network around one base station
and then expand it by including neighbor base station
networks, just like snowball sampling.Thus, we con-
struct social networks of different sizes for a city Then
for each social network of a different size, we compute
and plot the corresponding degree distribution, resulting
in a chart of network size versus degree distribution
parameters.

To obtain networks of various sizes, we use the SNA
database, which contains the cell IDs and geographic
coordinates of the GSM base stations. We divide a dense
urban part of city X into 1000 sub-parts, each of which

7 As part of anonymization, we refer to the chosen city as city X.

hosts an equal number of base stations. Since each base
station can serve a certain number of cell phones, we
safely assume that an equal number of base stations
will serve an equal number of cell phones (users). Using
Google Maps, we determine the coordinates of the urban
part of city X. The dataset lists around 17000 base
stations in this region, so each sub-part hosts 17 base
stations. Starting from the center of the city, we draw
rings around the nearest 17 base stations and label the
rings from 1 to 1000. Thus, in each iteration, we draw
a new ring around the nearest 17 base stations that are
not yet covered by a ring as shown in Fig.

Having 1000 rings determined, we start to filter the
calls in these rings so that we have networks with an
increasing number of nodes inside. We define a circle as a
ring containing all other rings with a label lower than its
label. More precisely, ringy is the set of nodes R,,, where
m < N. In this manner, 1000 circles (circle; . .. circleigog)
are defined. By filtering the calls established in each
circle, we come up with 1000 networks that differ only
in size (i.e., density, location, etc., are not considered).
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Fig. 5: 1000 rings around base stations. Each ring is
drawn to cover the nearest 17 base stations that are not
yet covered by a ring.

To determine whether there is any effect of size on
degree distribution we plot the pdf of degree versus net-
work size. Since there are 1000 networks with increasing
size, in order to make the plot easier to interpret we
create a color list with a gradient of 1000 green-blue-red
colors. As illustrated in Fig. 6] for increasing network
size, the degree distribution curves in a specific direction:
the pdf for low degrees decreases while the pdf for high
degrees increases. We also apply the Kruskal-Wallis
Test to compare the degree distribution of complex
communication networks breakdown by network-size.
As the result of this test, the p-value turns out to be
less than the 0.05 significance level (p-value=5.122e-5).
Hence, we conclude that the degree distributions of the
analyzed social networks at network-size breakdown are
statistically nonidentical.

To further investigate the effect of network size, we fit
the PLN distribution to all 1000 networks with increasing
size. Then we analyze each PLN distribution model pa-
rameter against the change in size. The PLN distribution
has the following pdf function:

= BaP—le(—Br+257) (1 % (M))

pdfPLN(-T)

T

and E[X]|=v — 1.

Fig.[7]and Fig.[8show the 3 and v parameters behavior
of the PLN distribution as a function of network size
respectively. Figures indicate that 8 ~ log(size) and
v ~ log(size). Thus, when we try to fit 5 = axlog(size)+b
and v = a * log(size) + b to the results separately, we
get tight fits as illustrated by blue dashed lines. Since
E[X] = v — 4, considering the v ~ log(size) and
B ~ log(size) observations together, we conclude that
the average degree of observed networks is proportional
to the logarithm of the network size.

Following green-blue-red transition in Fig. [f] size v.s.
degree distribution, we see that the distribution function

- chi-sguared = 1182
< | df=999
2 p.value =5.112e-05
g
7 3
@
=
=
e
5 .
g
8 |
o
fr
3‘ _| = s=ize1-333
o = = size 334-666
w - size 667-1000
T T T T
1 2 5 10 20 50 100 200
degres

Fig. 6: Degree distribution for increasing network size.
Size unit is 17 base station, e.g., 100 means network
size is 1700 base stations. Degree distribution for 1000
samples are plotted with gradient colors in green-blue-
red range to visually follow network size v.s distribution
shape change. Statistical test reject the hypothesis claim-
ing that degree distributions for varied sized networks
are identical.
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Fig. 7: PLN (3 parameter versus network size in linear-
log scale.
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Fig. 8: PLN v parameter versus network size in linear-log
scale.

shape changes from a line into a curve while the size
of network increases. This empirical result does not fol-
low power-law generating evolution models discussed
in [11]. We know that our dataset is composed of both
social and non-social (complex) entities. Considering
the evolution of complex networks study, we think
that while complex network entities follow preferential
attachment, social entities do not, due to the natural
upper-bound on a node degree. Therefore, small-size
samples might result in overestimating the density of
popular nodes where this natural upper bound is not hit.
For instance, the average number of received calls (in-
degree) is less than 2 in the telephone call graph sample
analyzed in [11]. Thus, power-law fit for in-degree, in
this case, may not remain valid for a larger sample. In
fact, the study reports that it was impossible to fit out-
degree by any power-law dependence.

4.4 Population Density

Here we aim to understand the effect of population
density (number of users in a geographic region) on
degree distribution in social networks. We would like to
see whether, for example, a denser region has a denser
social network. For this analysis, we again use the SNA
database with GSM base station cell IDs and geographic
coordinates. We draw a rectangle that incorporates the
dense urban area and neighboring sparse rural areas. We
divide the rectangle into 10 parts with an equal number
of base stations. The entire rectangle covers nearly 450
base stations, therefore, starting from the city center, each
of 45 base station cells is grouped as a ring. Then, by
filtering the calls made in each ring, we get 10 social
networks. For each ring, density is computed as the

number of base stations per kilometer square

Fig. 0] shows the degree distributions for social net-
works of different densities. These distributions have no
specific behavior regarding increasing network density.
All distributions are close to each other and they cross
many times. The highest-density line (dashed blue line)
falls in the middle of all the density lines.  Rural
areas, where the number of base stations per kilometer
square is lower, show slightly higher degree density.
This might be the result of outdoor based work culture
in which communication is more dominated by mobile
phone usage compared to the urban office based work
culture where communication is achieved via Internet-
based tools as well. We also apply the Kruskal-
Wallis Test to compare the degree distribution of com-
plex communication networks breakdown by network-
density. As the result of this test, the p-value turns out to
be greater than the 0.05 significance level (p-value=0.98).
Hence, we conclude that the degree distributions of the
analyzed social networks at network-density breakdown
are statistically identical.

chi-squared =3.111
df=10
p.value =0.9787

5e-02 5e-01

pdf of frequency
5e-03

5e-04

1e-04

degree

Fig. 9: Network degree pdf versus network density plots.
Kruskal-Wallis rank sum test results.

4.5 Geographic Location

Next, we aim to understand the impact of geographic lo-
cation on degree distribution characteristics. We investi-
gate how degree distribution in social networks changes
when the networks are physically located in different
places. For this analysis, we need social networks for
which geographic locations are different while network
size, density, etc. are as close as possible. To derive
such networks, we sort all cities in the country by the
number of base stations they have, and then we look

8Because base stations are located with a density proportional to
population density, we consider base station density to be a measure
of population density.
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for a consecutive sub-list in which cities are located as
far apart as possible while their number of base stations
are not different more than ten percent. As illustrated in
Fig. |10, we choose 10 such cities, each having 1000 & 100
base stations. We filter the calls made in each city and
then construct 10 social networks.

E? Z
o ;’B VG

|
?M ? QR

100 mi
200 km

Fig. 10: Locations of chosen cities in the country.

Fig. shows degree distributions of the social net-
works of the selected cities. The anonymized list of cities
north tosouthis: E, Z, G, T, B, Y, A, I, M, R; and west to
eastis: E, T, M, 1, A, B, Z, Y, G, R. As can be observed
from the figure, degree distribution curves are very close
to each other and there is no specific curve behavior
following city locations.

We also apply the Kruskal-Wallis Test to compare the
degree distribution of complex communication networks
breakdown by network-location. As the result of this
test, the p-value turns out to be greater than the 0.05 sig-
nificance level (p-value=0.99). Hence, we conclude that
the degree distributions of the analyzed social networks
at network-location breakdown are statistically identical.

chi-squared = 2.124
df=9
p.value =0.9894

1e-01

1e-02

pdf of frequency
1e-03
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[N |
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|
4 1
1
=

degree

Fig. 11: Network degree pdf versus network location.

5 STRUCTURAL PROPERTIES OF THE COM-
MUNICATION NETWORK

So far we have examined the effects of certain pa-
rameters on degree distribution. We now construct a

10

general communication network from the dataset and
analyze it for structural properties. Clustering coefficient
is defined as the fraction of triangles around a node.
This measure says how well a node’s neighbors are
connected. Social networks are known to have large
clustering coefficients. Fig. displays the clustering
coefficient values as a function of the degree of a node
for GSM and PSTN networks. The clustering coefficient
decays slowly with exponent —0.37 (¢ d~°°7) with the
degree of a node till degree d ( 150), and then scatters
around. Results on web graphs and theoretical analysis
on hierarchical networks report decays with exponent -
1 [33]], while results on Messenger network report decays
with exponent —0.37 [26]. Comparatively, our results
suggest that clustering in phone call graphs is much
higher than the theoretical expectation and web graph
results, however, it is lower compared to the clustering
in Messenger communication graph. In other words,
phone users with common friends tend to be connected
more probably than the theoretical expectation and con-
nected less probably than Messenger users with common
friends. Scattering after a certain degree d ( 150) implies
that neighbors with high degree nodes know each other
less, thus such nodes are non-social entities like customer
support lines.

0500

0.050

Clustering coefficient (c)
Clusterin
I

0.005
0.005

0.001
0.001
L

1 5 10 50 100 500

Degree (d)

() (b)

Degree (d)

Fig. 12: Average clustering coefficient distribution versus
node degree for (a) 1-Core GSM and (b) 1-Core PSTN
networks. Clustering coefficients decay with node degree
with exponents (a) —0.57 and (b)—0.63, respectively.
Variance increases after d ~ 150 where non-social entities
appear more.

Fig.|13|displays size distribution of connected compo-
nents in networks. Over 99% of the nodes belong to the
largest connected component, and the remaining small
components show a power-law like distribution. This
high connected component indicates that vast majority
of users have communication with society and society
is well connected. In other words, most of the users are
reachable from the community. When the connectivity
threshold is made higher, the size of the largest con-
nected component is dropped as displayed at Fig.
(a).

We further study community structure in the networks
by computing k-core decomposition of the graph. k-core
decomposition is a subgraph density measure and it
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Fig. 13: Distribution of connected components in (a)
GSM (b) PSTN networks. Over 99% of the nodes be-

long to the largest connected component. Many small
components exist against a few large components.
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Fig. 14: Size distribution of k-cores in (a) GSM (b)
PSTN networks. The densest region in GSM network
is composed of 352 nodes where each node has more
than 72 edges inside the set, while the densest region
in PSTN network is composed of 236 nodes where each
node has more than 38 edges inside the set. The decay in
k-core sizes is stable up to a cutoff value kpsin_cutors = 5
in PSTN and kgom_cutofr =~ 12 in GSM, and then the k-
core size drops rapidly which means that the nodes with
degrees less than the cutoff value are on the fringe of the
network.

identifies dense regions in the graplﬂ Fig. |14 displays
the distribution of k-core sizes for (a) GSM and (b) PSTN
networks. The decay in k-core sizes is stable up to a
cutoff value (kpsin_cutofr = 5 in PSTN and kgem_cutoff =
12 in GSM), then the k-core size drops rapidly which
means that the nodes with degrees less than the cutoff
value are on the fringe of the network. This structure is
similar to the Messenger communication network with
kmsn_cutof s = 20 [26], while it is quite different from the
Internet graph in which k-core size decays as a power-
law with k [3]. The densest region in GSM network is
composed of 352 nodes where each of the nodes has
more than 72 edges inside the set.

9The k-core of a graph is a subgraph K, where each vertex in K has at
least k edges to other vertices in K.
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6 CONCLUSION AND FUTURE WORK

In this study, we attempt to empirically test degree
distribution versus different dataset scenarios to under-
stand the parameters governing degree distribution in
social networks. We observe that degree distribution in
social networks does not show a significant correlation
with population density, user telco operator, and user
geographic location; however, population size directly
affects the average degree of the social network. There-
fore, in social network studies it is important to keep
social network size as a parameter while interpreting
degree distribution. It also seems acceptable to study a
social network without considering its location, density
and referred telco operator. For instance, a researcher
could gather data from an urban part or a rural part of a
country, or may choose a specific city or telco operator.
However, any change in the size of the studied network
would result in a considerable change in degree dis-
tribution characteristics and overall network topology.
Hence, social network studies must indicate the size
of the studied network and consider different sizes to
come up with a sound and complete conclusion. As
a future work, multivariate regression / mixed-effects
modeling can be used which will eliminate possible
effects of the heuristics that are used to fix parameters
in this study. Considering the size of the dataset and
lack of distributed multivariate regression algorithm for
Hadoop cluster, we did not attempt to use multivariate
regression at this study.

ACKNOWLEDGMENT

We thank TUBITAK (The Scientific and Technological
Research Council of Turkey) for supporting this work
in part with project 113E274. We are grateful to Rana
Nelson for proofreading and suggestions. In addition,
we would like to thank Mahmut Kutlukaya for his expert
contributions on statistical tests. We also deeply thank
anonymous reviewers for their insightful comments and
suggestions.

REFERENCES

[1]  W. Aiello, E Chung, and L. Lu. A random graph model for massive
graphs. In Proceedings of the thirty-second annual ACM symposium on Theory
of computing, STOC 00, pages 171-180, New York, NY, USA, 2000. ACM.

[2] H. Aksu, M. Canim, Y. Chang, I. Korpeoglu, and O. Ulusoy. Distributed
k-core view materialization and maintenance for large dynamic graphs.
Knowledge and Data Engineering, IEEE Transactions on, PP(99):1-1, 2014.

[3] J. L Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani. Analysis
and visualization of large scale networks using the k-core decomposition.
In ECCS’05: European Conference on Complex Systems, 2005.

[4] Z.Bi, C. Faloutsos, and F. Korn. The "dgx" distribution for mining massive,
skewed data. In Proceedings of the seventh ACM SIGKDD international
conference on Knowledge discovery and data mining, KDD ’01, pages 17-26,
New York, NY, USA, 2001. ACM.

[5]  A.Bjorck. Numerical Methods for Least Squares Problems. SIAM, Philadelphia,
PA, 1996.

[6] A. Buscarino, M. Frasca, L. Fortuna, and A. S. Fiore. A new model for
growing social networks. Systems Journal, IEEE, 6(3):531-538, 2012.

[7] J. Carrasco, D. Fain, K. Lang, and L. Zhukov. Clustering of bipartite
advertiser-keyword graph. In Proc. International Conference on Data Mining
(ICDM’03), Melbourne, Florida, Nov. 2003.

[8] S.Chiappetta, C. Mazzariello, R. Presta, and S. Romano. An anomaly-based
approach to the analysis of the social behavior of voip users. Computer
Networks, 57(6):1545 — 1559, 2013.

2168-6750 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETC.2016.2627034, IEEE

Transactions on Emerging Topics in Computing

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. , NO. ,

[91
[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]
[34]

[35]

[36]

[37]

2168-6750 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

A. Clauset, M. E. J. Newman, and C. Moore. Finding community structure
in very large networks. Physical Review E, 70(6):066111+, Dec. 2004.

K. Dasgupta, R. Singh, B. Viswanathan, D. Chakraborty, S. Mukherjea,
A. A. Nanavati, and A. Joshi. Social ties and their relevance to churn in
mobile telecom networks. In Proceedings of the 11th international conference
on Extending database technology: Advances in database technology, EDBT ‘08,
pages 668-677, New York, NY, USA, 2008. ACM.

S. N. Dorogovtsev and J. F. Mendes. Evolution of networks. Advances in
physics, 51(4):1079-1187, 2002.

R. I. M. Dunbar. Neocortex size as a constraint on group size in primates.
Journal of Human Evolution, 22(6):469-493, June 1992.

N. Eagle, A. S. Pentland, and D. Lazer. Inferring friendship network
structure by using mobile phone data. Proceedings of the National Academy
of Sciences, 106(36):15274-15278, 2009.

European Union. Directive 2006/24/ec of the european parliament and of
the council. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=O]J:
L:2006:105:0054:0063:EN:PDF, 2006. Accessed: 2016-06-20.

S. Fortunato and M. Barthélemy. Resolution limit in community detection.
Proceedings of the National Academy of Sciences, 104(1):36—41, Jan. 2007.

D. Gianetto, B. Heydari, et al. Catalysts of cooperation in system of systems:
The role of diversity and network structure. Systems Journal, IEEE, 9(1):303—
311, 2015.

M. Girvan and M. E. J. Newman. Community structure in social and bio-
logical networks. Proceedings of the National Acadeny of Sciences, 99(12):7821-
7826, June 2002.

R. Guimera, M. Sales-Pardo, and L. A. N. Amaral. Modularity from
fluctuations in random graphs and complex networks. Physical Review E
(Statistical, Nonlinear, and Soft Matter Physics), 70(2), 2004.

M. Haghnevis and R. G. Askin. A modeling framework for engineered
complex adaptive systems. Systems Journal, IEEE, 6(3):520-530, 2012.

R. A. Hill and R. I. M. Dunbar. Social network size in humans. Human
Nature, 14(1):53-72, Mar. 2003.

S. Hoteit, S. Secci, S. Sobolevsky, C. Ratti, and G. Pujolle. Estimating human
trajectories and hotspots through mobile phone data. Computer Networks,
64(0):296 - 307, 2014.

D. Jiang, Y. Wang, C. Yao, and Y. Han. An effective dynamic spectrum
access algorithm for multi-hop cognitive wireless networks. Computer
Networks, 84:1-16, 2015.

B. Karrer, E. Levina, and M. E. J. Newman. Robustness of community
structure in networks. Physical Review E, 77(4):046119+, Sept. 2007.

P. Kazienko, K. Musial, and T. Kajdanowicz. Multidimensional social
network in the social recommender system. IEEE Transactions on Systems,
Man, and Cybernetics, Part A, 41(4):746-759, 2011.

A. Le Menach, A. J. Tatem, J. M. Cohen, S. I. Hay, H. Randell, A. P. Patil,
and D. L. Smith. Travel risk, malaria importation and malaria transmission
in zanzibar. Scientific reports, 1, 2011.

J. Leskovec and E. Horvitz. Planetary-scale views on a large instant-
messaging network. In Proceeding of the 17th international conference on World
Wide Web, WWW ’08, pages 915-924, New York, NY, USA, 2008. ACM.

S. Milgram. The Small World Problem. Psychology Today, 2:60-67, 1967.
J.-K. Min and S.-B. Cho. Mobile human network management and recom-
mendation by probabilistic social mining. Systems, Man, and Cybernetics,
Part B: Cybernetics, IEEE Transactions on, 41(3):761-771, 2011.

A. Nanavati, R. Singh, D. Chakraborty, K. Dasgupta, S. Mukherjea, G. Das,
S. Gurumurthy, and A. Joshi. Analyzing the structure and evolution of
massive telecom graphs. Knowledge and Data Engineering, IEEE Transactions
on, 20(5):703-718, May 2008.

J. P. Onnela, J. Saramiki, J. Hyvénen, G. Szab6, D. Lazer, K. Kaski,
J. Kertész, and A. L. Barabasi. Structure and tie strengths in mobile
communication networks. Proceedings of the National Academy of Sciences,
104(18):7332-7336, May 2007.

J. Palau, M. Montaner, B. Lépez, and J. L. D. L. Rosa. al.: Collaboration
analysis in recommender systems using social networks. In Cooperative
Information Agents VIII: 8th International Workshop, CIA 2004. Volume 3191
of Lectures Notes in Computer Science, pages 137-151, 2004.

R Development Core Team. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria, 2010.
ISBN 3-900051-07-0.

E. Ravasz and A. L. Barabasi. Hierarchical organization in complex
networks. Physical Review E, 67(2):026112+, Feb. 2003.

A. Sala, S. Gaito, G. P. Rossi, H. Zheng, and B. Y. Zhao. Revisiting degree
distribution models for social graph analysis. CoRR, abs/1108.0027, 2011.
J. Schroeder, J. Xu, and H. Chen. Crimelink explorer: using domain
knowledge to facilitate automated crime association analysis. In Proceedings
of the 1st NSF/NIJ conference on Intelligence and security informatics, 1SI'03,
pages 168-180, Berlin, Heidelberg, 2003. Springer-Verlag.

M. Seshadri, S. Machiraju, A. Sridharan, J. Bolot, C. Faloutsos, and
J. Leskove. Mobile call graphs: beyond power-law and lognormal distri-
butions. In Proceeding of the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining, KDD ‘08, pages 596-604, New York,
NY, USA, 2008. ACM.

D. Wang, D. Pedreschi, C. Song, F. Giannotti, and A. L. Barabasi. Human
mobility, social ties, and link prediction. In Proceedings of the 17th ACM
SIGKDD international conference on Knowledge discovery and data mining, KDD
"11, pages 1100-1108, New York, NY, USA, 2011. ACM.

[38]

[39]

[40]
[41]

[42]

[43]

[44]

12

Y. Wang, M. Tliofotou, M. Faloutsos, and B. Wu. Analyzing communica-
tion interaction networks (cins) in enterprises and inferring hierarchies.
Computer Networks, 57(10):2147 — 2158, 2013. Towards a Science of Cyber
Security Security and Identity Architecture for the Future Internet.

S. Wasserman and K. Faust. Social Network Analysis: Methods and Applications
(Structural Analysis in the Social Sciences). Cambridge University Press, Jan.
1995.

D. J. Watts. A twenty-first century science. Nature, 445(7127):489, Jan. 2007.
A. Wesolowski, N. Eagle, A. J. Tatem, D. L. Smith, A. M. Noor, R. W. Snow,
and C. O. Buckee. Quantifying the impact of human mobility on malaria.
Science, 338(6104):267-270, 2012.

J. Yang, Y. Qiao, X. Zhang, H. He, F. Liu, and G. Cheng. Characterizing user
behavior in mobile internet. Emerging Topics in Computing, IEEE Transactions
on, 3(1):95-106, 2015.

S. Zhang, D. Yin, Y. Zhang, and W. Zhou. Computing on base station
behavior using erlang measurement and call detail record. Emerging Topics
in Computing, IEEE Transactions on, 3(3):444—453, 2015.

Z. Zhang, H. Wang, C. Wang, and H. Fang. Modeling epidemics spreading
on social contact networks. Emerging Topics in Computing, IEEE Transactions
on, 3(3):410-419, 2015.

Hidayet AKSU received his Ph.D., M.S. and B.S.
degrees from Bilkent University, all in Depart-
ment of Computer Engineering, in 2014, 2008
and 2005, respectively. He is currently a Post-
doctoral Associate in the Department of Electri-
cal & Computer Engineering at Florida Interna-
tional University (FIU). Before that, he worked as
an Adjunct Faculty in the Computer Engineering
Department of Bilkent University. He conducted
research as visiting scholar at IBM T.J. Watson
Research Center, USA in 2012-2013. He also

worked for Scientific and Technological Research Council of Turkey
(TUBITAK). His research interests include security for cyber-physical
systems, internet of things, security for critical infrastructure networks,
loT security, security analytics, social networks, big data analytics,
distributed computing, wireless networks, wireless ad hoc and sensor
networks, localization, and p2p networks.

ibrahim Korpeoglu received his Ph.D. and M.S.
degrees from University of Maryland at College
Park, both in Computer Science, in 2000 and
1996, respectively. He received his B.S. degree
in Computer Engineering from Bilkent University
in 1994. He joined Bilkent University in 2002,
and he is an Associate Professor in the De-
partment of Computer Engineering. Before that,
he worked in several research and development
companies in USA including Ericsson, IBM T.J.
Watson Research Center, Bell Laboratories, and

Bell Communications Research (Bellcore). He received Bilkent Univer-
sity Distinguished Teaching Award in 2006 and IBM Faculty Award in
2009. He is a member of ACM and a senior member of IEEE.

Ozgiir Ulusoy received his Ph.D. in Computer
Science from the University of lllinois at Urbana-
Champaign. He is currently a Professor in the
Computer Engineering Department of Bilkent
University in Ankara, Turkey. His current re-
search interests include web databases and web
information retrieval, multimedia database sys-
tems, social network analysis, and peer-to-peer
systems. He has published over 120 articles in
archived journals and conference proceedings.
He is a member of IEEE and ACM.


http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:105:0054:0063:EN:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:105:0054:0063:EN:PDF

