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A B S T R A C T

What do applicants take into consideration when choosing a high school? To what extent do
schools contribute to their students' academic success? To answer these questions, we model
students' preferences and obtain average valuation placed on each school. We then investigate
what drives these valuations by carefully controlling for endogeneity using a set of creative
instruments suggested by our model. We find that valuation is based on a school's location, its
selectivity as measured by its cutoff score, value added and past performance in university
entrance exams. However, cutoffs affect school valuation an order of magnitude more than does
value added.

“The C student from Princeton earns more than the A student from Podunk not mainly because he has the prestige of a
Princeton degree, but merely because he is abler. The golden touch is possessed not by the Ivy League College, but by its
students.”

Shane Hunt, “Income Determinants for College Graduates and the Return to Educational Investment,” Ph.D. thesis, Yale
University, 1963, p. 56.

1. Introduction

In much of the world, elite schools are established and very often subsidized by the government. Entry into these “exam” schools
is based on performance in open competitive entrance exams. Applicants leave no stone unturned in their quest for higher scores on
these entrance exams, creating enormous stress. The belief seems to be that getting into these schools is valuable, presumably
because future outcomes are better in this event. Students, it is argued, will do better by going to an exam school where they are
challenged by more difficult material and exposed to better peers. What actually happens? Students of these elite exam high schools,
without a doubt, do better on college entrance exams and are more likely to be placed at the best university programs. But is this due
to selection or value-added by these schools? It is quite possible that the success of students from exam schools creates the belief that
these schools add value. This belief results in better students sorting into exam schools so that students from these schools do better,
which perpetuates the belief system.

The usual way of ranking schools is in terms of their selectivity, how hard they are to get into in terms of some performance
measure like the SATs in the US,1 or in terms of how well students who graduate from them do as measured by wages, eminence in
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later life, or admission into further schooling. However, schools may do well in all of these dimensions merely because they admit
good students and not because they provide value added and thereby improve the performance of the students they admit.2 How can
we control for such selection and estimate value added? What do students seem to value? Can we model and estimate their
preferences? These are the questions we try to address.

Turkey is a good place to look for answers to these questions for a number of reasons. To begin with, the Turkish admissions
system is exam-driven. Admissions are rationed on the basis of performance on open competitive national central exams at the high
school and university level. This eliminates incentive problems when there are a large number of students.3 Second, as education is
highly subsidized in public institutions, educational options outside the country or at private institutions are much more expensive
so that these exams are taken seriously by the applicants. When the stakes are high, as in Turkey, it is less likely that outcomes are
driven just by noise.

We develop a way to answer the questions of interest by taking a more structural approach than much of the literature. The
structure imposed allows us to economize on the data requirements. Our data consists of information on all high schools (Exam
Schools) in Turkey which admit students on the basis of an open competitive exam administered at the end of middle school. Not all
middle schoolers take this exam as it is voluntary. We obtained (from public sources) the admission cutoff scores of each exam
school, the number of seats in each such school, and the overall distribution of scores of students who chose to take this exam. For
one school only, we also have the distribution of scores of admitted students. We also have the mean performance of students in each
exam high school in the university entrance exam. We would like to emphasize that we do not have individual level data on
performance in the high school (or university entrance) exam or on stated preferences for high schools.

We use this data in Section 3 to estimate a nested logit model of preferences over high schools, taking into account that exam
schools only admit the highest scoring students who apply. Thus, students choose their best school from schools whose cutoff is
below their score. We estimate preferences in two steps. First, by using information on the minimum cutoff scores, we derive the
demand for each school, conditional on the correlation of shocks within a nest. We obtain the mean valuation for each school by
setting demand equal to the number of available seats and solving for mean valuation. Second, we pin down the correlation of shocks
within a nest using information on the maximum and minimum cutoff scores in each school. This twist, to our knowledge, is novel.
The idea is quite simple. If preference shocks are perfectly correlated within a nest, then preferences are purely vertical and the
minimum score in the most valued school in the nest cannot be lower than the maximum score in the second most valued school in
the nest. Thus, the extent of overlap in the scores between schools within a nest identifies the correlation in preference shocks in the
nest.

Finally, in Section 3, to see what applicants care about in a school, we regress the mean valuation of schools on the schools'
characteristics (its location, size, mean performance in the verbal and quantitative parts of the university entrance exam, type of
school, and the cutoff score). The error term, which is meant to capture shocks to school valuations, is likely to be correlated with the
cutoff, as greater valuations raise demand and hence the cutoff, biasing the estimates upwards. We use a clever instrument suggested
by our model to correct for endogeneity bias. We find that selectivity does indeed seem to raise valuations.

Section 4 focuses on value added. In this section we restrict attention to a subset of schools (Science high schools). To understand
the value added by a school, we use the data on the overall distribution of scores on the high school entrance exam, along with the
estimated preference parameters, to allocate students to high schools and obtain the simulated distribution of students' scores
on the high school entrance exam in each school. We then compare the mean of the simulated distribution for each school to its
mean score in the University Entrance Exam after standardizing the scores. This gives a (possibly contaminated by mean reversion)
estimate of the value-added by a school. Mean reversion is likely to be especially severe at the top and bottom of the school hierarchy
as it is a consequence of randomness in performance. Students in the best (worst) schools disproportionately include those who
are just lucky (unlucky) so that their performance in the university entrance exams will tend to be below (above) that in the
high school entrance exams even if there is zero value added. We use simulation-based methods as well as information on each
student in a single school to estimate the average value-added by a school, while controlling for mean reversion. Note that the
extent of the mean reversion depends on both preferences and the extent of noise in the high school entrance exam score so that
correcting for it can only be done by taking a structural approach. Finally, we ask if value added also drives mean valuation of a
school.

Our results show that highly valued schools do not all have high value-added. Some have negative value added, while others have
positive value added. Our estimates suggest that students like more selective schools so that better students, who have more options
open to them, sort into these schools. We also find that they also care about the value added by the school, but its importance (in a
standardized regression) is far less than that of the cutoff score. Consequently, even when schools do not add value to the students
(in terms of their performance on the university entrance exam) they attract good students, providing an advantage to incumbents
and an impediment to entry and the functioning of the market.

A major contribution of our paper is to relate the valuations placed on schools to measures of school characteristics such as
selectivity, facilities, location and value added by the school. It is important to understand what lies behind preferences. If
preferences seem to be driven by selectivity alone, selective schools need not be those that are adding the most value and circular
causation will drive rankings. Preferences may be unrelated to school performance (i.e., value added) either because it is hard to

2 There has recently been considerable effort in determining value-added by a school as part of the accountability in the No Child Left Behind legislation. See
Darling-Hammond et al. (2012) for a critique of the approach usually taken.
3 Students prefer to report their true preferences, no matter what other students report as they take the cutoffs as given.
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observe, or because of other advantages of selective schools like consumption or network value. If the former, a case could be made
for publicly providing value added school by school.

Exam schools in Turkey are given more funding per student, and they have higher teacher to student ratios. The better off are
also more likely to be able to get into these schools (For example, see Caner and Okten, 2013) so that such funding is likely to be a
regressive force.4 Providing funding based on value-added by a school may make such funding less regressive, as well as better align
the incentives of schools and society. Though our data is on Turkey, the issues raised in this paper are of universal interest.

We proceed as follows. First, we relate our work to the literature. In Section 2, we provide the necessary background regarding
the Turkish system and the data. Section 3 lays out the model, the estimation of preferences and the first results on what seems to
drive valuations. In Section 4, we estimate the value-added by the schools and examine whether it is related to valuations. Then, we
conclude. Additional figures, tables and details about the estimation strategy can be found in the Appendix.

1.1. The literature

There is a large literature that deals with school choice and school effects in the US, as well as in other developed and developing
countries. While the evidence on the effect of attending more selective schools on students' academic achievement is mixed, one
possible interpretation is that just attending a more selective school is not enough to improve future performance. An essential input
might also be the motivation of students. This could be manifested in the data as they are choosing to attend a more selective school,
despite it being harder in some dimension for them to do so.

In the US, the consensus seems to be that expanding school options, via having exam schools or having lotteries that allow the
winners more school options, need not have much of an impact on a student's academic achievement. Abdulkadiroğlu et al. (2014)
and Dobbie and Fryer Jr (2011) find going to exam schools has little effect on academic achievements using a Regression-
Discontinuity approach in Boston and New York, respectively. Cullen et al. (2005, 2006) use data from randomized lotteries that
determine the allocation of students in the Chicago public school system. Students who win the lottery have more options open to
them and so can attend schools more consistent with their tastes and hence are better off.5 They find that winning this lottery does
not improve students' academic performance. In contrast to work that finds little effect of expanding school options, Hastings et al.
(2012) use U.S. data from a low income urban school district and find that winning this lottery has a positive and significant effect on
both student attendance after winning the lottery but before going to the new school, and on performance later on. Clark (2010)
investigates the effect of attending a selective high school (Grammar School) in the UK (where selection is based on a test given at
age 11 and primary school merit) and finds no significant effect on performance in courses taken by students, although the
probability of attending a university is positively affected.

Dale and Krueger (2002, 2011) look at the effect of attending elite colleges on labor market outcomes. They control for selection
by controlling for the colleges to which the student applied and was accepted. The former provides an indication of how the student
sees himself, while the latter provides a way of controlling for how the colleges rank the student. Intuitively, the effect of selective
schools on outcomes is identified by the performance of students who go to a less selective school despite being admitted to a more
selective one, relative to those who go to the more selective one. Of course, if this choice is based on unobservables, this estimate
would be biased.6 They find that black and Hispanic students as well as students from disadvantaged backgrounds (less-educated or
low-income families) do seem to gain from attending elite colleges. However, for most students the effect is small and fades over
time.

Duflo et al. (2011) emphasize an important additional channel that may induce heterogeneity in effects. If, for example, teachers
at a top ranked school direct instruction towards the top, ignoring weaker students, better students in the class may gain, while
worse ones may lose. In such cases the value added of a school can vary by student ability and tracking may help teachers target
students.

Card and Giuliano (2014) look at the effect of being in gifted programs. They find that high IQ students, to whom these programs
are often targeted, do not seem to gain from such programs. However, students who miss the IQ thresholds but scored highest
among their school/grade cohort in state-wide achievement tests in the previous year do gain. Their work suggests that “a separate
classroom environment is more effective for students selected on past achievement – particularly disadvantaged students who are
often excluded from gifted and talented programs.”

In contrast to these results, Pop-Eleches and Urquiola (2013) and Kirabo Jackson (2010) estimate the effect of elite school
attendance in Romania and Trinidad and Tobago, respectively. They find a large positive effect on students' exam performance in the
university entrance exams. This could be because students who go to elite schools in these countries are more motivated to succeed
than those going to elite schools in richer countries.

From the school choice literature, Hastings et al. (2008) and Burgess et al. (2009) investigate what parents care about in a school
using data from the Charlotte-Mecklenburg School District and Millennium Cohort Study (UK), respectively. Hastings et al. (2008)
take a structural approach and estimate a mixed logit model of preferences. A major contribution of their work is to use information
on the stated preferences for schools and compare these to what was available to them to back out the weight placed on factors like
academics, distance from home, and so on. They are then able to see whether the impact of a school differs according to “type”. They

4 This regressive nature is common across countries as the better off are advantaged in many ways.
5 The schools they choose may be those that add value through delivering higher achievement levels, better peers and more resources, or not.
6 For example, if confident students go to the selective school and less confident ones do not, and confident students do better, the effect of selective schools would

be overestimated.
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find that students who put a high value on academics in so much as they choose to go to “supposedly good” schools that are further
away, do better from being there than students who attend just because they are close to the school. For this reason, reduced form
effects estimated for attending “good” schools could be biased when such selection is not properly accounted for. If students in
developing countries place greater value on good schools than do students from developed countries, this insight could explain why
we see such different results for attending better schools in the two. Burgess et al. (2009) also compare the first choice school, to the
set that was available (constructed by the authors by using students' residence areas) and estimate trade-offs between school
characteristics.

An advantage of the slightly more structural approach taken here is that we examine the whole process and not just one of its
components in the estimation. Our approach allows us to separate between preferences over schools (based on their observable attributes)
and their value added. Moreover, despite the lack of panel data, i.e., not having the high school entrance exam score and the college
entrance exam score for each student, we show how one can use fairly limited data on each high school, along with data on university
entrance exam takers along with the model, to get around this deficiency. That is to say, our approach allows us to economize on data in
the estimation which extends the ability to look at policy issues, as outcomes may differ across countries. Of course, the applicability of our
method depends on certain institutional characteristics, such as priority by score in the allocation of students to high schools, and the
existence of uniform school leaving or university entrance exams. While our approach has many limitations, for example, it does not allow
us to look at whether attending elite exam schools has heterogeneous effects, nor does it let us look at long term effects (which may be large
even if short term ones are not7) as in Chetty et al. (2014a), it does provide a way to do a lot with relatively little data.

2. Background

In Turkey, competitive exams are everywhere. Unless a student chooses to attend a regular public high school, he must take a
centralized exam at the end of 8th grade to get into an “exam school”. These are analogous to magnet schools in the US, though the
competition for placement into them is national and widespread, rather than local as in the US. After high school there is an open
competitive university entrance exam given every year. Most students go to cram schools (dershanes) to prepare for the university
entrance exam. Much of high school is also spent preparing students for this exam. In fact, it has been argued that at least in Turkey,
cram schools weaken the formal schooling system as students substitute cram schools (dershanes) for high school (see Tansel and
Bircan, 2006). If exam schools, in fact, have little value-added, then the system itself may have adverse welfare effects. This is
especially so if these elite exam schools are subsidized relative to the alternatives as is often the case.8 In this event, students expend
possibly wasteful effort to capture these rents which has a welfare cost.9

Students from exam schools do perform much better in university entrance exams. Fig. 1 shows the distribution of average scores
(ÖSS-SAY) in the university entrance exam of science track students coming from the different kinds of high schools. Science high
schools are clearly doing better, followed by the almost equally selective Anatolian high schools, while regular public schools seem to
do the worst. However, this says little about the contribution of exam schools in terms of value-added.

2.1. The institutional structure

The educational system in Turkey is regulated by the Ministry of Education. All children between the ages of 6 and 14 must go to
school. At 14 they take the high school entrance exam (OKS) if they want to be placed in public exam schools. Performance on this
exam determines the options open to a student. The better the performance, the greater the number of schools with a cutoff score
below what the student has obtained. There are four types of public exam schools: Anatolian high schools, Anatolian Teacher
Training high schools, Science high schools, and Anatolian Vocational high schools.

Anatolian high schools place a strong emphasis on foreign language education although their specific goals may vary across the
different types of Anatolian schools. The main goal of Anatolian high schools is to prepare their students for higher education while
teaching them a foreign language at a level that allows them to follow scientific and technological developments in the world.
Anatolian Vocational high schools aim to equip their students with skills for certain professions and prepare them both for the labor
market and higher education. Anatolian Teacher Training high schools train their students to become teachers though they can
choose other paths as well.

The most prestigious of the exam schools are the Science high schools. These were established in the mid-1980s to educate the
future scientists of Turkey and initially accepted very few students. Over the next decade, the success of their students on the
university entrance exams, as well as the rigorous education these schools were famous for, created considerable demand for these
schools and they spread throughout the country.

In public high schools, students can choose between four tracks: the Science track, the Turkish-Math track, the Social Science
track and the Language track. They make this choice after ninth grade. In Science high schools they must take the science track. In
Anatolian Vocational high schools there are no tracks, which put them a little outside the mainstream. All of this is depicted in Fig. 2.

After eleventh grade, students who wish to pursue higher education take a centralized nationwide university entrance exam
(ÖSS), which is conducted by the Student Selection and Placement Center (ÖSYM). There are no selection issues here: data (from the

7 Zimmerman (2014) suggests that elite school attendance may have long term impacts via networks and referrals.
8 The best teachers are allocated to these schools, their facilities are better, and their class sizes are smaller than that of regular schools. In addition, Caner and

Okten (2013) show that school subsidies are regressive as better off students tend to do better on exams and so go to better schools which are more highly subsidized.
9 See Krishna and Tarasov (2013) for more on this subject.
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National Education Statistics Bureau) on the number of high school graduates and data on the number of students taking the
university entrance exam for the first time (from reports released by ÖSYM) show that these two are very close to each other. This
exam is highly competitive and placement of students into colleges is based on their ÖSS score, high school grade point average
(GPA), and their preferences.

Below, we use high school and university entrance exam scores to infer the value-added of schools. For this reason, it is important
to explain what these exams consist of and how similar they are. Both high school and university entrance exams are multiple choice
tests that are held once a year. The high school entrance exam is taken by students at the end of eighth grade. There are four tests,
Turkish, social science, math, and science, with 25 questions on each test. Students are given 120 min to answer the 100 questions.
The University entrance exam is similar. It is a nationwide central exam with four parts, Turkish, social science, math, and science,

Fig. 1. Distribution of ÖSS-SAY score.

Fig. 2. Education system in Turkey.
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with 45 questions in each part. Students are given 180 min. The questions on both exams are based on the school curriculum and are
meant to measure the ability to use the concepts taught in school. To discourage guessing, there is negative marking for incorrect
answers in both exams.

2.2. The data

The data we use come from several public sources. To measure students' academic performance at the end of high school, we rely
on information on the performance of each school on the university entrance exam from 2002 to 2007. This information is published
by ÖSYM and is made available to schools and families so that they are informed about the standing of each school. The information
includes the number of students who took university entrance exam from each school, as well as the mean and standard deviation of
their scores in each field of the exam.

A student's performance in the high school entrance exam is seen as a (noisy) measure of his performance prior to attending high
school. We obtained data on the minimum and maximum admission scores and on the number of seats in 2001 for each exam high
school from the Ministry of Education's website.10 The summary statistics for these variables are presented in Table A6. We also
collected data on the average ÖSS performance of each high school on each part of the exam in the previous year, 2000, from ÖSYM's
Results booklet for that year, which is publicly available from their website. This is used as one possible quality dimension along
which schools vary. Additional high school characteristics were collected from the Ministry of Education's website (education
language, dormitory availability, and location) and the high schools' websites (age of the schools). We use this data along with the
score distribution of all students who took the high school entrance exam in 2005 (see Table A7) in our analysis below. Ideally we
would have liked to have this information for 2001, but as this was not available and as these distributions are very stable, we use
data from 2005.

In the next section we show how to use information on the allocation process, seats available, the distribution of scores overall on
the high school entrance exam, and the preference structure to back out the mean valuation placed on each high school.

3. The model

Seats in public exam schools are allocated according to students' preferences and their performance on a centralized exam
(conducted once a year). All schools have an identical ranking over students based on their test scores. Each exam school has a fixed
quota, qj, which is exogenously determined.11 The allocation process basically assigns students to schools according to their stated
preferences, with higher scoring students placed before lower scoring ones. Students know past cutoffs for schools when they put
down their preferences. They are allowed to put down up to 12 schools.12

We model preferences as follows. Student i's utility from attending school j takes the form

U X ξ ε β βX ξ ε( , , ; ) = + +ij j j ij j j ij

where Xj are the observed school characteristics, ξj are the unobserved school characteristics, and εij is a random variable which has
a Generalized Extreme Value (GEV) distribution. Let δj denote the school specific mean valuation where

δ βX ξ= +j j j

so that

U X ξ ε β δ ε( , , ; ) = +ij j j ij j ij

This structure implies that variation in individual preferences comes from the error term, conditional on the students having the
same feasible choice set.13 Preference shocks are allowed to be correlated for the alternatives in the same nest. Otherwise, they are
assumed to be independent.

In general, the cumulative distribution function of ε ε ε ε= 〈 , , …, 〉i i iN0 1 is given by
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where Bk is the set of alternatives within nest k, K is the number of nests, and λk measures the degree of independence among the

10 This data was collected using the website http://archive.org/web/web.php, which provides previous versions of websites.
11 In general, the seats available are close to the size of the graduating class as schools are capacity constrained.
12 Students do face a location restriction in listing their Anatolian high school preferences. They are not allowed to list preferences on Anatolian high schools in

Ankara, İstanbul, İzmir, and their current city: they have to pick one of these locations and make all their Anatolian high school preferences from their chosen
location. However, if preferences are stated after the score is known, and cutoffs are stable over time (as in our setting) this restriction should not have any impact. A
student would put his most preferred school with a cutoff below his score at the top of his list and be assigned there.
13 In our model, we do not incorporate heterogeneity in valuations depending on students' score or other background characteristics as we do not have information

on individual student's preferences. However, the choice set for each student depends on his score so that individuals with different scores make very different
choices. With better data on students' scores, background characteristics, stated preferences and high school placement, we could allow valuations to depend on
individual characteristics. Moreover, with such data we could do a much better job estimating school value-added and even allow for possible heterogeneous
treatment effects.
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alternatives within nest k (see Train, 2009). As λk increases, the correlation between alternatives in nest k decreases. If λk is equal to
1, there is no correlation between alternatives within nest k, whereas as λk goes to 0, there is perfect correlation among all
alternatives in the same nest. In this case, the choice of alternatives for any individual is driven by the δj component alone so that
there is pure vertical differentiation among schools in a nest.

We partition the set of high schools in Turkey according to their type and location. Fig. 3 shows the nesting structure we adopt.
Since we want to allow for vertical and horizontal differentiation, it makes sense to put similar schools in the same nest. Thus, at the
upper level of the nest, students have seven options: Science high schools, Anatolian Teacher Training high schools, Anatolian high
schools in Ankara, in İstanbul and in İzmir, Anatolian Vocational high schools, and the local school option. The local school option
for a student includes a local Anatolian school and a public regular high school which is modeled as the outside option. Since
computational intensity will increase with the size of the choice set, we aggregate Anatolian Vocational high schools into five
subgroups according to their types with seats equal to the sum of seats of schools in that subgroup. We define the maximum and
minimum score of each subgroup as the maximum and minimum of the cutoff scores of the schools in that subgroup. Other nests
include all schools in Turkey of a given type: 91 Teacher Training high schools, 48 Science high schools, 24 Anatolian high schools in
Ankara, 38 Anatolian high schools in İ stanbul, and 18 Anatolian high schools in İzmir.14 Thus, we have 226 options overall.15

Each student chooses a school that maximizes his utility given his feasible set of schools, which is determined by his own score, si,
and the cutoff scores of each school

U X ξ ε βmax ( , , ; )
j

ij j j ij
∈ i

where

j c s= { : ≤ }i j i

The feasible set of a student, ,i includes all the schools whose cutoff score is below the student's score. Given the demand for each
school and the number of seats available, the cutoff score, c ,j is endogenously determined in equilibrium.

Let the set of N schools be partitioned into K mutually exclusive sets (nests) where the elements of each of these sets correspond
to schools within that nest. For example, Bk, where k K= 1, 2, …, , would have all schools that are in nest k as its elements. If there
were no rationing, the probability that school j in nest k was chosen by student i would be given by16
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which would be equivalent to the fraction of students whose best alternative was alternative j.
However, students' choices are constrained by the cutoff scores in each school, cj, and by their own exam performance, si.

Suppose that there are N + 1 choices (including the outside option) and let the cutoff scores for each alternative be ordered in
ascending order:

c c c c c= 0 ⋯ N N0 1 2 −1

Fig. 3. School choice in Turkey.

14 These schools are located in the center of the Ankara, İstanbul, and İzmir. Anatolian high schools located in a town in the provinces are defined as local
Anatolian high schools by Ministry of Education.
15 We ignore private exam high schools as they comprise less than 5% of the total and there is no data on them.
16 See Train (2009, Chapter 4) for the derivation of P .ij
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where 0 indexes the outside option. Students whose score is in the interval c c[ , )m m+1 have the first m schools in their feasible choice
set and we call this interval Im. Similarly, students whose scores are below c1 have scores in I0 and have their choice set containing
only the outside option, while students with s c≥i N get to choose from all the N + 1 alternatives and have scores in IN. Thus, the
probability that student i with a score in Ij chooses school t , t j≤ , in nest k from his feasible set will be
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where bold variables denote vectors and where B I( )k j denotes the restriction placed on the elements of nest k when the individuals'
score is in the interval Ij. λ k is the extent of independence between alternatives in nest k, and Kj is the total number of nests available
to a student whose score is in the interval Ij.

Aggregate demand for each school will thus depend on the distribution of scores, F s( ), the minimum entry cutoff scores of all
other schools whose cutoff score is higher, and the observed and unobserved characteristics of all schools. Using the equilibrium
cutoff scores and the students' score distribution we can get the density of students that are eligible for admission to each school.

For simplicity, we will write the demand function for school j in nest s, δ λd ( , )j s( ) , as dj s( ). The demand for school N , the best
school, which is in nest k comes only from those in IN :

δ λd P F c= ( , )[1 − ( )]N k NN k N( ) ( )

Only students with scores above cN have the option to be in school N which gives the term F c[1 − ( )]N . In addition, N in nest k has
to be their most preferred school; hence the term δ λP ( , )NN k( ) . Similarly, the demand for school j which is in nest s comes from those
in Ij, … IN:

∑

δ λ δ λ δ

λ δ λ

d P F c P F c F c P

F c F c P F c F c P F c

= ( , )[1 − ( )] + ( , )[ ( ) − ( )] + ⋯ + ( ,

)[ ( ) − ( )] = [ ( ) − ( )] + ( , )[1 − ( )]

j s Nj s N N j s N N j j s

j j
w j

N

wj s w w Nj s N

( ) ( ) ( −1) ( ) −1 ( ) ( )

+1
=

−1

( ) +1 ( )

Students with higher scores have more options open to them which is what makes higher scores valuable to a student in this
setting.

3.1. Estimation strategy and results

Given the preference parameters and the number of seats in each school, the real world cutoffs are determined by setting the
demand for seats, as explained above, equal to their supply and obtaining the market clearing score cutoffs. This is not what we will
do. For us, the cutoffs and the number of seats are data. We want to use this data and the nesting structure imposed to obtain the
preference parameters. In particular, we want to estimate the coefficients of school characteristics β( ) and the parameter vector λ,
where λ λ λ λ= [ , , …, ]K1 2 , that best fit the data and respect the solution of the model that equates demand d( ) with supply q( ).

We do this in two steps. In Step 1, we back out the values of δj for each school j for a given λ. In essence, the minimum cutoff in
each school denoted by the vector c cc = ( , ‥ )N1 , the number of seats in each school denoted by the vector q qq = ( , ‥ )N1 , together with
the market clearing conditions of the model, pin down the mean valuation of each school for a given vector, λ λ λ= ( , … )K1 . In step 2,
we find λ so as to best match the extent of overlap in the scores of schools in the same nest. A higher correlation in the errors within a
nest means that there is less of a role for preference shocks to play in choice, so that preferences are driven by the non-random terms.
This corresponds to having more of a vertical preference structure. As a result there is less overlap in the range of student scores
across schools in a nest. If there is perfect correlation, the maximum score in a worse school will be less than the minimum score in a
better one. Following this, we relate our estimates of δj to the characteristics of each school to see what drives the preferences for
schools.

We do not use the standard nested logit setup because the cutoff score constrains choice. Only those students with scores above
the cutoff for a school have the option of attending it. Had we ignored this constraint, we would have obtained biased estimates of δj.
For example, small and selective colleges would be wrongly seen as undesirable.17

3.2. Step 1: mean valuations conditional on λ

Our model includes unobserved school characteristics, and these unobserved characteristics enter the demand function
nonlinearly, which complicates the estimation process. Berry (1994) proposed a method to transform the demand functions so that
unobserved school characteristics appear as school fixed effects. By normalizing the value of the outside option to zero, δ = 00 , we
have N demand equations with N unknowns. This permits us to get the vector δ λq c( , , ) for given vectors q and c, conditional on a

17 There is a growing literature on the structural estimation of matching models that uses data on who is matched with whom (see Fox, 2009). Since we do not
observe all matches and only see the minimum and maximum scores associated with each school as well as the number of seats, our approach has to differ from theirs.
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vector λ such that

δ λ λq d q c= ( ( , , ), ).

On the left-hand side we have supply of seats, and on the right-hand side we have the demand for seats for a given vector of mean
school valuations and school cutoffs (denoted by δ and c, respectively) and correlation of shocks within nests (λ). For a given λ, and
with q and c coming from the data, we can invert the above to obtain δ λq c( , , ). We cannot solve for δ q c λ( , , ) analytically as done in
some of the models in Berry (1994). Our setup is closer to that in Bresnahan et al. (1997) who solve the system numerically as we do.
Berry (1994) shows that if the market share function is everywhere differentiable with respect to δ, and its derivatives satisfy the

strict equalities: > 0d
δ

∂
∂

j

j
and < 0d

δ
∂
∂

j

k
for k j≠ , the market share function is invertible and unique. As our demand function satisfies

these conditions, our numerical solution for δ q c λ( , , ) is unique.

3.3. Step 2: pinning down λ

Once we get δ λq c( , , ), we can specify individual i's utility from alternative j as

λ λU ε δ εq q c( , , ) = ( , , ) +ij ij j ij

At this stage, the only unknown in the utility function is the vector λ. As the λ for a nest falls, the correlation of the utility shock
within the nest will increase. In the extreme case, when the correlation is perfect, if one agent values a particular school highly so do
all other agents, which can be interpreted as pure vertical differentiation. In this case, there will be no overlap in the score
distributions of different schools within the nest. If correlation is low, then some students will choose one school and others will
choose another and there will be overlap in the score distributions. The extent of overlap in the minimum and maximum scores of
schools that are next to each other in cutoffs within a nest helps to pin down the λ in the nest.

Fig. 4 shows how different values of λ affect the fit of the model to the data for the Science high school nest. For each λ, the
simulated minimum scores lie exactly on top of the actual minimum scores as depicted in Fig. 4, a consequence of our estimation
strategy. The figure shows the actual maximum score and simulated maximum scores for λ = 0.25, 0.5 and 1. Note how the lines
move up as λ rises (or correlation falls) so that the extent of overlap increases.

We pin down λ using a simulation-based approach. The simulation algorithm works as follows: For a given vector λ, we obtain
the vector δ λq( , ) and simulate the minimum and maximum cutoff scores, c j , and cj, for each school. Then we find the vector λ that
best matches the actual maximum and minimum cutoff scores.

Simulating the error terms in the nested logit model creates some difficulties: taking a draw from the GEV distribution with the
standard Markov Chain Monte Carlo Method is computationally intensive. We use a method proposed by Cameron and Kim (2001)
which takes a draw from the GEV distribution using a far less computationally intensive procedure.18

We draw M( = 100) sets of error terms εij for each student from the distribution function given in Eq. (1) by using the
parameters, λ. For each of the M sets of errors drawn, ε ε k M= 〈 〉, = 1, ‥k ij

k , we allocate students to schools by using the placement
rule.19 After drawing each set of errors we get a distribution of scores for students in each school. Let gj

k be the set of scores in school
j in simulation k , ordered to be increasing20:

Fig. 4. Real and simulated cutoff scores for λ = 0.25, 0.5, 1.

18 This method is explained in Appendix A.1
19 We focus on the highest scoring 50,000 students to reduce computational intensity. The score of the student whose rank is 50,000 is lower than the minimum

cutoff score of 216 schools and lower than the maximum cutoff score of all 226 schools.
20 In the method proposed by Cameron and Kim (2001), a change in λ only affects the coefficients. This allows us to keep the random seeds drawn from the extreme

value distribution over simulations and only change coefficients.
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After ordering scores in ascending order for each school j and simulation M, we find the expected value of the score for each rank
within each school across the M simulations. The expected score of student with rank r in school j is thus:
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Let λg*( )j be

λ λ λ λg s s s*( ) = *( ), *( ), …, * ( ) .j j j jq1 2 j

We take the lowest and highest ranked mean simulated score in each school. We find the λ that gives the least square distance
between these simulated minimum and maximum cutoff scores and observed minimum and maximum cutoff scores. In effect, we are
matching the maximum scores as the minimum scores are matched on average given our estimation procedure for obtaining δ:

⎛
⎝⎜

⎞
⎠⎟∑ ∑λ λ λ

N
s c

N
s c= arg min 1 * ( ) − + 1 ( *( ) − )

λ j
jq j

j
j j

2

1
2

j

Table 1 shows the λ values for each nest that minimize the distance between simulated and real maximum and minimum cutoff
scores. As we mentioned before, λ is a measure of dissimilarity in preferences within a nest. If λ is small, students rank schools in the
same nest according to their perceived quality δ( ) so that students tend to agree on the ranking of schools. However as λ gets bigger,
students differ in their preferences and no such ranking exists as their tastes for schools differ.

The correlation in shocks is low for vocational, teacher and local schools, suggesting that preferences are more horizontal there.
This makes sense as these schools do not tend to be vertically differentiated: students usually go to the nearest one. As a result, the
overlap in the support of scores in these schools is large which drives the high estimate for λ. The correlation is highest in the İzmir,
Ankara, and İstanbul Anatolian high school nests (as λ is lowest). Note that the smaller the city, the higher the correlation in the city
nest, as might be expected. In large cities, there may be enough schools so that students can choose the school that is most
convenient without sacrificing much in quality. This would be picked up as greater horizontal differentiation, i.e., a higher λ. Science
high schools are also more vertically differentiated than the others which again makes sense as they are the most elite of the schools.
These findings suggest, quite reasonably, that students' preferences are vertical for selective Anatolian and Science high schools, but
less so for less selective vocational, teacher and local schools. Moreover, the standard errors are low so that the estimates are tight.21

The real and simulated cutoff scores for λ presented in Table 1 are given in Fig. 5. As we can see simulated maximum scores track
the real maximum cutoffs quite well. Note that the actual maximum score is more variable than that estimated one. Heterogeneity in
preferences comes from the error term. In our data we have no information about individual students preferences such as the
school's location relative to their own home. As a result the error term ends up having more noise in it. For example, a very good
student may choose a less selective Anatolian School just because it is close to where he comes from. This would raise the maximum
score there above what the model predicts. If we had better information on students, we expect that we could do better at matching
the maximum score.

Table 1
Nesting parameters: λ.

Variable Coefficient

λloc 0.958
(0.0001)

λvoc 0.986
(0.0005)

λank 0.795
(0.0007)

λist 0.837
(0.0016)

λizm 0.777
(0.0004)

λteach 0.999
(0.0000)

λsci 0.897
(0.0018)

Note: Standard errors are reported in parentheses.

21 The simulations were bootstrapped 13 times to get the standard errors.

P. Akyol, K. Krishna European Economic Review 91 (2017) 89–117

98



Fig. 6 depicts the relationship between the perceived valuation and the selectivity of schools. More selective schools clearly seem
to be more valued. Close to the top of the score distribution a small increase in the score raises utility a lot while a similar increase at
low scores has little effect. In the next step, we investigate the factors affecting the students' perceived valuations of the schools.

3.4. What drives valuations?

Once we pin down the λ that gives the best match of the actual and the simulated cutoffs, we get δ λq( , ). Returning to the
definition of δ, the vector of mean valuations for schools,

δ β ξX= + (2)

where X is the observed characteristics of the school, and ξ is the school specific component of mean valuations. ξ is the unobserved,
common across all agents, school specific preference shock. X includes the school's success on the ÖSS the previous year, its age/
experience, type, education language, dormitory availability, whether it is located in a big city (Ankara, İstanbul, or İzmir), the
number of seats, and the cutoff score of the school. Agents may value selectivity, i.e., a high cutoff score, for the associated bragging
rights and/or because they use it as a signal for unobserved quality. The cutoff score is an equilibrium outcome and so endogenous by
definition. The dummy for being a Science or Anatolian high school incorporates the possibility that such schools have a good
reputation and this makes people value them. This could be for consumption purposes, perhaps for the bragging rights associated
with going there.

The cutoff score is an equilibrium phenomenon. An increase in the valuation (though any of the channels that people seem to
care about) will shift demand out and raise the cutoffs. An increase in the number of seats will both change the valuation (if agents

Fig. 5. Real and simulated cutoff scores.

Fig. 6. Perceived valuation w.r.t. minimum cutoff score.
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care about the school size) and so shift demand and raise the cutoff. It will also directly affect supply so that the cutoff will fall.22

We allow valuations to depend on a number of factors, including the cutoff score itself.23 The equilibrium cutoff is then a fixed
point: given the equilibrium cutoff, valuations generate the same cutoff in equilibrium. In Eq. (2) there is a valuation shock, ξ, which
acts as the error term. There is thus an econometric issue associated with including the cutoff score as an explanatory variable.24 If ξ,
the school specific valuation shock, is large and positive, then the cutoff score will be high as well, so that the cutoff will be correlated
with ξ. This will bias the estimates of β obtained upward. This is the familiar endogeneity problem. To deal with this we need good
instruments for the cutoff score. We partition X as X c[ , ]͠ so that

δ β ξX γc= + +͠∼

A good instrument is an exogenous variable that shifts the cutoff score, but does not affect a school's average valuation δ directly. The
first variable that comes to mind that shifts the minimum cutoff score is the number of available seats in a school. However, the
available number of seats may affect the valuation of the school directly. In addition, it may be a response to a high ξ which makes it
less than optimal.25 Fortunately, the model suggests which instruments to use for the minimum cutoff score. Next, we explain what
these are and how we construct them, and then present our results.26

The model predicts that the number of available seats in schools worse than a given school has no effect on the demand for the
school. However, the number of seats in better schools does affect demand: more seats in better schools are predicted to reduce the
cutoff score of a school. This comes from the observation that the demand for a school comes from those who like it the most, from
the alternatives that are open to them. Changing the cutoff in worse schools has no effect on the alternatives open to a student going
to a better school, and hence, on their demand. In other words, if Podunk University offers more seats, there is no effect on the
demand for Harvard since everyone choosing to go to Harvard had, and continues to have, Podunk in their choice set. But if Harvard
offers more seats, it may well reduce the demand for Podunk University. It could be that someone chose Podunk because they could
not get into Harvard. Once Harvard increases its seats and so reduces its own cutoff, Harvard may become feasible for such a
student. As we use seats in other schools to instrument for a school's cutoff we need not worry about any correlation with ξ.

To construct the instrumental variable, we need a ranking of schools free of ξ. We will use the schools' success on the verbal and
quantitative part of the ÖSS in the previous year to rank schools.27 We construct our instrumental variable as follows:

1. For each school, we find the schools that have better average test scores in both dimensions, verbal and quantitative.
2. We find the total number of seats in all of the schools found in step 1. The available number of seats in the school itself is not included.

The second set of instruments we use is constructed using a different insight. A large positive draw of ξ, the school specific
demand shock, would raise demand for the school and so raise both the minimum score and the maximum score. As a result, the
residual from the regression of the minimum cutoff score on a flexible form of the maximum score will be correlated with the
minimum cutoff, but orthogonal to the school specific demand shock, ξ. This makes it a good instrument.28 We thus use the residual
of the minimum score on a polynomial function of maximum score as an instrument for the minimum cutoff score29:

c λ λ c λ c ν= + + +0 1 2
2

Table 2 shows our first stage estimation:

c ηX κ κ ν ε= + *Seats in better schools + * +͠ 1 2

Note that the number of seats in better schools has a negative coefficient: more seats in better schools reduce the school's own cutoff
as expected. The second instrumental variable, the residual from the regression of minimum cutoff on a polynomial function of
maximum score, has a positive coefficient as expected since the minimum score would be increased by a positive shock as captured
by a positive residual.

Finally, according to the model, the number of seats in worse schools should have no effect on the school's own cutoff. Table A8
presented in Appendix A.3 shows the first stage estimation after adding as an additional instrument the number of seats in lower
scoring schools. As expected, this additional instrument is not significant. We also test for the exogeneity of the cutoff score using a
Hausman test and reject the hypothesis with p-value equal to 0. Our model is overidentified. According to the results of
heteroskedasticity-robust score test (Wooldridge, 1995), we cannot reject this hypothesis with p-value 0.17.

22 The net effect will be negative if the equilibrium is stable.
23 This is like putting in the price into the utility function: people get utility from the price being higher in a Veblenesque manner.
24 The same criticism might be thought to apply to variables like the school's average score in (parts of) the university entrance exam. However, it is far from clear

why this would happen. Even if class quality today rose with the cutoff, this would only affect university entrance exam results with a 3year delay.
25 This is less of a concern in Turkey, where the number of seats is usually equal to the size of the graduating class as the overall school size is set by the central

authority and can be thought of as exogenous.
26 An exogenous change in the cutoff score could occur if it was misreported by accident and last years cutoffs affected this years valuations.
27 Of course, there could still be a problem if demand shocks when the students in the previous year were admitted was strongly serially correlated with today's

demand shock. As long as the correlation between the demand shock today and at the time the students in the previous year were admitted are small, our instrument
is valid.
28 One might ask what could affect the maximum score and not the minimum score. The score distribution around the cutoff score of a school does not affect its

maximum score but it affects its minimum cutoff score.
29 Hoxby (2000) uses an instrumental variable constructed with similar logic.
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The first column of Table 3 shows our baseline estimates, where we regress average valuation on the exogenous variables and do
not include the minimum cutoff score of a school. This column suggests that past performance on the university entrance exam (ÖSS
scores) and school type drive preferences. The second column of Table 3 shows the results of the regression of the average valuation
on the exogenous variables and the school's cutoff score. The coefficient on the minimum score is positive and highly significant
suggesting that a more selective school is highly valued. The significance of past scores on the university entrance exam are less
significant, as would be expected given that the cutoff is positively correlated with the past performance of a school so that including
it picks up some of this variation. However, as explained above, cutoffs are not exogenous. As cutoffs are high when the school
preference shocks are high, cutoffs are positively correlated with the error term which imparts an upward bias to the coefficient. The
third and fourth columns show the results when we instrument for cutoffs. The third column reports the 2SLS estimates, and the
fourth column reports the limited information maximum likelihood (LIML) estimates. The latter has better small sample properties.
It is reassuring that the estimates from both methods are very similar. In addition, note that after instrumenting for the cutoff score,
the coefficient on it falls (as expected) but remains positive and significant. Past performance on the university entrance exam
becomes more significant suggesting that, conditional on the cutoff, a school's performance on the university entrance exam is an
important determinant of its valuation. Thus, students do look at how well students graduating, or the output of a school, in forming
their valuation of a school. These results are consistent with the findings of Burgess et al. (2009) and Hastings et al. (2008) who
reach a similar conclusion using data from the Millennium Cohort Study in the UK, and school choice data from the Charlotte-
Mecklenburg School District, respectively.30

Table 2
First stage estimation.

Variable Coefficients

Number of available seats 0.087
(0.061)

Average quantitative score in 2000 ÖSS 1.240*

(0.531)
Average verbal score in 2000 ÖSS 1.167

(0.765)
Age 0.267

(0.316)
Science high school 56.99***

(14.890)
Teacher high school 45.37**

(16.260)
Anatolian high school in İstanbul 24.090

(19.870)
Anatolian high school in İzmir 13.460

(20.850)
Education language – English 11.410

(11.160)
Education language – German −3.628

(11.810)
Dormitory availability 13.140

(6.895)
Ankara 26.46*

(12.690)
İstanbul 23.780

(14.750)
İzmir 30.93*

(15.110)
Seats in better schools −0.00358*

(0.002)
Residual from min regression 0.740***

(0.087)
Constant 708.2***

(35.050)

F-stat (Excluded variables) 41.512
R2 0.802
N 161

Note: Standard errors are reported in parentheses.
* Significance at the 0.90 level.
** Significance at the 0.95 level.
*** Significance at the 0.99 level.

30 The significance level of the “seats in better schools” instrument is lower than the “residual from min regression” instrument. One might wonder whether our
results are sensitive to estimating the model just by using the “residual from min regression” instrument. Tables A9 and A10 show that neither the coefficient on the
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Science high schools and schools in İstanbul, Ankara, and İzmir are also valued beyond what they would be based on their
selectivity alone. As mentioned before, Science high schools are very prestigious. It could be that attending such schools gives one
contacts in the future as well as a consumption value in the present. MacLeod and Urquiola (2009) show that a school's reputation
can affect wages as the identity of the school attended gives information about a student's ability. This could also rationalize the high
valuation placed on Science high schools. It could also be that the high valuation of Science high schools comes from the students'
use of school type as a proxy for school quality. In the next section we look at the value-added of each Science high school by
estimating the effect or the value added of the high school on their students' performance on the university entrance exam.

4. Value-added by high schools

In the previous section, we estimated the preference parameters and simulated the high school entrance exam scores for students
in each school. We allocated students to schools on the basis of the estimated preference parameters and the overall score
distribution using simulations. In this section, we estimate the value-added by a school in terms of their students' academic
performance. Here we are limited by the data. We do not have a panel, so we cannot match the score the student obtained on the
high school entrance exam to what he obtained on the university entrance exam. Rather, we infer the effects of schools on student
performance by comparing the mean high school entrance exam (OKS) score to the mean university entrance exam (ÖSS) scores for
each school. We have many years for the latter, but only one year for the former. We estimate the average value added per school by
running a regression of the difference in the (standardized) mean score of a school in the university entrance exam and in the high

Table 3
School choice: estimation results.

Variable (OLS) (OLS) (2SLS) (LIML)

Number of available seats 0.005 0.00842* 0.007 0.007
(0.007) (0.004) (0.004) (0.004)

Average quantitative score in 2000 ÖSS 0.218*** 0.0680* 0.116** 0.117**

(0.053) (0.033) (0.036) (0.036)
Average verbal score in 2000 ÖSS 0.306*** 0.0865* 0.157*** 0.159***

(0.053) (0.038) (0.039) (0.040)
Age 0.026 0.032 0.030 0.030

(0.062) (0.031) (0.040) (0.040)
Science high school 8.422*** 3.237*** 4.892*** 4.936***

(1.764) (0.765) (1.034) (1.047)
Teacher high school 4.039* 0.867 1.880 1.907

(1.931) (0.763) (1.063) (1.075)
Anatolian high school in İstanbul 1.928 −0.544 0.245 0.267

(2.152) (0.728) (1.156) (1.169)
Anatolian high school in İzmir 1.715 0.392 0.814 0.826

(2.280) (0.679) (1.036) (1.050)
Education language – English 2.671 −0.028 0.834 0.857

(2.192) (1.118) (1.418) (1.429)
Education language – German 1.198 0.330 0.607 0.615

(2.254) (1.175) (1.458) (1.467)
Dormitory availability 1.617 0.500 0.856 0.866

(0.893) (0.455) (0.555) (0.558)
Ankara 4.235** 0.733 1.851* 1.881*

(1.494) (0.485) (0.784) (0.795)
İstanbul 4.485*** 1.687** 2.580** 2.604**

(1.297) (0.522) (0.771) (0.779)
İzmir 3.746* 0.608 1.610** 1.637**

(1.449) (0.381) (0.580) (0.591)
Minimum cutoff score 0.0846*** 0.0576*** 0.0569***

(0.006) (0.007) (0.008)
Constant −22.95*** −76.18*** −59.19*** −58.73***

(3.121) (4.363) (4.596) (4.654)

R2 0.807 0.942 0.928 0.927
N 161 161 161 161

Note: Corrected standard errors are reported in parentheses.
* Significance at the 0.90 level.
** Significance at the 0.95 level.
*** Significance at the 0.99 level.

(footnote continued)
“residual from min regression” in the first stage nor the coefficient on the minimum score in the second stage change by much.
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school entrance exam on a school dummy and an error term.31 We discover patterns that suggest that better schools are resting on
their laurels, while the schools at the bottom are scrambling to improve. However, we argue that this could be reflecting mean
reversion. By using simulation based methods as well as information on each student in a single school, we estimate the average
value-added by a school while controlling for mean reversion.

4.1. The approach

In this section, we look only at Science high school students because their program is homogeneous since all students follow the
science track. Students in these schools will be placed on the basis of a score that gives greater weight to the science and math part of
the exam, the ÖSS-SAY score, which is what we use as the performance measure on the university entrance exam. We standardize
scores by using the mean and the standard deviation of scores within all Science high schools.

We assume that student i's high school entrance exam score depends on his ability, αi, and his i.i.d. mean zero shock, εi
hs., and

that his university entrance exam score depends on his ability, the value-added of the school he attended, and the shock to the
university entrance exam score, εij

c. ε u v= +ij
c

j i
c where uj and vi

c which are the school specific and individual specific components of
the university entrance exam score shock and are independently distributed, mean zero error terms. Thus

s α ε= +i
hs

i i
hs

and

⏟
s α γ ε= + +ij

c
i j ij

c

u v+j i
c

where j indexes schools and γj is the school value-added. Assume that α γ u v, , ,i j j i
c and εi

hs are independent of each other. The school
level common shock, uj, is a shock affecting the performance of all students in the school. εi

hs and vi
c can be thought as idiosyncratic

shocks such as air pollution (Ebenstein et al., 2016) or the noise level near where students take the exam (students take both exams
in schools that they are assigned randomly in a city that they prefer) that affect performance, but are uncorrelated with other
observables. We do not observe the individual students' scores, but only the school level average scores for the university entrance
exam. Thus, aggregating to the school level in the model above, we get the mean scores in the OKS and ÖSS from school j:

E s j E α j E ε j( | ) = ( ) + ( | )i
hs

i i
hs

and

E s j t E α j t γ E ε j t( | , ) = ( , ) + + ( | , )ij
c

i j t ij
c

,

The t is the time index as we have more than a single year's data on the university entrance exam. Under the following
assumptions, we can get a consistent estimate of the school value-added, γj t, , by using the data on the performance of the schools over
time.

Assumption 1. E ε j( | ) = 0i
hs .

Assumption 1 is a heroic one and is unlikely to hold in the data we have. Students with better scores, and hence with better
shocks to their scores on the high school entrance exam, get into a better school while those with worse ones do not. As a result, it is
expected that the mean scores of students in the best (worst) high schools will look like they have fallen (risen) in the university
entrance exam even if there is actually no value-added by any school. This is the familiar mean reversion issue. All we are saying here
is that if Assumption 1 holds, then we can easily estimate value added. If it is grossly untrue, then our estimates will be biased due to
mean reversion and we will need to correct for this.

Assumption 2. E α j t E α j t( , ) = ( ) ∀i i .
Assumption 2 states that students placed in a school have the same ability on average over time. This is a reasonable assumption

in the Turkish system. The cutoff scores are fairly stable as the educational environment in Turkey has been unchanged over the last
few decades. In Appendix A.2 we present evidence on the stability of cutoff scores.

Assumption 3. γ γ t= ∀j t j, .
Assumption 3 says that school value-added is time-invariant. Assumptions 1–3 imply that the variation in the performance of a

school comes from the shock, ujt, received by that school in that year.
Under these assumptions the average performance of students in school j at time t can be written as

E s j t E s j γ E u v j t E s j t E s j γ E u j t( | , ) = ( | ) + + ( + | , ) ( | , ) − ( | ) = + ( | , )ij
c

i
hs

j j i
c

ij
c

i
hs

j j

To account for the correlation in the shocks received by a school over time, we cluster standard errors at the school level.
Value added modeling has become a key tool in the attempt to evaluate teachers and institutions, especially in the US, see Koedel

et al. (2015) for a useful survey of recent work. Two papers stand out in this literature. Chetty et al. (2014a) use value added
modeling to monetize the gains that would occur from improving teachers using Internal Revenue Service (tax) data. Their work

31 See Todd and Wolpin (2003) for identifying assumptions and data requirements for different value-added estimators.
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suggests that these gains are large: replacing a teacher in the bottom 5% in terms of value added with an average one would raise the
present discounted value the earnings of all students in the class by $250,000. However, Rothstein (2015) criticizes these estimates
as being biased due to unobserved sorting. His argument is elegant and devastating. He shows that after adding the usual controls,
current student test score growth is correlated with future teacher value added, suggesting that student assignments to teachers are
not random. However, Chetty et al. (2015) argue that future value added is generated from past student scores leading to a
mechanical correlation noted by Rothstein (2015).32

Deming (2014) also points out that only controlling for prior test scores may not be enough to control for sorting across schools
so that value-added estimates will be biased. In our framework, if students with better (worse) unobserved characteristics sorted into
more (less) selective schools our value-added estimates would be upward biased for more selective schools and downward biased for
less selective schools. There is also considerable controversy over the persistence of teacher value added and on the viability of using
such measures to incentivize students. After all, if teachers are judged by a given yardstick, they will naturally direct their efforts to
look good according to the yardstick (perhaps by teaching to the test rather than encouraging understanding of the material) with
long run costs.33

4.2. Results

Before we present our results, we examine the patterns in the data on the schools' average performance on the university and
high school entrance exams, to understand the effect of noise on the average performance of schools. The patterns seem to be driven
by ability sorting, value added, and mean reversion. We normalize the average ÖSS score and the average OKS scores so that they
have mean zero and variance of unity.

Looking at the patterns in the data we see that there seems to be a role for ability in the sorting between schools. If ability did not
affect the scores on the high school and the university entrance exams, then allocation of students to schools would be independent
of ability. In that case, the correlation between the (normalized)average ÖSS score and the average OKS score would be zero if there
is no value-added by schools. If there was value added by schools, and this mattered to students, then the high value added schools
should be harder to get into and sorting by ability should occur. The correlation and rank correlation of these mean OKS and the
mean ÖSS scores are strongly positive as in Table 4 and 5 suggesting some sorting by ability.

If there was sorting on the basis of ability and/or preferences, no value-added by any school, and no randomness in OKS scores,
we would expect the normalized OKS and ÖSS scores to lie along the 45 degree line. When we plot normalized OKS and ÖSS scores
as in Fig. 7, the fitted line is flatter than the 45 degree line, which is in red. This should not be taken to mean that more selective
schools have negative value added as this could arise from mean reversion if there was randomness in the OKS scores.

The less the randomness in the OKS score relative to the variation in ability, the more informative is the high school entrance
exam score and the lower the extent of mean reversion bias. If we knew, or could assume something about the variance in the OKS
score, we might be able to pin down the value-added by a school.

Fig. 8 presents the same data in a slightly different way. It orders schools on the basis of their cutoffs, not the average score, with
School 1 being the least selective one. Thus, the schools are ordered from “worst” to “best”. Each school's score on the university
entrance exam from 2002 to 2007 as well as the high school entrance exam score in 2001 is plotted. The high schools whose
normalized ÖSS scores are significantly higher than their OKS ones, i.e., those with positive “value-added” are highlighted in blue,
while those with significantly negative “value-added” are highlighted in red. No highlight means the estimated value-added is not
significantly different from zero. Note that the value added here is contaminated by mean reversion.

The least selective schools seem to add value on average and the most selective ones seem to reduce it, although School 4, one of
the worst schools, reduces value. As discussed above, this broad pattern could be just a reflection of mean reversion. In the next
section, by using auxiliary student level data from a school, we estimate the magnitude of the mean reversion bias and correct for it.

4.3. Mean reversion bias

In the previous section we noted that the mean difference in school performance in the OKS and ÖSS exams captures both mean
reversion and value-added. In this section, by using auxiliary student-level data we were able to obtain for only one school, we
develop a way to correct for the bias due to mean reversion. This auxiliary data contains each student's name, their high school score
and their college entrance exam score. This school (which is not a Science high school, but is an Anatolian exam school) has roughly
the same cutoff score as the one with rank 16 in Table 4.34

As in the previous section, we normalize scores within this Anatolian exam school so that the mean score is zero and its standard
deviation is 1 on both exams. If the value-added by a school is constant across students35 then student i's high school and university
entrance exam scores are given by36

32 There is an ongoing debate on this issue, see Chetty et al. (2014a,b, 2015), Rothstein (2015), and Bacher-Hicks et al. (2014).
33 This is well understood in the principal agent literature as the optimal contract may be to not provide high powered incentives for easily measured outcomes. For

example, tying remuneration of CEOs to stock prices may cause them to direct their efforts to short term projects rather than long term ones that build value.
34 This is the only school that posted incoming students OKS scores as well as their OSS scores when they graduated on its website.
35 This is a strong assumption. A school may add positive value to some students and not to others as in Duflo et al. (2011). However, if this assumption fails to

hold, we cannot account for mean reversion in our data.
36 As the scores are normalized within the school, value-added is wiped out.
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Table 4
Correlation of the mean OKS score with the mean ÖSS scores.

Mean score OKS ÖSS 2002 ÖSS 2003 ÖSS 2004 ÖSS 2005 ÖSS 2006 ÖSS 2007

OKS 1
ÖSS 2002 0.6667 1
ÖSS 2003 0.7239 0.8474 1
ÖSS 2004 0.7242 0.8816 0.8949 1
ÖSS 2005 0.7146 0.6666 0.7522 0.7989 1
ÖSS 2006 0.838 0.7761 0.8231 0.863 0.8027 1
ÖSS 2007 0.811 0.7902 0.8807 0.8851 0.7893 0.8664 1

Table 5
Correlation of the rank of the mean OKS and the mean ÖSS scores.

Rank of mean score OKS ÖSS 2002 ÖSS 2003 ÖSS 2004 ÖSS 2005 ÖSS 2006 ÖSS 2007

OKS 1
ÖSS 2002 0.8341 1
ÖSS 2003 0.8191 0.7988 1
ÖSS 2004 0.8347 0.8228 0.8533 1
ÖSS 2005 0.7438 0.6365 0.7479 0.8013 1
ÖSS 2006 0.8758 0.8171 0.8971 0.8927 0.7968 1
ÖSS 2007 0.851 0.7983 0.8489 0.87 0.7754 0.8825 1

Fig. 7. Average ÖSS score by average OKS score. (For interpretation of the references to color in this figure, the reader is referred to the web version of this paper.)

Fig. 8. Average OKS and ÖSS scores. (For interpretation of the references to color in this figure, the reader is referred to the web version of this paper.)
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where αi is the ability of student i. We assume that α v,i i
c and εi

hs are independent of each other. Students' scores on the high school
entrance exam and university entrance exam differ from each other only in terms of the shocks received.

We used the approach introduced in Chay et al. (2005) to understand if there is mean reversion in the data.37 We look at the
“regression” coefficient relating the score difference between high school and university entrance exam scores to high school
entrance exam scores:
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If there is no mean reversion, ρ is zero. To build intuition, consider two extreme cases that show how ρ is related to mean reversion.
Firstly, if we assume that high school entrance exam scores depend only on students' abilities and there is no noise, then σ = 0ε

2
hs so

ρ = 0. In this case, we do not expect to see mean reversion bias since there is no randomness in the high school entrance exam
scores. Secondly, if we assume that high school entrance exam scores are just noise, s ε=i

hs
i
hs, then ability does not affect score

variation, which results in ρ being equal to −1. In this case, the mean reversion bias is at its highest level. Therefore, ρ reflects the
extent to which mean reversion creates a problem.

We observe students' scores on the high school and university entrance exams, so we can get an estimate of ρ.
Table 6 shows the estimate of ρ. As a result of our normalization process the variance of each of the scores is unity. As ability and

shocks are orthogonal, σ σ+ = 1α ε
2 2

hs . So we can recover the variance of the error distribution and the variance of the ability
distribution from our estimate of ρ:

σ ρ σ ρ= − = 1 +ε α
2 2
hs

The estimate of ρ is quite large in absolute terms: noise accounts for 66% of the variance in the OKS score.
In our system, the allocation rule of students to schools is known and in the previous section, we estimated students' preferences

over high schools. We can recover the average ability and shock received by students in each school by making a parametric
assumption on the distribution of ability and noise on the high school entrance exam. We will assume that the ability has a normal
distribution with the mean equal to zero and the variance equal to ρ(1 + ). Similarly the distribution of the error term, εi

hs, is normal
with mean equal to zero and variance ρ− . Under these assumptions, we generate high school entrance exam scores and allocate

Table 6
“Regression” coefficient: ρ.

ρ

−0.663***

(0.0559)

***Significance at the 0.99 level.

Fig. 9. Mean reversion bias: ε N ρ ε N ρ σ∼ (0, − ), ∼ (0, − ± 2 )hs hs ρ− . (For interpretation of the references to color in this figure, the reader is referred to the web

version of this paper.)

37 Chay et al. (2005) use across-school variation to identify signal to noise ratio, while we use across-student variation to do the same.
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students to schools based on the estimated preferences. This gives the orange line (connecting the dots) in Fig. 9. We also present the
mean scores on university entrance exams for this simulated allocation of students to schools when there isno value-added for
different levels of variance in εi

hs, i.e., σε
2
hs. The middle curve corresponds to the university entrance exam score with σ ρ= −ε

2
hs . The

ones above and below it correspond to the simulations where σε
2
hs is set at the 95% bands. In addition, we present the actual mean

scores on the high school entrance exam to see if the simulated mean scores deviate from the actual ones. It is comforting to see that
they look remarkably similar. They differ slightly for the most and least selective schools.

It is worth noting that preferences also affect the extent of mean reversion bias: the more vertical the preferences, the more the
bias. With purely horizontal preferences, students who get lucky in their high school entrance exam performance are less likely to
end up in the more selective schools reducing the extent of mean reversion bias.

Now we adjust for the mean reversion bias in our estimates by adding E ε j( )i
hs to our estimates of value added to correct for mean

reversion. In the figures, we also depict μ E ε− ( )OKS OKS which is the mean high school entrance exam score adjusted for the mean
reversion bias which rises far less slowly than the unadjusted one. Fig. 10 shows the schools' value-added estimates when we correct
for the mean reversion bias. There is no particular pattern in value-added estimates according to selectivity. The most selective
schools do not seem to have a positive effect on their students' test scores. However, it is also clear that some schools, such as schools
13, 29 and 35, improve their students scores, while others have negative value-added, such as schools 4, 11, 33 and 45. Figs. 11 and
12 do the same thing but allow for higher and lower levels of variance in εi

hs, respectively, as defined by the confidence intervals
above. As can be seen, with higher variance, there is more mean reversion to correct for so that more schools on the right add value and
more on the left reduce value. With lower variance, we get the opposite happening. As our estimate of ρ comes from only one school, it
may not reflect that in science schools. If our estimate of ρ is too high, we will overcorrect for mean reversion and thereby underestimate
the value-added of schools at the top of the ranking and overestimate the value added of the schools at the bottom of the ranking.

Finally, we relate our value-added estimate to the valuations of the schools.38Table 7 looks at what drives valuations for these
Science high schools. We use a standardized regression here as we want to understand what seems to matter more.39 The results in

Fig. 10. Value-added: ε N ρ∼ (0, − )hs .

Fig. 11. Value-added: ε N ρ σ∼ (0, − + 2 )hs ρ− .

38

In this section, as opposed to the results in Table 3, we focus only on Science high schools.
39

Table A11 presents non-standardized regression results.
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the last column indicate that the valuation of a school is very closely related to its minimum cutoff score. A one standard deviation
increase in minimum cutoff score increases the valuation of the school by 0.96 standard deviation. While the value added of the
school does seem to drive valuations, it seems less important. A one standard deviation increase in the value-added of the school
increases its valuation by around 0.09 standard deviation.

These results show that there is reason to think that the circular causation hypothesis has some merit. Although more selective
schools need not have a significant effect on their students' test scores, students value selectivity! It is also important to note that we
are only investigating the effect of exam schools on academic achievement. However, students attending exam schools may have
other benefits that are valuable to them, but unobservable to us.40 For example, it may be the case that more selective schools add
value in terms of future earnings through the network students access by being in these schools.41

Fig. 12. Value-added: ε N ρ σ∼ (0, − − 2 )hs ρ− .

Table 7
School choice: estimation results (Science High Schools).

Variable (OLS) (2SLS) (LIML) (LIML)

Number of available seats 0.034 0.032 0.032 0.037
(0.030) (0.031) (0.034) (0.036)

Average quantitative score in 2000 ÖSS 0.144 0.147 0.147 −0.070
(0.113) (0.105) (0.115) (0.135)

Average verbal score in 2000 ÖSS −0.039 −0.037 −0.037 0.089
(0.112) (0.106) (0.116) (0.086)

Age −0.0572* −0.0569* −0.0568* −0.044
(0.026) (0.025) (0.028) (0.026)

Minimum cutoff score 0.928*** 0.923*** 0.922*** 0.973***

(0.057) 0.064) (0.074) (0.068)
Value-added 0.0930*

(0.036)
Constant 0.006 0.007 0.007 0.005

(0.028) (0.028) (0.031) (0.029)

R2 0.973 0.973 0.973 0.977
N 38 38 38 38

Note: Corrected standard errors are reported in parentheses.
**Significance at the 0.95 level.

* Significance at the 0.90 level.
*** Significance at the 0.99 level.

40 Alstadsæter (2011) and Jacob et al. (2011) show the importance of the role of consumption value in students' school choices in different contexts.
41 We should also note that school value-added includes several factors: some of these are under the control of school administrators and some are not.

Raudenbush (2004) divide these factors into two groups “school context” which cannot be controlled by school administrators and “school practice” on which teachers
and school administrators have some influence. If value-added estimates reflect the effect of school context, it would not be fair to keep schools accountable. However,
in this section the schools that we analyze are similar in terms of “school context”, so that our value-added estimates are likely to be driven by “school practice” rather
than “school context”.
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5. Conclusion

Schools are hard to evaluate in the real world. Unlike most experience goods, where consumers can know how much they like the
good upon consuming it, with schooling, liking the experience is only part of what people care about. They care about attributes, like
reputation or selectivity that might signal something, as well as the value-added by the teaching in the school. Since consumers are
unlikely to have information about the latter, even if they have information about the former, information frictions are likely to be
rampant in this market. This may well result in the market working poorly. Schools with high value-added may thus be ranked below
those that are adding little value but are very selective.

School choice programs are thought to increase the productivity of public schools by encouraging competition in the market. Just
like firms producing better products can charge a higher price for them, it is tempting to think of schools competing in their products
with good schools delivering a better product, i.e., adding more value to their students, and as a result being more selective and
having greater status. However, as argued above, quality is hard to infer in this market. As a result, the market may work poorly if
quality information is not made available. In this paper, we use data available from public sources to show that, indeed, consumers
value academic success on the university entrance exam, the selectivity of the school, elite school status and location, as well as the
value-added of the school. However, value added seems to matter a lot less than selectivity. These results suggest that it is hard for
families/students to infer the quality of a school as they tend to only see its selectivity and/or the performance of its students and
cannot infer value added on this basis. As a result they associate selectivity with quality which we shown is often not the case.
Providing information on value-added by a school is essential to the market working well in this domain.

Finally, our results illustrate the value of taking a structural, model based approach. First, as is well understood, by using the
model, one can do more with less data. Second, even if we had better data, we would still need to correct for much of what we
describe above. For example, if we had data at the student level on high school and university entrance exams, just looking at the
difference in student performance by school would not give a bias free estimate of value added. Mean reversion as above would still
be an issue. Its extent depends on the signal used and the extent of noise in the signal as explained above. If U.S. schools use a host of
factors in deciding on their admissions, not just high school performance or SAT scores, the noise in their admissions could rise,
worsening mean reversion bias. However, if preferences are horizontal more than vertical, as may well be the case in a large country
like the U.S. where schools find a niche for themselves, the extent of mean reversion bias could be lower. Thus, preferences, the
allocation system, and the strength of the signal present in the scores are critical inputs when developing measures of value added.
They can only be obtained by taking a structural approach.
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A.1. Cameron and Kim (2001)

Suppose that ε1 and ε2 are jointly distributed with bivariate extreme value distribution
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Cameron and Kim (2001) propose that
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where ξ v v, ,1 2 are independently distributed with extreme value distribution, and a b, and c are the weights that match the moments
of extreme value distribution:
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This results in

a λ b a c a b γ= 1 − = 1 − = (1 − − )2 2

where γ is the Euler constant.
This method is generalized to the multivariate extreme value distribution,
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Table A1
Correlation in minimum cutoff scores.

Min score 2000 2001 2002 2003 2004

2000 1 0.98 0.97 0.96 0.96
2001 0.98 1 0.97 0.96 0.95
2002 0.97 0.97 1 0.99 0.97
2003 0.96 0.96 0.99 1 0.98
2004 0.96 0.95 0.97 0.98 1

Source: Science, Anatolian and Anatolian Teacher Training high school's cutoff scores from 2000 to 2004 from the Ministry of Education website.

Table A2
Correlation in maximum cutoff scores.

Max score 2000 2001 2002 2003 2004

2000 1 0.82 0.82 0.82 0.81
2001 0.82 1 0.8 0.82 0.77
2002 0.82 0.8 1 0.87 0.84
2003 0.82 0.82 0.87 1 0.86
2004 0.81 0.77 0.84 0.86 1

Source: Science, Anatolian and Anatolian Teacher Training high school's cutoff scores from 2000 to 2004 from the Ministry of Education website.

Table A3
Correlation in rank of minimum cutoff scores.

Rank of Min score 2000 2001 2002 2003 2004

2000 1 0.94 0.94 0.94 0.94
2001 0.94 1 0.98 0.97 0.97
2002 0.94 0.98 1 0.99 0.98
2003 0.94 0.97 0.99 1 0.98
2004 0.94 0.97 0.98 0.98 1

Source: Science, Anatolian and Anatolian Teacher Training high school's cutoff scores from 2000 to 2004 from the Ministry of Education website.

Table A4
Correlation in rank of maximum cutoff scores.

Rank of Max score 2000 2001 2002 2003 2004

2000 1 0.76 0.77 0.78 0.75
2001 0.76 1 0.8 0.83 0.78
2002 0.77 0.8 1 0.82 0.79
2003 0.78 0.83 0.82 1 0.84
2004 0.75 0.78 0.79 0.84 1

Source: Science, Anatolian and Anatolian Teacher Training high school's cutoff scores from 2000 to 2004 from the Ministry of Education website.

Table A5
Correlation in number of seats.

Number of seats 2000 2001 2002 2003 2004

2000 1 0.82 0.67 0.71 0.7
2001 0.82 1 0.72 0.73 0.72
2002 0.67 0.72 1 0.87 0.84
2003 0.71 0.73 0.87 1 0.91
2004 0.7 0.72 0.84 0.91 1

Source: Science, Anatolian and Anatolian Teacher Training high school's cutoff scores from 2000 to 2004 from the Ministry of Education website.
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Table A6
Descriptive statistics: high school entrance exam.

Variable Obs Mean Std.Dev. Min Max

Anatolian High Schools in Ankara
Number of available seats 24 85.000 49.782 30 240
Minimum cutoff score 24 813.573 30.792 768.819 872.254
Maximum cutoff score 24 859.001 21.543 825.171 912.31
Age 24 10.292 6.182 5 30
Average math score in 2000 ÖSSa 17 29.071 3.598 23.07 34.84
Average science score in 2000 ÖSSa 17 18.425 6.691 3.1 28.41
Average Turkish score in 2000 ÖSSa 17 34.656 1.857 31.35 37.81
Average social science score in 2000 ÖSSa 17 25.920 2.477 21.78 30.21
Language offered: English 24 0.792 0.415 0 1
Language offered: German 24 0.167 0.381 0 1
Language offered: French 24 0.042 0.204 0 1
Dormitory availability 24 0.167 0.381 0 1

Anatolian High Schools in İstanbul
Number of available seats 38 100.658 48.186 30 240
Minimum cutoff score 38 827.916 41.686 654.059 898.332
Maximum cutoff score 38 874.426 23.135 830.076 933.735
Age 38 10.105 6.501 1 26
Average math score in 2000 ÖSSa 23 29.201 4.152 18.72 37.61
Average science score in 2000 ÖSSa 23 19.553 4.568 11.85 32.48
Average Turkish score in 2000 ÖSSa 23 35.819 2.524 29.19 41.05
Average social science score in 2000 ÖSSa 23 26.359 3.446 20.83 34.74
Language offered: English 38 0.763 0.431 0 1
Language offered: German 38 0.184 0.393 0 1
Language offered: French 38 0.053 0.226 0 1
Dormitory availability 38 0.184 0.393 0 1

Anatolian High Schools in İzmir
Number of available seats 18 90.000 63.431 30 300
Minimum cutoff score 18 810.994 32.805 762.369 878.236
Maximum cutoff score 18 868.863 30.033 818.16 915.172
Age 18 14.500 16.111 1 48
Average math score in 2000 ÖSSa 12 26.553 6.916 12.61 31.03
Average science score in 2000 ÖSSa 12 17.968 4.550 9.45 22.17
Average Turkish score in 2000 ÖSSa 12 33.875 4.792 24.02 37.48
Average social science score in 2000 ÖSSa 12 25.014 5.621 14.59 33.3779
Language offered: English 18 0.556 0.511 0 1
Language offered: German 18 0.278 0.461 0 1
Language offered: French 18 0.167 0.383 0 1
Dormitory availability 18 0.278 0.461 0 1

Science High Schools
Number of available seats 48 83.000 21.556 48 96
Minimum cutoff score 48 878.010 18.120 837.949 920.268
Maximum cutoff score 48 910.355 14.484 879.825 941.566
Age 48 8.250 6.380 1 38
Average math score in 2000 ÖSSa 38 37.270 2.652 29.22 41.4
Average science score in 2000 ÖSSa 38 32.973 3.919 22.54 39.59
Average Turkish score in 2000 ÖSSa 38 35.945 3.908 26.07 41.35
Average social science score in 2000 ÖSSa 38 27.843 6.209 12.92 38.06
Language offered: English 48 1 0 1 1
Language offered: German 48 0 0 0 0
Language offered: French 48 0 0 0 0
Dormitory availability 48 1 0 1 1

Anatolian Teacher Training High Schools
Number of available seats 91 56.703 21.322 24 120
Minimum cutoff score 91 798.716 35.943 712.758 864.296
Maximum cutoff score 91 864.419 16.861 827.49 902.864
Age 91 8.571 3.763 1 12
Average math score in 2000 ÖSSa 71 15.401 4.704 5.2 27.65
Average science score in 2000 ÖSSa 71 9.745 3.340 2.26 18.35
Average Turkish score in 2000 ÖSSa 71 31.726 3.405 22.65 37.87
Average social science score in 2000 ÖSSa 71 23.476 3.483 10.81 30.19
Language offered: English 91 1 0 1 1
Language offered: German 91 0 0 0 0
Language offered: French 91 0 0 0 0
Dormitory availability 91 0.846 0.363 0 1

a The differences in the number of observations across variables comes from some schools being new so that there are no students graduating in 2000.
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ε a ξ b v c= + +j k k j k

where

a λ b a c a b γ= 1 − , = 1 − , = (1 − − )k k k k k k k
2 2

Table A7
Descriptive statistics: high school entrance exam scores.

Variable Number of students Mean Std.Dev. Quantiles

Min 0.25 Median 0.75 Max

OKS score 553,495 592.35 86.34 442.53 526.76 572.83 637.44 941.49

Table A8
Validity check: instrumental variables.

Variable Coefficients

Number of available seats 0.084
(0.061)

Average quantitative score in 2000 ÖSS 0.566
(0.760)

Average verbal score in 2000 ÖSS −0.045
(1.177)

Age 0.235
(0.404)

Science high school 58.04***

(13.770)
Teacher high school 45.44**

(15.680)
Anatolian high school in İstanbul 23.770

(16.330)
Anatolian high school in İzmir 11.400

(16.910)
Education language – English 10.290

(13.260)
Education language – German −4.270

(13.570)
Dormitory availability 12.530

(6.809)
Ankara 26.41*

(11.880)
İstanbul 23.57*

(9.824)
İzmir 31.43***

(8.993)
Seats in worse schools 0.002

(0.002)
Seats in better schools −0.00443*

(0.002)
Residual from min regression 0.744***

(0.090)
Constant 755.8***

(51.700)

R2 0.804
N 161

Note: Standard errors are reported in parentheses.
* Significance at the 0.90 level.
** Significance at the 0.95 level.
*** Significance at the 0.99 level.
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A.2. Stability of exam schools' cutoff scores

The following tables show the correlation of cutoff scores over the five year period from 2000 to 2004. As Tables A1 and A2 show
the correlation between minimum cutoff scores over the years is never less than 0.95. The correlation between maximum cutoff
scores is lower than that between minimum cutoff scores, but it is still around 0.8. Similarly we also look at how the ranks of schools
with respect to their minimum and maximum scores are correlated over time. Table A3 shows the correlation in rank of schools'
minimum cutoff scores over the five-year period. Similarly, Table A4 shows the corresponding table for the maximum cutoff scores.
These tables show that exam schools' cutoff scores are stable in Turkey.

Table A5 presents the correlation of number of available seats over the five-year period. The correlations in number of seats are
never less than 0.8 for the consecutive years, which is consistent with the fact that the number of seats in a school in a year is decided
based on the number of available classrooms, and teachers. In addition, the maximum classroom size in exam schools is defined by
rules. These factors make it hard to change the size of the incoming class in the short term.

Next, we see if there is any evidence that schools respond to positive demand shocks by increasing their number of seats. Even if
this is so, because schools decide on the number of students they will admit before they know today's demand shock, they can only
respond to higher demand in the next year. Thus, today's demand shock and seats are unlikely to be correlated.

In any case, we look at what drives seats tomorrow. To do so, we first predict school cutoffs (a measure of their selectivity) by
using the number of seats in the school, and school level and time fixed effects:

c γ I γ I q u= + + +jt j t jt jt1 2

We then calculate the difference between observed and predicted selectivity c c( − )jt jt , i.e., the demand shock. If schools respond to a
positive demand shock by increasing their number of seats, then the change in the number of seats from time t to t + 1, q q( )j t jt( +1)− ,
should be positively correlated with the difference between observed and predicted minimum cutoff scores at time t:

Table A9
First stage estimation (only with “Residual from min regression” instrument).

Variable Coefficients

Number of available seats 0.0796
(0.0619)

Average quantitative score in 2000 ÖSS 1.745***

(0.46)7
Average verbal score in 2000 ÖSS 2.401***

(0.442)
Age 0.292

(0.404)
Science high school 51.90***

(14.43)
Teacher high school 36.57*

(15.61)
Anatolian high school in İstanbul 20.65

(17.37)
Anatolian high school in İzmir 11.76

(19.3)
Education language – English 11.38

(14)
Education language – German −6.202

(14.41)
Dormitory Availability 15.19*

(6.888)
Ankara 20.46

(12.35)
İstanbul 21.50*

(10.52)
İzmir 27.92*

(11.96)
Residual from min regression 0.751***

(0.0864)
Constant 648.6***

(23.45)

F-stat (Excluded Variables) 75.5603
R2 0.7956
N 161

Note: Standard errors are reported in parentheses.
**Significance at the 0.95 level.

* Significance at the 0.90 level.
*** Significance at the 0.99 level.
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Table A10
School choice: estimation results (only with “Residual from min regression” instrument).

Variable (OLS) (OLS) (2SLS) (LIML)

Number of available seats 0.005 0.00842* 0.007 0.007
(0.007) (0.004) (0.004) (0.004)

Average quantitative score in 2000 ÖSS 0.218*** 0.0680* 0.111** 0.111**

(0.053) (0.033) (0.036) (0.036)
Average verbal score in 2000 ÖSS 0.306*** 0.0865* 0.150*** 0.150***

(0.053) (0.038) (0.039) (0.039)
Age 0.026 0.032 0.030 0.030

(0.062) (0.031) (0.039) (0.039)
Science high school 8.422*** 3.237*** 4.736*** 4.736***

(1.764) (0.765) (1.012) (1.012)
Teacher high school 4.039* 0.867 1.784 1.784

(1.931) (0.763) (1.030) (1.030)
Anatolian high school in İstanbul 1.928 −0.544 0.171 0.171

(2.152) (0.728) (1.117) (1.117)
Anatolian high school in İzmir 1.715 0.392 0.774 0.774

(2.280) (0.679) (0.987) (0.987)
Education language – English 2.671 −0.028 0.752 0.752

(2.192) (1.118) (1.381) (1.381)
Education language – German 1.198 0.330 0.581 0.581

(2.254) (1.175) (1.424) (1.424)
Dormitory availability 1.617 0.500 0.823 0.823

(0.893) (0.455) (0.544) (0.544)
Ankara 4.235** 0.733 1.745* 1.745*

(1.494) (0.485) (0.754) (0.754)
İstanbul 4.485*** 1.687** 2.496** 2.496**

(1.297) (0.522) (0.749) (0.749)
İzmir 3.746* 0.608 1.515** 1.515**

(1.449) (0.381) (0.552) (0.552)
Minimum cutoff score 0.0846*** 0.0602*** 0.0602***

(0.006) (0.008) (0.008)
Constant −22.95*** −76.18*** −60.80*** −60.80***

(3.121) (4.363) (4.958) (4.958)

N 161 161 161 161
R2 0.807 0.942 0.923 0.923

Note: Corrected standard errors are reported in parentheses.
* Significance at the 0.90 level.
** Significance at the 0.95 level.
*** Significance at the 0.99 level.

Table A11
School choice: estimation results (Science High Schools).

Variable (OLS) (2SLS) (LIML) (LIML)

Number of available seats 0.005 0.005 0.005 0.006
(0.005) (0.005) (0.005) (0.005)

Average quantitative score in 2000 ÖSS 0.146 0.144 0.144 −0.075
(0.115) (0.106) (0.115) (0.139)

Average verbal score in 2000 ÖSS −0.026 −0.026 −0.026 0.059
(0.075) (0.070) (0.076) (0.057)

Age −0.0300* −0.0302* −0.0302* −0.023
(0.014) (0.013) (0.014) (0.014)

Minimum cutoff score 0.167*** 0.167*** 0.167*** 0.175***

(0.010) (0.011) (0.012) (0.011)
Value-added 1.077*

(0.424)
Constant −142.8*** −143.3*** −143.3*** −145.5***

(8.272) (8.289) (9.082) (8.031)

R2 0.973 0.973 0.973 0.977
N 38 38 38 38

Note: Corrected standard errors are reported in parentheses.
**Significance at the 0.95 level.

* Significance at the 0.90 level.
*** Significance at the 0.99 level.
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Fig. A1. Model fit: Science high schools nest.

Fig. A2. Model fit: Teacher high schools nest.

Fig. A3. Model fit: Ankara Anatolian high schools nest.
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Corr c c q q(( − ), ( )) > 0jt jt j t jt( +1)−

However, our estimates give a correlation of 0.0424, which has a P value of 0.028. Though positive, this value is very small.

A.3. Additional tables and figures

See Tables A6–A11 and Figs. A1–A5.

Appendix B. Supplementary data

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.euroecorev.
2016.09.009.
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