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Abstract The fact that small departures from complete information might have large
effects on the set of equilibriumpayoffs draws interest in the adverse selection approach
to study reputations in repeated games. It is well known that these large effects on the
set of equilibrium payoffs rely on long-run players being arbitrarily patient. We study
reputation games where a long-run player plays a fixed stage-game against an infinite
sequence of short-run players under imperfect public monitoring. We show that in
such games, introducing arbitrarily small incomplete information does not open the
possibility of new equilibrium payoffs far from the complete information equilibrium
payoff set. This holds true no matter how patient the long-run player is, as long as her
discount factor is fixed. This result highlights the fact that the aforementioned large
effects arise due to an order of limits argument, as anticipated.
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394 N. A. Dalkıran

“Much of the interest in reputation models stems from the fact that seemingly
quite small departures fromperfect information about types can have large effects
on the set of equilibrium payoffs.” Repeated Games and Reputations, Mailath
and Samuelson (2006), p 460.

1 Introduction

One of the most prominent results in the reputations literature is due to Fudenberg
and Levine (1989, 1992), who studied infinitely repeated, reputation games where a
long-run player faces an infinite sequence of short-run players. They showed that an
arbitrarily patient strategic long-run player can guarantee herself a payoff close to her
Stackelberg payoff when there is a small ex ante probability that the long-run player is
a commitment type who always plays the Stackelberg action. Their result implies that
quite small perturbations of the complete information model might have large effects
on the set of limit equilibrium payoffs.

This paper studies the set of equilibrium payoffs in repeated games with incomplete
information as in Fudenberg and Levine (1992), when the long-lived player’s discount
factor is fixed. We show that even when the discount factor of the long-run player is
very high, arbitrarily small perturbations cannot open the possibility of equilibrium
payoffs far from the complete information equilibrium payoff set—as long as the
discount factor of the long-run player is fixed.

Our main result might seem in stark contrast with the opening quotation of this
paper, yet, it is indeed complementary to Fudenberg and Levine’s (1992) result. Our
main result highlights that, as anticipated, Fudenberg and Levine’s (1992) result holds
true due to a specific order of limits. That is, if the discount factor of the long-run
player tends to 1 while holding the commitment type’s ex ante probability fixed, then
the aforementioned reputation result à la Fudenberg and Levine (1992) holds true;
however, if the commitment type’s ex ante probability tends to 0 while holding the
discount factor of the long-run player fixed, then the incomplete information equilib-
rium payoffs cannot be far from the complete information equilibrium payoff set. As
far as we know, this is the first paper that explicitly points out the importance of the
order of limits issue in these results.

From a technical point of view, our main result is an upper-hemi continuity result.
We show that in reputation games of this type, the equilibrium payoff set is, for a
fixed discount factor, upper-hemi continuous in the prior probability that the long-run
player is a commitment type at zero when there is full-support imperfect public mon-
itoring. We are aware that upper-hemi continuity results in the game theory literature
are plenty. Yet, our result is the first result that explicitly provides a proof for the cur-
rent upper-hemi continuity property, which highlights the order of limits issue in the
reputations literature. Furthermore, given Bayesian updating, sequential rationality,
and the dynamic structure of reputation games, our result is not a straightforward gen-
eralization of any such result in the literature. Other techniques might, of course, be
used to prove similar results, yet our method of proof is relatively novel, employing the
Abreu et al. (1990) techniques. We believe that this is another technical contribution
of this paper because using such techniques to study repeated games with incomplete
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Order of limits in reputations 395

information is rare.1 It is our hope that our proof will inspire other researchers to use
similar techniques to tackle similar problems in the literature.

WhileCripps andThomas (2003) establishedbothupper-hemi continuity and lower-
hemi continuity of the equilibrium payoff set of repeated games with two long-lived
players with equal discount factors when one-sided incomplete information vanishes,
their results do not extend to our setting. Unfortunately, we fail to provide a proof (or
a counter-example) for the lower-hemi continuity counterpart of our result, thus this
stays as a hard open problem.An affirmative conjecture for a necessary condition of the
lower-hemi continuity counterpart of our result was done by Cripps et al. (2004), but
they also failed to provide a proof or a counter-example for this necessary condition.2 3

1.1 Related literature

The first papers that introduced the adverse selection approach to study reputations
are Kreps et al. (1982), Kreps and Wilson (1982), and Milgrom and Roberts (1982).
They show that the intuitive expectation of cooperation in early rounds of the finitely
repeated prisoners’ dilemma and entry deterrence in early rounds of the chain store
game can be rationalized due to “reputation effects”.

As mentioned above, Fudenberg and Levine (1989, 1992) extended this idea to
infinitely repeated games and showed that a patient long-run player facing infinitely
many short-run players can guarantee herself a payoff close to her Stackelberg payoff
when there is a slight probability that the long-run player is a commitment type who
always plays the Stackelberg action. When compared to the folk theorem (see Fuden-
berg and Maskin 1986; Fudenberg et al. 1994), their results imply another intuitive
expectation: the equilibria with relatively high payoffs are more likely to arise due to
reputation effects.

Fudenberg et al. (1990) provided an upper bound for the equilibrium payoffs of a
long-run player facing infinitely many short-run players under imperfect public mon-
itoring, which is independent of the discount factor of the long-run player and might
be strictly less than the Stackelberg payoff. Hence, Fudenberg and Levine (1992)’s

1 The only other such paper we know of is Peski (2008).
2 There are well-known examples of lack of lower hemi-continuity in dynamic games with asymmetric
information. See for example, Section 14.4.1 of Fudenberg and Tirole (1991).
3 Cripps et al. (2004) conjecture the following affirmative hypothesis in their paper, which appears as a
presumption for their Theorem 3: There exists a particular equilibrium in the complete information game
and a bound such that for any commitment type prior that is less than this bound, there exists an equilibrium
of the incomplete information gamewhere the long-run player’s payoff is arbitrarily close to her payoff from
this particular equilibrium of the complete information game. This is not exactly the lower-hemi continuity
counterpart of our main result, but it is a necessary condition for the lower-hemi continuity counterpart
of our main result. In a footnote, Cripps et al. (2004) writes: “We conjecture this hypothesis is redundant,
given the other conditions of the theorem, but have not been able to prove it.” Unfortunately, we also fail
to provide such a proof. Yet, an immediate corollary to our main result implies that one can identify a
particular equilibrium in the complete information game and a sequence of priors converging to zero such
that each incomplete information game with those priors has an equilibrium with the long-run player payoff
arbitrarily close to the payoff from the particular equilibrium of the complete information game. Clearly,
in the very special case when the complete information equilibrium payoff set of the long-run player is a
singleton, our result implies that the continuity hypothesis conjecture of Cripps et al. (2004) is true.
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396 N. A. Dalkıran

results imply that under imperfect public monitoring new equilibrium payoffs may
arise with incomplete information when the discount factor of the long-run player is
sufficiently high.

Even though the results of Fudenberg and Levine (1989, 1992) hold for both perfect
and imperfect public monitoring, Cripps et al. (2004) showed that reputation effects
are not sustainable in the long-run when there is imperfect public monitoring. In other
words, it is impossible to maintain a permanent reputation for playing a strategy that
does not play an equilibrium of the complete information game under imperfect public
monitoring.

Since Cripps, Mailath, and Samuelson’s (2004) work, there has been a large litera-
turewhich studies the possibility / impossibility ofmaintaining permanent reputations:
Ekmekci (2011) showed that reputation can be sustained permanently in the steady
state by using rating systems. Ekmekci et al. (2012) showed that impermanent types
would lead to permanent reputations, as well. Atakan and Ekmekci (2012, 2013,
2015) provided positive and negative results on permanent reputations with long-lived
players on both sides. Liu (2011) provided dynamics that explain accumulation, con-
sumption, and restoration of reputation when the discovery of the past is costly. Liu
and Skrzypacz (2014) provided similar dynamics for reputations when there is limited
record-keeping.

To sumup, the adverse selection approach to study reputations in repeatedgameshas
been quite fruitful. This approach teaches us that reputational concerns can explain the
emergence of intuitive equilibria in both finitely and infinitely repeated games. There
has been considerable amount of work in the literature which focus on whether or not
it is possible to maintain a permanent reputation and how reputation is accumulated,
consumed, and restored.

The next section describes our model. Section 3 provides a motivating example,
Sect. 4 presents our main result, and Sect. 5 concludes the paper.

2 The model

Our model is a standard model of an infinitely repeated game with incomplete infor-
mation under imperfect public monitoring.4

2.1 The complete information game

A long-run player (Player 1) plays an infinitely repeated stage-game with a sequence
of different short-run players (Player 2). The stage-game is a finite simultaneous-move
game of imperfect public monitoring. The action sets of Player 1 and Player 2 in the
stage-game are denoted by I and J , respectively. The public signal, y, is drawn from
a finite set, Y . The probability that y is realized under the action profile (i, j) is given
by ρ

y
i j .

4 The notation we employ is similar to that of Cripps et al. (2004). Hence, we refer the interested reader
to Cripps et al. (2004) for further technical details of the model. We also refer the reader to Chapter 2 of
Mailath and Samuelson (2006) for definitions of basic concepts which are skipped here.
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Order of limits in reputations 397

The ex ante stage-game payoffs are given by u1(i, j) and u2(i, j).
Player 1 (“she”) is a long-run player with a fixed discount factor δ < 1. Her payoff

in the infinitely repeated game is the average discounted sum of stage-game payoffs,
(1 − δ)

∑∞
t=0 δt u1(it , jt ). Player 2 (“he”), on the other hand, denotes a sequence of

short-run players, each of whom plays the stage-game only once.
Player 1’s actions are private. Hence, Player 1 in period t has a private

history, consisting of public signals and her past actions, denoted by h1t ≡
((i0, y0), (i1, y1), . . . , (it−1, yt−1)) ∈ H1t ≡ (I × Y )t . Player 2, the short-lived play-
ers, only observes the public history, i.e., (y0, y1, . . . , yt−1) ∈ Y t .

A behavioral strategy for Player 1 is denoted by σ1 : ⋃∞
t=0 H1t → �(I ), whereas

a behavioral strategy for Player 2 is denoted by σ2 : ⋃∞
t=0 Ht → �(J ). A strategy

profile σ = (σ1, σ2) induces a probability distribution Pσ over (I × J × Y )∞. Let
{H1t }∞t=0 denote the filtration on (I×J×Y )∞ induced by the private histories of Player
1 and {Ht }∞t=0 denote the filtration induced by the public histories. E

σ [·|Hi t ] denotes
Player i’s expectations with respect to Pσ conditional on Hi t , where H2t = Ht .

In equilibrium, the short-run player plays a best-response after every equilibrium
history. Player 2’s strategy σ2 is a best-response to σ1 if, for all t ,

Eσ [u2(it , jt )|Ht ] ≥ Eσ [u2(it , j)|Ht ] for all j ∈ J

The set of such best-responses are denoted by BR2(σ1).
We continue with the definition of a Nash equilibrium in the complete information

game:

Definition 1 A Nash equilibrium of the complete information game is a strategy
profile σ ∗ = (σ ∗

1 , σ ∗
2 ) with σ ∗

2 ∈ BR2(σ
∗
1 ) such that for all σ1

Eσ ∗
[

(1 − δ)

∞∑

t=0

δt u1(it , jt )

]

≥ E (σ1,σ
∗
2 )

[

(1 − δ)

∞∑

t=0

δt u1(it , jt )

]

.

We assume that the monitoring structure has full support. That is, every signal y is
possible after any action profile.

Assumption 1 (Full Support): ρ y
i j > 0 for all (i, j) ∈ I × J and y ∈ Y .

Remark 1 The full-support monitoring assumption ensures that all finite sequences
of public signals occur with positive probability, hence must be followed by optimal
behavior in any Nash equilibrium. Therefore, any Nash equilibrium outcome is also a
perfect Bayesian equilibrium outcome. Furthermore, since there is only one long-run
and one short-run player, Nash equilibrium outcomes coincide with perfect public
equilibrium outcomes.5

5 For technical details we refer the interested reader to Kandori and Matsushima (1998, Appendix) or
Sekiguchi (1997, Proposition 3).
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398 N. A. Dalkıran

2.2 The incomplete information game

There is incomplete information regarding the type of the long-run Player 1. At time
t = −1, Player 1’s type is selected. With probability 1 − p0 > 0, Player 1 (“she”)
is a “(n)ormal” type long-run player with a fixed discount factor δ < 1. Her payoff
in the infinitely repeated game is the average discounted sum of stage-game payoffs,
(1−δ)

∑∞
t=0 δt u1(it , jt ). With probability p0 > 0, she is a “(c)ommitment” type who

always, independent of history, plays the same (possibly mixed) action s1 ∈ �(I ) in
each period.6

A state of the world is now a type for Player 1 and sequence of actions and signals.
The set of states is � = {n, c} × (I × J × Y )∞ with generic outcome w. The prior
p0, commitment strategy, and the strategy profile of the normal players σ̃ = (σ̃1, σ2)

induce a probability measure P over �, which describes how an uninformed player
expects play to evolve.7

The strategy profile σ̃ = (σ̃1, σ2) determines a probability measure P̃ over �,
which describes how play evolves when Player 1 is the normal type. Let E[·] denote
unconditional expectations taken with respect to the measure P and Ẽ[·] denote the
conditional expectations taken with respect to the measure P̃ .8

Given the strategy σ2, the normal type Player 1 has the same objective function
as in the complete information game. Player 2, on the other hand, is maximizing
E[u2(it , j)|Ht ], so that after any history ht , he is updating his beliefs over the type of
Player 1 that he is facing. The profile (σ̃1, σ2) is a Nash equilibrium of the incomplete
information game if each player is playing a best-response. At any equilibrium, Player
2’s posterior belief in period t that Player 1 is the commitment type is given by the
Ht -measurable random variable pt : � → [0, 1]. By Assumption 1, Bayes’ rule
determines this posterior after all sequences of signals. Thus, in period t , Player 2 is
maximizing

ptu2(s1, j) + (1 − pt )Ẽ[u2(it , j)|Ht ].

The reputation of Player 1 is modeled as the belief of short-lived Player 2’s regard-
ing Player 1’s type. Hence, in period t , it is quantified as Player 2’s posterior belief
pt .

Let V (p0, δ) denote the equilibrium payoff set of the (normal type) long-run Player
1 when the ex ante commitment prior is p0 and her discount factor is δ. In particular,
V (0, δ) denotes the equilibrium payoff set of the long-run Player 1with discount factor
δ in the repeated game under complete information.

6 �(I ) denotes the set of all possible probability distributions over I .
7 The filtrations {H1t }∞t=0 and {Ht }∞t=0 on (I × J × Y )∞ can also be viewed as filtrations on � in the
obvious way.
8 Note that σ1 : ⋃∞

t=0 H1t → �(I ) can be viewed as the sequence of functions (σ10, σ11, . . . , σ1t , . . .)

with σ1t : H1t → �(I ). Hence, it can be extended from H1t to � so that σ1t (w) ≡ σ1t (h1t (w)), where
h1t (w) is Player 1’s t-period history under w. The same applies to σ2 as well.
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Order of limits in reputations 399

3 A motivating example

To motivate our main result and to show how it compares to Fudenberg and Levine
(1992), we provide an example of a moral-hazard mixing game (see Fudenberg and
Levine 1994). There is a long-lived seller (Player 1) who faces an infinite sequence of
buyers (Player 2) who only plays the stage-game once. There are two actions available
to the seller:, A1 = {H, L}, where H and L denote producing a high-quality and a
low-quality product, respectively. Each buyer also has two possible actions: buying the
product (B) and not buying the product (N ), i.e., A2 = {B, N }. Player 1 (the seller) is
denoted as the row player, and Player 2 (each buyer) is denoted as the column player
in the stage-game, with the following payoff matrix:

B N

H 1, 2 −1, 0
L 2, −2 0, 0

Note that there is a unique Nash equilibrium of this stage-game, and in this equi-
librium the row player plays L (producing low quality) and the column player plays
N (not buying the product).9 Note also that a rational buyer (Player 2) would play B
only if he anticipates that the seller (Player 1) plays H with a probability of at least 1

2 .
Player 1’s discount factor is δ < 1. The actions of Player 1 are not observed by the

buyers. However, every period an informative public signal about Player 1’s action
is observed. Let Y = {h, l} be the set of signals. Let q > 2

3 be the probability of h
occurring if Player 1 plays action H , and again for simplicity, q is the probability of l
occurring if Player 1 plays L .1011 There is a positive probability p0 > 0 that the seller
is an honorable firm (a commitment type) who always produces high-quality product,
that is, she plays action H at every period of the repeated game independent of the
history.

By employing techniques introduced by Abreu et al. (1990), it can be shown that
in the repeated game with complete information, i.e., when there is no commitment

type, any v ∈
[
0, 1 − 1−q

2q−1

]
is a subgame perfect equilibrium payoff of Player 1 for

any δ > δ for some δ < 1, and no value outside of this range is an equilibrium payoff

of Player 1 for any discount factor. That is, V (0, δ) =
[
0, 1 − 1−q

2q−1

]
for any δ > δ.12

Below, we show that for any δ > δ there exists an η > 0 such that any perfect
Bayesian Nash equilibrium payoff of the long-lived seller (Player 1) in the incomplete
information game is close to the set of her subgame perfect equilibrium payoffs of the
complete information game when p0 < η.

9 Notice also that the unique Nash equilibrium of the stage game is not efficient.
10 Note that the signals are independent of Player 2’s choice of action here.
11 It can be shown that when q ≤ 2

3 the complete information equilibrium payoff set is the singleton {0}.
12 For the details of this argument, we refer the reader to Mailath and Samuelson (2006, section 3.6).
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400 N. A. Dalkıran

Claim 1 For any (fixed) δ > δ, given any ζ > 0, there exists an η > 0 such that if
p0 < η then Player 1’s any equilibrium payoff is not more than 1 − 1−q

2q−1 + ζ .13

Proof Suppose the probability that Player 1 is the commitment type is p0 and she is
expected to play H with probability α > p0.14 Let p1(y) be the posterior probability
that Player 1 is a commitment type after a signal y is observed. Bayes’ rule yields:

p1(h) = p0q

αq + (1 − α)(1 − q)

p1(l) = p0(1 − q)

α(1 − q) + (1 − α)q

Let κ = q
1−q and observe that maxα∈[p0,1] max{ p1(h)

p0
,
p1(l)
p0

} < κ since q > 2
3 .

For a given ζ > 0, let t∗ be such that δt
∗

<
ζ
2 , and let η = 1

2
κ t

∗ , and p0 < η.
We have two observations that are true at any period t < t∗:

(i) At any period t after any history, the posterior probability with which Player 1
is a commitment type is less than 1

2 . This is simply because for any t ≤ t∗ the

posterior will be at most κ times the prior and p0 < η = 1
2

κ t
∗ .

(ii) In any equilibrium, if Player 2’s action is B after some public history, ht , then
H should be in the support of Player 1’s strategy at time t . This is because, as
mentioned before, to induce Player 2 to play B, the overall probability assigned
to H should be at least 12 and by (i) the posterior at t that Player 1 is a commitment
type is less than 1

2 .
15

Let
v′ = sup{v ∈ V (μ, δ) for some μ ≤ p0κ},

where V (μ, δ) is the set of equilibrium payoffs of Player 1 for the commitment
prior probabilityμ. Hence, v′ is an upper bound for the continuation payoffs for Player
1 in the incomplete information game when t ≤ t∗.

Suppose p0 < η and q > 2
3 ; following (i) and (ii), if Player 2’s action is B at ht ,

then H should be in the support of Player 1’s action. Hence, Player 1’s payoff is no
more than

1(1 − δ) + δ(qvh + (1 − q)vl), (1)

where vh and vl are the continuation payoffs for signals h and l, respectively.
The incentive constraint that induces Player 1 to put a positive probability on H is

given by
δ(vh − vl) ≥ (2q − 1)(1 − δ). (2)

13 It is possible to replicate Claim 1 for δ ≤ δ̄ but this is omitted since it adds no further insight to the
main result.
14 Note that here we refer to Player 1 considering both the normal and commitment types. That is,
α = p0 + (1− p0)α1(H), where α1(H) is the probability with which the normal type of Player 1 chooses
to play H .
15 To be more precise, σ2(ht ) = B implies H ∈ supp(σ1(h1t )) for some h1t compatible with ht .
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Order of limits in reputations 401

Let v(p0, δ) be any equilibrium payoff of Player 1 in the incomplete information
game where the commitment prior is p0 and her discount factor is δ.

Combining (1) and (2) with the fact that vh ≤ v′ and vl ≤ v′ gives us

v(p0, δ) ≤ (1 − δ)

(

1 − 1 − q

2q − 1

)

+ δv′. (3)

On the other hand, if H is not in the support of Player 1’s action,

v(p0, δ) ≤ (1 − δ)0 + δv′ ≤ (1 − δ)

(

1 − 1 − q

2q − 1

)

+ δv′. (4)

An interpretation of inequality (3) is as follows: even though playing H gives Player
1 a current payoff of 1when Player 2 plays B, she bears an informational current payoff
loss of 1−q

2q−1 due to imperfect monitoring.
Iterating forward gives:

v(p0, δ) ≤
t∗∑

s=0

(1 − δ)δs
(

1 − 1 − q

2q − 1

)

+ δt
∗+1 sup

μ∈[0,1]
v(μ, δ). (5)

Since v(μ, δ) ≤ 2 for all μ ∈ [0, 1]—since 2 is the highest payoff that Player 1
can get in the stage game—and since δt

∗
<

ζ
2 , we get

v(p0, δ) ≤ 1 − 1 − q

2q − 1
+ ζ. (6)

That is, whenever p0 ≤ η we have v(p0, δ) ≤ 1 − 1−q
2q−1 + ζ . 
�

Since Player 1’s equilibrium payoff is bounded below by 0, this means any equi-
librium payoff of the incomplete information game is close to the set of equilibrium
payoffs of the complete information game when p0 < η as claimed. Technically,
we had shown for a fixed δ > δ, given any ζ there exists an η such that when
p0 < η, V (p0, δ) is in the ζ neighborhood of V (0, δ).

In the incomplete information game, for every t∗ we can choose a prior p0 small
enough such that for every t ≤ t∗ Player 1’s reputation level is less than 1

2 , irrespective
of her strategy.16 Hence, at any of these periods inducing Player 2 to play B bears
the same cost, 1−q

2q−1 , on Player 1. For a fixed discount factor δ, if t∗ is large enough,
payoffs after t∗ have almost no effect on Player 1’s average discounted payoff in the
repeated game.

Next, let us note what the main result of Fudenberg and Levine (1992) implies
for this example: let v(p0, δ) = inf V (p0, δ) and v(p0, δ) = sup V (p0, δ) for some
(fixed) p0 ∈ (0, 1).

16 This is where the full-support imperfect monitoring assumption bites.
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402 N. A. Dalkıran

Claim 2 (Fudenberg and Levine 1992) limδ→1 v(p0, δ) = 1 for any (fixed) p0 ∈
(0, 1).

Proof See Corollary 3.2 of Fudenberg and Levine (1992). 
�
Therefore, Fudenberg and Levine (1992) imply that when the long-lived seller

(Player 1) becomes arbitrarily patient, i.e., as δ → 1, she guarantees herself a payoff
close to 1 as long as p0 > 0. The intuition behind their result is that by mimicking the
commitment type often enough, a strategic long-run player can make her short-run
opponents believe that she is a commitment type with sufficiently high probability.
This will induce the short-run players to best respond to the commitment action except
for a finite number of periods. But, when δ tends to 1 this finite number of periods will
not matter, hence a lower bound for the equilibrium payoff of the arbitrarily patient
long-run player will be the payoff that he can get by publicly committing herself to
the action of the commitment type.17

On the other hand, our Claim 1 implies that for every (fixed) δ > δ given any ζ

there exists an η such that when p0 ∈ (0, η), v(p0, δ) ≤ 1 − 1−q
2q−1 + ζ . The intuition

behind Claim 1 is that no matter how high the discount factor δ is, as long as it is fixed,
there will come a time period t∗ such that the effect of periods after t∗ on the average
discounted sum of payoffs will be negligible. Therefore, if commitment prior is so
small that it takes for the long-run Player 1 longer than t∗ to convince Player 2s that
he is the commitment type with sufficiently high probability (greater than 1

2 ) then the
incomplete information equilibrium payoffs seems not far away from the complete
information payoffs.

To note the difference numerically, let q = 3
4 , δ = 0.99, and ζ = 0.001; if p0 is

positive but less than the corresponding η, then even though limδ→1, v(p0, δ) = 1 our
main result implies that v(p0, 0.99) ≤ 1

2 + 0.001.18 That is, no matter how high the
discount factor is, as long as it is fixed, the largest equilibrium payoff to the long-lived
seller is less than (or equal to) 0.501 for arbitrarily small commitment priors. On the
other hand, no matter how small the commitment prior is, as long as it is fixed, the
smallest equilibrium payoff to the long-lived seller will converge to 1 for arbitrarily
large discount factors. These two results together clarify the importance of the order
of limits in the standard reputation result.

Formally, the role of order of limits in terms of upper and lower bounds on equi-
librium payoffs for the motivating example can be summarized by the following
corollary:19

Corollary 1 limδ→1 lim supp0→0 v(p0, δ) < lim p0→0 limδ→1 v(p0, δ).

17 Observe that in the motivating example, the action of the commitment type is H and if Player 2s know
that Player 1 is committed to play H then their best response would be B which will induce a payoff of 1
to Player 1.
18 For q = 2

3 , δ = 0.99, and ζ = 0.001, the corresponding η can be easily calculated as 1/2
3757

.
19 Note that there is no known algorithm yet to compute the exact incomplete information equilibrium
payoff set V (p0, δ). Hence, the order of limits result provided here is just about the lower bounds and
upper bounds of equilibrium payoff sets. In the Sect. 4.5, it will be further clarified why a general order
of limits result cannot be obtained in the form limδ→1 limp0→0 V (p0, δ) �= limp0→0 limδ→1 V (p0, δ)
technically.
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Proof From Claim 1, it follows that given any ζ > 0 there exits η > 0 such that
whenever p0 ≤ η we have v(p0, δ) ≤ 1 − 1−q

2q−1 + ζ for any δ > δ̄. Furthermore,

q > 2
3 implies 1 − 1−q

2q−1 < 1, hence v(p0, δ) < 1 + ζ for any p0 ≤ η. Therefore,
ζ > 0 being arbitrarily small implies lim supp0→0 v(p0, δ) < 1. This is true for any
δ > δ̄ which then implies limδ→1 lim supp0→0 v(p0, δ) < 1

By Claim 2, we have limδ→1 v(p0, δ) = 1 for any p0 ∈ (0, 1), hence it follows
that lim p0→0 limδ→1 v(p0, δ) = 1. 
�

4 Main result

We are ready to provide our main result. We note once again that V (p0, δ) denotes
the equilibrium payoff set of the long-run player with the fixed discount factor δ in
the incomplete information repeated game with the ex ante commitment prior p0,
and V (0, δ) denotes the equilibrium payoff set of the long-run player with the fixed
discount factor δ in the repeated game under complete information.

Our main result is the following:

Theorem 1 Suppose the monitoring distribution ρ satisfies Assumption 1. For any
fixed δ < 1, given any ζ > 0, there exists an η > 0 such that for any prior p0 ∈ (0, η),
any equilibrium payoff of the long-run player in the incomplete information repeated
game with the commitment prior p0, i.e., any v ∈ V (p0, δ), is in the ζ neighborhood
of V (0, δ).

In words, our main result says that introducing arbitrarily small incomplete infor-
mation does not open the possibility of new equilibrium payoffs that are far from the
complete information equilibriumpayoff set, evenwhen the long-run player’s discount
factor is very high but fixed.

4.1 Outline of the proof

We proceed as follows: first, we introduce the standard set operator à la Abreu et al.
(1990) particular to our setting, which gives us decomposable payoffs for the long-
run player in a given set. When applied repeatedly to a compact set that includes all
stage-game payoffs of the long-run player, this operator converges to the complete
information equilibrium payoff set of the long-run player. Then, we slightly modify
this operator to introduce a new set operator. The modification is that Player 2, any of
the short-run players, is not restricted to best-respond to the enforcing action of Player
1, but is allowed to best-respond to some (possibly mixed) action that is close (in the
Euclidean metric) to the enforcing action.

In our first lemma, we show that there exists a distance ε̄ > 0 such that all best-
responses to this particular action are also best-responses to some (possibly mixed)
action whose support is within the support of the action of the normal type of the
long-run player. The essence of the argument is that the ε̄ in Lemma 1 is uniform
over all possible supports. In Lemma 2, we show that the two operators coincide for
any distance smaller than ε̄. The essence of Lemma 2 is that the operators coincide
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uniformly over all possible subsets of the real line. Lemma 3 extends the result of
Lemma 2 to arbitrary iterations using these uniformities.

The rest of the proof makes use of the fact that the discount factor is fixed and
hence a finite number of iterations, t∗, suffices to approximate the set of all complete
information equilibrium payoffs of the long-run player. When the commitment prior
in the incomplete information game is small enough, the posterior after the first t∗
periods stays below a certain threshold due to full-support monitoring. Employing
Lemma 3 allows us to show that one can identify a bound over the commitment prior
so that the equilibrium payoffs of the long-run player in the incomplete information
gamewith a prior less than this bound cannot be too far from her complete information
equilibrium payoffs.

4.2 The set operator

We start by introducing the standard set operator, T , of Abreu et al. (1990):
Consider the operator T : 2R\{∅} → 2R\{∅} defined as follows:
v ∈ T (W ) if and only if there exists a non-empty Iv ⊆ I, α2 ∈ �(J ) and w =

(w1, w2, . . . , wY ) ∈ W |Y | such that:

(i) v = (1 − δ)u1(i, α2) + δ

⎛

⎝
∑

y, j

wyρ
y
i jα2( j)

⎞

⎠ for each i ∈ Iv

(ii) v ≥ (1 − δ)u1(i, α2) + δ

⎛

⎝
∑

y, j

wyρ
y
i jα2( j)

⎞

⎠ for each i ∈ I

(iii) α2 ∈ BR2(α1) for some α1 ∈ �(Iv)

This operator identifies decomposable payoffs of the long-run player for a given set,
W ∈ R. Here, (i) corresponds to feasibility, (ii) corresponds to incentive compatibility
conditions, and (iii) simply says that Player 2 (a short-run player) is best-responding
to the enforcing action of the long-run player.

Let M = maxi, j |u1(i, j)|, and let W0 = [−M, M]. It follows from the techniques
introduced by Abreu et al. (1990) that T∞(W0) = ⋂∞

t=0 T
t (W0) = V (0, δ) where

T t (W0) is defined recursively as T 1(W0) = T (W0); T k(W0) = T (T k−1(W0)) for all
k ∈ N.

Next, consider the incomplete information game: recall that in period t Player 2 is
best-responding to α′

1, where α′
1 = pt s1 + (1− pt )α1 and σ1(h1t ) = α1, and pt is the

posterior at time t that Player 1 is a commitment type. Observe that when pt happens
to be arbitrarily small so is the Euclidean distance ||α′

1 − α1||.20
Utilizing this observation, we next define our set operator by relaxing condition

(iii) of the operator T as follows:
For any ε > 0, let Tε : 2R\{∅} → 2R\{∅} be such that:

20 ||α′
1 − α1|| =

√∑
i∈I (α′

1(i) − α1(i))2.
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v ∈ Tε(W ) if and only if there exists a non-empty Iv ⊆ I, α2 ∈ �(J ) and w =
(w1, w2, . . . , wY ) ∈ W |Y | such that:

(i) v = (1 − δ)u1(i, α2) + δ

⎛

⎝
∑

y, j

wyρ
y
i jα2( j)

⎞

⎠ for each i ∈ Iv

(ii) v ≥ (1 − δ)u1(i, α2) + δ

⎛

⎝
∑

y, j

wyρ
y
i jα2( j)

⎞

⎠ for each i ∈ I

(iiiε) α2 ∈ BR2(α
′
1) for some α′

1 : ||α′
1 − α̃1|| ≤ ε for some α̃1 ∈ �(Iv)

Tε is slightly more permissive than the T of Abreu et al. (1990), inasmuch as it only
requires the short-run player to best-respond to an action that is close, in Euclidean
metric, to the one played by the long-run player.

Themotivation for our operator is as follows: In the gameof incomplete information,
the mixed action to which the short-run player best-responds is a weighted average of
the action taken by the normal type of the long-run player and the commitment type’s
action. Provided that the latter type is very unlikely, thismeans that the short-run player
is taking a best-response to an action that is nearly the normal type’s action. The key
to our main result will be then to show that, if the short-run player best-responds to
an action that is close to the probability distributions over a set of actions, then he is
actually also playing a best-response to an actionwithin that set if the distance between
the original action and the set of probability distributions over this set of actions is
sufficiently small.

It is clear that both operators T and Tε are monotone. That is, if W1 ⊆ W2, then
T (W1) ⊆ T (W2) and Tε(W1) ⊆ Tε(W2). Moreover, for any ε1 > ε2, Tε2(W ) ⊆
Tε1(W ).

4.3 Lemmata

We provide 3 lemmata, which will be used in the proof of our main result. All of the
proofs of these lemmata are provided in the Appendix.

We start with a technical lemma that is key to our main result. In words, Lemma 1
says that if a short-run player best-responds to an action that is close to the set of
probability distributions over a set of actions, then he is also playing a best-response
to an actionwithin this set of probability distributions as long as the Euclidean distance
between the original action and the set of probability distributions is sufficiently small.

Let BR2(�(X)) := {α2 ∈ �(J ) : α2 ∈ BR2(α1) for some α1 ∈ �(X)} for any
X ⊆ I .

Lemma 1 There exists an ε̄ > 0 for all non-empty X � I such that
minσX∈�(X) ||α1 − σX || ∈ (0, ε̄), then BR2(α1) ⊆ BR2(�(X)).

It is essential to note about Lemma 1 that the ε̄ is uniform over X � I , i.e., a fixed
ε̄ works for all X � I .
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Next, we use Lemma 1 to show that for any ε < ε̄ operators, T and Tε coincide.
Note that this means ε̄ is uniform over all W ⊂ R.

Lemma 2 For any 0 < ε < ε̄ and W ⊂ R, Tε(W ) = T (W ).

Since ε̄ is uniform over W ⊂ R, any arbitrary number of iterations of Tε and T
will coincide for every ε < ε̄. Our next lemma formalizes this fact forW0. Recall that
W0 = [−M, M], where M = maxi, j |u1(i, j)|. Let T t

ε (W ) be defined recursively as
T 1

ε (W ) = Tε(W ); T k
ε (W ) = Tε(T k−1

ε (W )) for all k ∈ N.

Lemma 3 For any 0 < ε < ε̄, T t
ε (W0) = T t (W0).

4.4 Proof of the main result

Now, we are ready to give the proof of our main result:

Proof of Theorem 1 Define dw = minv∈V (0,δ) |v − w|.21 Given any ζ > 0, the
fact T∞(W0) = V (0, δ) implies that there must exist a t∗ such that for t >

t∗,maxw∈T t (W0) dw < ζ .22

Let η := ε√
2κ t∗ for some ε < ε̄ of Lemma 1, and let

κ := sup
α1∈�(I ), j∈J

max
y

{ ∑
i ρ

y
i, j s1(i)

∑
i ρ

y
i, jα1(i)

}

Note first that by the full-support assumption (Assumption 1), κ < ∞.23

In the incomplete information game with commitment prior p0 ∈ (0, η), at any
period t ≤ t∗, the probability with which Player 1 is a commitment type is not more
than ε√

2
. To seewhy, observe that the posterior belief of Player 2 about the commitment

type in any period can be at most κ times his prior from the preceding period and hence
pt < p0κ t < ε√

2
for all t ≤ t∗.

Therefore, the set of continuation payoffs at period t∗ is a subset of Tε(W0). This is
because in any equilibrium of the incomplete information game when the normal type
plays according to σ̃1 with σ̃1(h1t∗) = α1, then at t∗ Player 2 is best-responding to
α′
1 = pt∗s1+(1− pt∗)α1, and since pt∗ < ε√

2
, we have ||α′

1−α1|| < ε.24 Similarly, at

t∗−1 the set of continuation payoffs is a subset of T 2
ε (W0). Thus, iterating backwards,

the set of equilibrium payoffs at period 0, V (p0, δ), is a subset of T t∗+1
ε (W0).

21 dw is well defined since V (0, δ) is compact as shown by Theorem 4 of Abreu et al. (1990)] and the
Euclidean distance | · | is continuous.
22 Note here that maxw∈T t (W0)

dw is well defined as well since by Lemma 1 of Abreu et al. (1990) the
operator T is monotone and preserves compactness and W0 = [−M, M] is compact.
23 Note that this is where Assumption 1 (full-support monitoring) bites. Assumption 1 is crucial for
our result not only because under Assumption 1 Nash equilibrium payoffs are the same as perfect public
equilibrium payoffs, but also, without full-support monitoring we cannot bound κ . This is why our proof
fails for the case of perfect monitoring as well.
24 ||α′

1 − α1|| ≤ ε since ||s1 − α1|| ≤ √
2.
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By Lemma 3, T t∗+1
ε (W0) = T t∗+1(W0). Therefore max

w∈T t∗+1
ε (W0)

dw < ζ .
Hence, we have the incomplete information equilibrium payoff set of Player 1 (the
long-run player) V (p0, δ) ⊂ T t∗+1

ε (W0), and it follows that V (p0, δ) is in the ζ

neighborhood of V (0, δ). 
�

4.5 Order of limits

To clarify how ourmain result identifies the role of the order of limits in reputations, let
V : [0, 1)2 → 2R be the function which gives the equilibrium payoff set of long-run
Player 1 for any commitment prior, discount factor pair, (p0, δ), where 2R denotes the
power set of R. That is, as before, V (p0, δ) is the equilibrium payoff set of Player 1
when the commitment prior is p0 and the discount factor of Player 1 is δ.

Unfortunately, we cannot provide the following inequality:

lim
δ→1

lim
p0→0

V (p0, δ) �= lim
p0→0

lim
δ→1

V (p0, δ) (7)

The technical reason why one cannot provide inequality (7) is because there is
no standard topology (or metric) defined on the power set of R where the limits in
inequality (7) are well-defined.

A commonly used metric for defining limits of sequences of sets is the Hausdorff
metric, which is defined as follows:

d(V,W ) = max

{

sup
v∈V

inf
w∈W d(v,w), sup

w∈W
inf
v∈V d(v,w)

}

But, the Hausdorff metric is a metric only for the compact subsets of R. Yet, we do
not know whether V (p0, δ) is compact for when p0 is positive.25

However, whenever the Stackelberg payoff is not attainable in the stage game, it
is possible to obtain the following order of limits result in terms of upper and lower
bounds of the equilibrium payoff sets which will imply that the sets in question in
inequality (7) are indeed not close according to the intuition behind the Hausdorff
metric.26

Corollary 2 If the Stackelberg payoff S is not a Nash equilibrium payoff of the stage
game and the commitment type of Player 1 is associated with the Stackelberg action
with corresponding Stackelberg payoff S then

lim
δ→1

lim sup
p0→0

v(p0, δ) ≤ S ≤ lim inf
p0→0

lim
δ→1

v(p0, δ) (8)

25 We know when p0 = 0, V (0, δ) is compact by Theorem 4 of Abreu et al. (1990). But, we do not have
a similar result for the case of repeated games with incomplete information.
26 Recall that Stackelberg payoff in the stage game is the highest payoff that Player 1 can get by publicly
committing to a (possibly mixed) action. Formally, S = maxα1∈�(I ),α2∈BR2(α1) u1(α1, α2).
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Proof Proposition 3 of Fudenberg et al. (1990) implies that any complete information
payoff v(0, δ) < S . Therefore by Theorem 1, we have v(p0, δ) < S + ζ whenever
p0 < η. Since this is true for any ζ > 0 and for any arbitrarily small p0 we obtain
lim supp0→0 v(p0, δ) ≤ S

The fact that lim inf p0→0 limδ→1 v(p0, δ) ≥ S follows from Corollary 3.2 of
Fudenberg andLevine (1992) since it implies limδ→1 v(p0, δ) ≥ S for any p0 ∈ (0, 1).


�
Corollary 2 implies that, according to the intuition behind the Hausdorff metric—

two sets are close if every point of either set is close to some point of the other set—the
corresponding limit equilibrium payoff sets in question above in inequality (7) are not
close. An upper bound for the limit set on the left hand side of (7) is less than a lower
bound of the limit set on the right hand side of (7) This means if the equilibrium payoff
sets were all compact for any commitment prior and any discount factor then limits
in inequality (7) will be well defined with respect to the Hausdorff metric and hence
inequality (7) will hold true.

As discussed earlier, Fudenberg and Levine (1992)’s reputation result show that
when the long-run player (Player 1) becomes arbitrarily patient (δ → 1) she guarantees
herself a payoff close to her Stackelberg payoff as long as ex ante probability of the
Stackelberg (commitment) type is positive—no matter how small it is. The intuition
behind their result is that by mimicking the Stackelberg type often enough, the long-
run player can convince short-run players that she is the Stackelberg (commitment)
type with sufficiently high probability. Hence, the short-run players will best respond
to the Stackelberg action except for a finite number of periods. When δ → 1 this finite
number of periods will not matter.

On the other hand, our main result implies that when the commitment prior is
arbitrarily small (p0 → 0) any incomplete information payoff will be close to a
complete information payoff—nomatter how large the discount factor is. The intuition
behind our result is simple: when the discount factor δ is fixed, there will be a time
period t∗ such that the effect of periods after t∗ on the average discounted sum of
payoffs are negligible. Hence, for arbitrarily small commitment priors, it will take
longer than t∗ for the long-run player to convince short-run players that he is the
Stackelberg type with sufficiently high probability—to induce them to best respond to
the Stackelberg action. Therefore, the effect of introducing arbitrarily small incomplete
information on the equilibrium payoffs will be negligible as well.

5 Conclusion

The main result of this paper is essentially an upper-hemi continuity result concerning
the equilibrium payoffs in reputation games where a long-run player faces an infinite
sequence of short-run players. Technically, we showed that in these games the Nash
equilibrium correspondence is, for a fixed discount factor, upper-hemi continuous in
the prior probability that the long-run player is a commitment type at zero when there
is full-support imperfect public monitoring.

To the best of our knowledge, this is the first result that explicitly provides a proof
for this particular upper-hemi continuity property, which highlights the order of limits
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issue in the reputations literature: our result highlights that—as anticipated—the order
of limits is important in some of the standard reputation results. If the discount factor of
the long-run player tends to 1 before the commitment type’s ex ante probability tends
to 0, then the aforementioned reputation results à la Fudenberg and Levine (1992) are
expected to hold true; however, if the commitment type’s ex ante probability tends to 0
before the discount factor of the long-run player tends to 1, then the incomplete infor-
mation equilibrium payoffs cannot be far from the complete information equilibrium
payoff set.

Unfortunately, even though an affirmative necessary condition was conjectured by
Cripps et al. (2004), the corresponding lower-hemi continuity result remains to be an
open problem for further research.

Our result may not hold when the full-support monitoring assumption is missing.
For example, in the extreme case of perfect monitoring, it can be shown that the
incomplete information equilibrium payoff of Player 1 can only differ from a complete
information equilibrium payoff by one period payoff. But since we fix δ < 1, this fact
does not provide a counterpoint to the continuity result in this paper.

Finally, we believe that the method of proof we provide is a novel application
of Abreu, Pearce, and Stacchetti’s (1990) techniques in repeated games with incom-
plete information. We hope that our work will inspire other researchers to use these
techniques to tackle similar problems in the literature.

6 Appendix

6.1 Proofs of lemmata

Lemma 1 There exists an ε̄ > 0 for all non-empty X � I such that
minσX∈�(X) ||α1 − σX || ∈ (0, ε̄), then BR2(α1) ⊆ BR2(�(X)).

Proof Suppose this is not the case. Since �(I ) is compact, it is possible to con-
struct convergent sequences α1,n ∈ (�(I )\�(X)) and α2,n ∈ �(J ) such that
limn→∞ minσX∈�(X) ||α1,n − σX || = 0 for some X ⊂ I , with α2,n ∈ BR2(α1,n) and
α2,n /∈ BR2(�(X)) for all n. Let α1,n → ᾱ1. Observe that we must have ᾱ1 ∈ �(X).

Let 2J = {Y1,Y2, . . . Ym}. We know that BR2(�(X)) = ⋃
j∈H �(Y j ) for some

H ⊂ {1, . . . ,m}. We must have for all n, α2,n /∈ �(Y j ) for all j ∈ H . Therefore,
supp(α2,n) = Yn , where Yn �= Y j for any j ∈ H . But since the number of subsets of
J is finite, there exists a subsequence Yk of Yn such that Yk = Ȳ for some Ȳ �= Y j for
any j ∈ H . This implies supp(α2,k) = Ȳ for all k.

Consider the stage-game action α∗
2 of Player 2 that gives equal probability to all the

actions in Ȳ . It follows that α∗
2 is a best-response to α1,k for all k. But since the best-

response correspondence has a closed graph, this implies that α∗
2 is a best-response to

ᾱ1 ∈ �(X). This contradicts the fact that Ȳ �= Y j for any j ∈ H . 
�
Lemma 2 For any 0 < ε < ε̄ and W ⊂ R, Tε(W ) = T (W ).

Proof T (W ) ⊆ Tε(W ) is true for any ε > 0, and since ε1 > ε2 implies Tε2(W ) ⊆
Tε1(W ), it is enough to show that Tε̄(W ) ⊆ T (W ).
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Suppose v ∈ Tε̄(W ). Therefore, there exists Iv ⊆ I, α2 ∈ �(J ) and w =
(w1, w2, . . . , wY ) ∈ W |Y | such that (i), (ii), and (iiiε̄) hold.

We need to identify an Îv ⊆ I, α̂2 ∈ �(J ) and ŵ = (ŵ1, ŵ2, . . . , ŵY ) ∈ W |Y |
such that (i), (ii), and (iii) hold.

If α′
1 ∈ �(Iv), we are trivially done. (Simply take Îv = Iv, α̂2 = α2, ŵ = w and

α1 = α′
1 in (iii)).

If not, α′
1 ∈ �(I )\�(Iv) with minσ∈�(Iv) ||α′

1 − σ || < ||α′
1 − α̃1|| < ε̄ since

α̃1 ∈ �(Iv). Hence, by Lemma 1, we must have BR2(α
′
1) ⊆ BR2(�(Iv)). So there

exists α′′
1 in �(Iv) with α2 ∈ BR2(α

′′
1 ). Let X̄ be the support of α′′

1 . Clearly, X̄ ⊆ Iv .
Now take Îv = X̄ , α̂2 = α2, and ŵ = w. Observe that (i) and (i i) hold since

X̄ ⊆ Iv . The fact that (iii) holds is clear; simply take α1 = α′′
1 . 
�

Lemma 3 For any 0 < ε < ε̄, T t
ε (W0) = T t (W0).

Proof By Lemma 2, for any 0 < ε < ε̄, Tε(W0) = T (W0). Since the ε in Lemma 2
is independent of W , with the same ε, T 2

ε (W0) = T 2(W0). Iterating gives T t
ε (W0) ⊆

T t (W0). 
�
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