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Wedevelop a newnonparametric unit root testingmethod that is robust to permanent shifts in innovation
variance. Unlike other methods in the literature, our test does not require a parametric specification or
lag/bandwidth selection to adjust for serial correlation.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Recent body of empirical evidence indicates that variance shifts
(nonstationary volatility) is a common occurrence in macroeco-
nomic and financial data; see Busetti and Taylor (2003), McConnell
and Perez-Quiros (1998) and Sensier and Van Dijk (2004). This
finding coupled with nonstationarity in the levels of these types
of data led the researchers to investigate the impact of variance
shifts onunit root tests. In one of these studies, Cavaliere and Taylor
(2007), henceforth CT, document that under nonstationary volatil-
ity, the asymptotic distributions of standard unit root tests are
altered by the inclusion of a new nuisance parameter called the
‘‘variance profile’’, leading to size distortions in these tests. In or-
der to achieve correct inference, CT suggest first consistently esti-
mating this nuisance parameter and then updating the asymptotic
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distribution of Phillips and Perron’s (1988) testswith this estimate.
While their inclusion of the newnuisance parameter generates sig-
nificant gains in size over classical unit root tests, they still rely on
the methodologies used in earlier studies to correct for other nui-
sance parameters such as serial correlation in errors. CT adjust their
test statistic via the estimation of the long run variance, obtained
by a semi-parametric kernel or a parametric ADF based regression
estimation. The success of these methods highly depends on lag
length, bandwidth and Kernel selection in terms of finite sample
properties. In this paper,we propose a nonparametric unit root test
that is robust to nonstationary volatility problem yet does not re-
quire a long run variance estimation.

We derive our test statistic by modifying Nielsen’s (2009)
nonparametric variance ratio statistic with the nonparametric
variance profile estimator of CT. Computation of the proposed test
statistic involves a fractional transformation of observed series, but
it does not require any parametric regression or the choice of any
tuning parameters like lag length and bandwidth. Therefore, we
not only modify Nielsen’s test to be robust against nonstationary
volatility, but also improve on the finite sample properties of CT
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statistic for all considered types of serial correlation. Derivation of
the limiting distribution of fractionally integrated processes with
nonstationary volatility and the proofs are placed in Appendix.1

2. Model and variance ratio test

2.1. Model

Let {xt}Tt=0 be generated by:

xt = yt + θ ′δt (1)
yt = ρyt−1 + ut (2)

ut = C(L)εt (3)
εt = σtet (4)

where et ∼ i.i.d.(0, 1) and θ ′δt is the deterministic term and C(L)
is the lag polynomial. From CT, we have following assumptions:

Assumption. A.1 The lag polynomial C(L) ≠ 0 for all |L| ≤ 1, and
∞

j=0 j|cj| < ∞. E|et |r < K < ∞ for some r ≥ 4.
A.2 ρ satisfies |ρ| ≤ 1.
A.3 σt satisfies σ⌊Ts⌋ := ω(s) for all s ∈ [0, 1], where ω(.) ∈ D

is non-stochastic and strictly positive. For t < 0, σt is uniformly
bounded, that is there exists a σ ∗ such that σt ≤ σ ∗ < ∞.

The assumptions A.1 and A.2 are very standard in unit root
testing literature. CT characterize the dynamics of innovation
variance in A.3, which should be bounded and display a countable
number of jumps.

A fundamental object that is defined in CT is given below:

η(s) :=

 1

0
ω(r)2dr

−1  s

0
ω(r)2dr


. (5)

This object is referred to as the variance profile of the process.
Further, CT show that

 1
0 ω(r)2dr = ω̄2 is the limit of T−1T

t=1 σ 2
t .

2.2. Variance Ratio test under nonstationary volatility

So as to modify the Variance Ratio test (Nielsen, 2009) statistic
we first need the fractional partial sum operator for some d > 0:

x̃t := ∆−d
+

xt = (1 − L)−d
+

xt =

t−1
k=0

Γ (k + d)
Γ (d)Γ (k + 1)

xt−k

=

t−k
k=0

πk(d)xt−k (6)

where Γ (.) is gamma function. Under the assumptions A,
following lemmas hold:

Lemma 1. Assume that {ut}
T
t=0 is generated by (3)–(4) and ρ =

1 − c/T with c ≥ 0.

i. yT (t) = T−1/2⌊Tt⌋
k=1 e

−c(⌊Tt⌋−k)uk
w

−−−−→ ω̄C(1)Jcω(t), where
Jcω(t) =

 t
0 exp(−c(t−s))dBω(s) andBω(s) = ω̄−1

 s
0 ω(r)dB(r).

ii. Bω(s) = Bη(s) := B(η(s)) where Bη(s) variance transformed
Brownian motion, η(s) is defined in (5). Thus, Jcη(t) := Jcω(t) = t
0 exp(−c(t − s))dBη(s).

iii. For all d > 0, ỹT (t) = T−d∆−d
+ yT (t)

w
−−−−→ ω̄C(1)Jcω,d(t),

where Jcω,d(t) = Γ (d + 1)−1
 t
0 (t − s)ddJcω(s). Further, we have

Jcω,d(t) = Jcη,d(t).

1 The notation in the paper follows Cavaliere and Taylor (2007).
Remark 1. Lemma 1(i) and (ii) are from Cavaliere (2005) and
CT. Lemma 1(iii) is new and establishes weak convergence for
fractionally integrated processes with non-stationary volatility.
Although Demetrescu and Sibbertsen (2014) model the fractional
integrated process with non-stationary volatility, they do not
establish weak convergence of this object.

Remark 2. Note that under the null hypothesis of ρ = 1 or c =

0 the above variance transformed Uhlenbeck–Ornstein process
becomes a variance transformed Brownian motion. For instance,
under the null the partial sum process ỹT (t) will converge to
ω̄C(1)

 t
0 (t − s)ddBη(s) where we can define Bη,d(t) :=

 t
0 (t −

s)ddBη(s). This limiting distribution resembles the type II fractional
Brownian motions defined by Marinucci and Robinson (2000),
since Bη,d(t) does not contain any pre-historic influence (see also
Wang et al., 2002).

Like Nielsen (2009), we apply OLS detrending to the observed
series xt to clean out the deterministic terms. Let x̂t be the OLS
detrended residuals and defining ˜̂xt = ∆−d

+ x̂t , our test statistic is
then given by:

τη(d) = T 2d

T
t=1

x̂2t

T
t=1

˜̂x
2
t

. (7)

Theorem 1. Assume that the time series {xt} is generated by Eqs. (1)–
(4) and ρ = 1 − c/T for c ≥ 0. Let j = 0 when δt = 0, j = 1 when
δt = 1 and when δt = [1, t]′ for d > 0

i. x̂T (t)
w

−−−−→ Jcη,j(t) where Jcη,j(t) = Jcη(t) −

 1
0 Jcη(s)Dj(s)′ds


 1

0 Dj(s)Dj(s)′ds
−1

Dj(t) for j = 1, 2, and D1(s) = 1, D2(s) =

[1, s]′ and Jcη,0(t) = Jcη(t).

ii. ˜̂xT (t)
w

−−−−→ Jcη,d,j(t) where Jcη,d,j(t) = Jcη,d(t) −

 1
0 Jcη,d(s)Dj

(s)′ds
  1

0 Dj(s)Dj(s)′ds
−1  t

0
(t−r)d−1

Γ (d) Dj(r)dr for j = 1, 2.
Further Jcη,d,0(t) = Jcη,d(t).

iii. τη(d) = T 2d
T

t=1 x̂2tT
t=1

˜̂x
2
t

w
−−−−→ Uj,η(d) =

(ω̄C(1))2
 1
0 Jc

η,j(s)
2ds

(ω̄C(1))2
 1
0 Jc

η,d,j(s)
2ds

= 1
0 Jc

η,j(s)
2ds 1

0 Jc
η,d,j(s)

2ds
.

Remark 3. Note that short run dynamics cancel out in asymptotic
distribution since the numerator and the denominator share the
same long run variance component in part (iii).

2.3. Simulated asymptotic distribution

The test statistic obtained in Theorem 1 involves η(s) as
nuisance parameter which can be consistently estimated by
modifying the nonparametric estimator in CT:

η̂(s) :=

⌊Ts⌋
t=1

(1x̂t)2 + (Ts − ⌊Ts⌋)(1x̂⌊Ts⌋+1)
2

T
t=1

(1x̂t)2
. (8)

Theorem 2. Under the conditions of Theorem 1

i. (CT show) Bη̂,T (s) := T−1/2⌊(η̂⌊Ts⌋/T )T⌋

t=1 et
w

−−−−→ Bη(s).
ii. Bη̂,d,T (s) := T−d∆−d

+ Bη̂,T (s)
w

−−−−→ Bη,d(s).
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Table 1
Empirical size and power with no serial correlation.

τη(d) MZ S
t

ρ = 1 ρ = 0.93 ρ = 0.86 ρ = 1 ρ = 0.93 ρ = 0.86

CV T = 100 0.052 0.251 0.598 0.034 0.171 0.527
T = 500 0.051 0.987 1.000 0.048 1.000 1.000

SBV T = 100 0.052 0.284 0.656 0.031 0.311 0.738
T = 500 0.050 0.993 1.000 0.046 1.000 1.000

TV T = 100 0.054 0.257 0.588 0.029 0.261 0.654
T = 500 0.055 0.979 1.000 0.038 0.998 1.000

EISV T = 100 0.061 0.280 0.633 0.034 0.300 0.687
T = 500 0.053 0.949 1.000 0.044 0.986 1.000
Table 2
Empirical size and power with AR(1) innovations.

τη(d) MZ S
t

ρ = 1 ρ = 0.93 ρ = 0.86 ρ = 1 ρ = 0.93 ρ = 0.86

CV T = 100 0.016 0.237 0.507 0.035 0.140 0.290
T = 500 0.035 0.974 1.000 0.045 0.952 0.991

SBV T = 100 0.018 0.260 0.559 0.038 0.224 0.408
T = 500 0.043 0.982 1.000 0.041 0.976 0.995

TV T = 100 0.016 0.235 0.510 0.036 0.186 0.321
T = 500 0.036 0.966 1.000 0.043 0.940 0.986

EISV T = 100 0.017 0.175 0.419 0.014 0.079 0.182
T = 500 0.045 0.977 1.000 0.043 0.934 0.987
Table 3
Empirical size and power with ARMA(2,2)innovations.

τη(d) MZ S
t

ρ = 1 ρ = 0.93 ρ = 0.86 ρ = 1 ρ = 0.93 ρ = 0.86

CV T = 100 0.047 0.240 0.591 0.020 0.071 0.218
T = 500 0.045 0.985 1.000 0.040 0.940 0.991

SBV T = 100 0.049 0.286 0.656 0.011 0.215 0.490
T = 500 0.048 0.987 1.000 0.044 0.966 0.995

TV T = 100 0.047 0.269 0.607 0.014 0.144 0.332
T = 500 0.053 0.974 1.000 0.044 0.927 0.987

EISV T = 100 0.054 0.277 0.633 0.009 0.136 0.310
T = 500 0.049 0.884 0.996 0.046 0.654 0.868
After obtaining the consistent estimate for η(s), we can simulate
the asymptotic distribution and the critical value for the test
statistic. First, we choose a step level N . For s = j/N for j =

1, 2, . . . ,N , then we compute η̂(⌊Ts⌋/T ) using (8). By drawing
et from N(0, 1), we obtain Bη̂,T (s). Then applying fractional
integration operator ∆−d

+ to this object and multiplying it by T−d,
we get Bη̂,d,T (s). Applying appropriate demeaning and detrending
procedure to this object we obtain the asymptotic distribution
for the test statistic. This asymptotic distribution is then used to
generate the critical values for the test. The proposed test rejects
the null hypothesis for large values the test statistic, that is, we
reject if τη(d) is greater than (1 − α) quantile of Uη,j.

3. Monte Carlo experiments

In the Monte Carlo simulations, data is generated according to
Eqs. (1)–(4) with T = {100, 500}. We consider following specifica-
tions for error term variance:

i. Constant volatility (CV): ω(s) = 1 for s ∈ [0, 1].
ii. Single break in volatility (SBV): ω(s) = 1 + 2 ∗ 1(s > 0.2 ∗ T )

for s ∈ [0, 1].
iii. Trending volatility (TV): ω(s) = 1 + 2 ∗ s for s ∈ [0, 1].
iv. Exponential integrated Stochastic volatility (EISV): ω(s) =

exp(4B(s)) for s ∈ [0, 1] where B(s) is standard Brownian
process.

The innovations et are drawn from N(0, 1). All simulations are
conducted MC = 10 000 times. We fix the step size N to T in
simulating the variance shifted Brownian motions. We consider
four scenarios for serial correlation in innovations. First one does
not contain any serial correlation. In second, ut follows a simple
AR(1) model: ut = 0.5ut−1 + εt , third is an ARMA(2,2) process:
ut = 0.1ut−1 + 0.07ut−2 − 0.4εt−1 + 0.2εt−2 + εt . Last one
follows a MA(2) process; ut = −0.2εt−1 + 0.15εt−2. We fix ρ =

{1, 0.93, 0.86}. ρ = 0 indicates size and other values are for power
evaluation. We also provide simulation for Cavaliere and Taylor
(2007) MZ S

t test.2

Remark 4. The simulation scenario (iv) is not covered by the
assumptionA.3, as nonstationary volatility is stochastic. However,
the simulations show that in this case our procedure is working
well (see Tables 1–4).

4. Conclusion

Simulation evidence suggests the proposed nonparametric unit
root test has desirable size and power properties in all scenarios
considered. Our test almost dominates CT’s test in terms of size.
Furthermore, finite sample power results of our test are better than
CT’s tests except for the case of no serial correlation.

2 The confidence level is 0.05 and all data is demeaned. d is fixed to 0.1 as
recommended in Nielsen (2009). For formula and asymptotic distribution of MZ s

t
test see CT. In fact, CT propose 3 different test statistic, but we only give the results
of the best performing one from among these tests. For selection of lag length, we
utilize MAIC proposed by Ng and Perron (2001). Simulation results for different
serial correlation specifications will be provided by the authors upon request.
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Table 4
Empirical size and power with MA(2) innovations.

τη(d) MZ S
t

ρ = 1 ρ = 0.93 ρ = 0.86 ρ = 1 ρ = 0.93 ρ = 0.86

CV T = 100 0.055 0.240 0.576 0.026 0.094 0.279
T = 500 0.051 0.987 1.000 0.039 0.960 0.993

SBV T = 100 0.055 0.283 0.649 0.016 0.234 0.531
T = 500 0.054 0.989 1.000 0.042 0.977 0.995

TV T = 100 0.054 0.260 0.600 0.018 0.175 0.405
T = 500 0.046 0.982 1.000 0.037 0.955 0.987

EISV T = 100 0.053 0.301 0.669 0.011 0.249 0.557
T = 500 0.050 0.980 1.000 0.035 0.851 0.953
Appendix

Proof of Lemma 1. Part (i) can be found in Theorem 1 of Cavaliere
and Taylor (2007) and Remark 3.1. Part (ii) is from Proposition 3 of
Cavaliere (2005).

For part (iii), write the partial sum process for ỹt as follows:

ỹT (t) = T−d∆−d
+

yT (t) = T−1/2−d
⌊Tt⌋−1
k=0

πk(d)y⌊Tt⌋−k

= T−1/2−d
⌊Tt⌋
k=1

π⌊Tt⌋−k(d)yk

where πk(d) =
Γ (k+d)

Γ (d)Γ (k+1) , and fromWang et al. (2002) and Sowell
(1990) we know that

m
j=0 πj(d) = πm(d + 1), thus we have:

ỹT (t) = T−1/2−d
⌊Tt⌋
k=1

π⌊Tt⌋−k(d)yk

= T−1/2−d
⌊Tt⌋
k=1

π⌊Tt⌋−k(d)
k

j=1

vj (9)

= T−1/2−d
⌊Tt⌋
k=1

k
j=1

π⌊Tt⌋−k(d)vj

= T−1/2−d
⌊Tt⌋
k=1

π⌊Tt⌋−k(d + 1)vk (10)

= T−1/2−d
⌊Tt⌋
k=1

(⌊Tt⌋ − k)d

Γ (d + 1)
vk

= T−1/2
⌊Tt⌋
k=1


⌊Tt⌋−k

T

d
Γ (d + 1)

vk (11)

= T−1/2
⌊Tt⌋
k=1

(t − k/T )d

Γ (d + 1)
vk

=

⌊Tt⌋
k=1

(t − k/T )d

Γ (d + 1)
T−1/21yk. (12)

Here we can define yk =
k

j=1 vk in second equality of the first
line. Note that vk = uk for all k when c = 0. In the second line
we utilize the above formula for fractional binomial coefficients.
The third line involves basic operations for fractionally integrated
series, which can be found in Nielsen (2009). Finally vk = 1yk.
Here 1yk can be written as

 k/T
(k−1)/T dyT (s) in the limit (see Phillips,
1987), where yT (s) is partial sum process for yt . Then,

ỹT (t) =

⌊Tt⌋
k=1

(t − k/T )d

Γ (d + 1)

 k/T

(k−1)/T
dyT (s)

=

⌊Tt⌋
k=1

 k/T

(k−1)/T

(t − k/T )d

Γ (d + 1)
dyT (s) (13)

w
−−−−→

 t

0

(t − s)d

Γ (d + 1)
dyT (s). (14)

Note that last equality comes from the fact that s ∈ [(k − 1)/T ,

(k/T )] and as T −−−→ ∞(k − 1)/T and k/T will converge to the
same limit, say s in this case. Then, since yT (s) is continuous and
converging to Jcω(s) according to Cavaliere and Taylor (2007) and
(t − s)d is continuous, we can apply ContinuousMapping Theorem
(CMT) to conclude that ỹT (t)

w
−−−−→

C(1)
Γ (d+1)

 t
0 (t − s)ddJcω(s). �

Proof of Theorem 1. To prove part (i), first consider the residuals
from the regression of δt on xt for t = 1 . . . T , for s ∈ [0, 1]:

x̂⌊Ts⌋ = y⌊Ts⌋ − (θ̂ − θ)′δ⌊Ts⌋ (15)

T−1/2x̂⌊Ts⌋ = T−1/2y⌊Ts⌋ − T−1/2(θ̂ − θ)′δ⌊Ts⌋. (16)

We have already establish limiting distribution for first factor on
the right hand side of Eq. (16). For second factor, define N1(T ) = 1
when δt = 1 and N2(T ) =


1 0
0 T−1


when δt = [1, t]′, we have

same structure as in Nielsen (2009):

T−1/2(θ̂ − θ)′δ⌊Ts⌋

=


T−1

T
r=1

T−1/2yrδr ′Nj(T )



×


T−1

T
r=1

Nj(T )δrδr ′Nj(T )

−1

Nj(T )δ⌊Ts⌋

=


T−1

T
r=1

T−1/2yrDj(r/T )′



×


T−1

T
t=1

Dj(r/T )Dj(r/T )′

−1

Dj(⌊Ts⌋/T )

where Dj(⌊Ts⌋/T ) = Nj(T )δs. Note that Dj(⌊Ts⌋/T ) −−−→ Dj(s)
andDj(s) is defined in Theorem 1 part (i). By application of lemmas
(i–ii) and CMT, we have:

T−1/2(θ̂ − θ)δ⌊Ts⌋
w

−−−−→ ω̄C(1)
 1

0
Jcη(r)Dj(r)′dr


×

 1

0
Dj(r)Dj(r)′dr

−1

Dj(s).
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Finally we have

T−1/2x̂⌊Ts⌋
w

−−−−→ ω̄C(1)Jcη(s) − ω̄C(1)
 1

0
Jcη(r)Dj(r)′dr


×

 1

0
Dj(r)Dj(r)′dr

−1

Dj(s) := Jcη,j(s). (17)

For part (ii) first consider

˜̂xt = ∆−d
+

yt − T−d∆−d
+

(θ̂ − θ)δk

=

T
k=0

πk(d)yt−k − (θ̂ − θ)

T
k=0

πk(d)δt−k.

We can write the partial sum process to find the limits

T−1/2−d ˜̂xt = T−1/2−d
T

k=0

πk(d)yt−k

− T−1/2−d(θ̂ − θ)

T
k=0

πk(d)δt−k.

First factor converges by Lemma 1 part (iii). For the second factor
write:

T−1/2(θ̂ − θ)T−d
T

k=0

πk(d)δt−k

here T−1/2(θ̂ − θ)′ −−−→ ω̄C(1)
 1

0 Jcη(r)Dj(r)′dr
  1

0 Dj(r)

Dj(r)′dr
−1 by Eq. (17).

The convergence for T−dT
k=0 πk(d)δt−k is already proved by

Nielsen (2009), that is

T−d
⌊Tt⌋
k=0

πk(d)δ⌊Tt⌋−k −−−→

 t

0

(t − s)d−1

Γ (d)
Dj(s)ds

this establishes the proof.
Last part, (iii), is derived by application of CMT using the limits

we found in parts (i)–(ii). �

Proof of Theorem 2. Part (i) directly follows from Theorem 3 of
Cavaliere and Taylor (2007).

For part (ii), define the process st =
t

k=1 ek, the partial sum
ST (t) = T−1/2⌊Tt⌋

k=1 ek and S̃T (t) = T−d∆−d
+ ST (t) where et is i.i.d.

N(0,1) for all t . Note that we can write:

S̃T (t) = T−d∆−d
+

ST (t) = T−1/2−d
⌊Tt⌋−1
k=0

πk(d)s⌊Tt⌋−k

= T−1/2−d
⌊Tt⌋
k=1

π⌊Tt⌋−k(d)sk. (18)
This is not different than the partial sum process of ỹt in the proof
of Lemma 1(iii), but we replace yk with sk. Consequently, we can
use same arguments here and obtain a similar expression as in
Eq. (14):

S̃T (t)
w

−−−−→

 t

0

(t − s)d

Γ (d + 1)
dST (s).

Now, Bη̂,T (s) := ST (η̂((⌊Ts⌋/T )T )) as in CT and

Bη̂,d,T (s) := S̃T (η̂((⌊Ts⌋/T )T )) = T−d∆−d
+

ST (η̂((⌊Ts⌋/T )T ))

then replacing swith (η̂((⌊Ts⌋/T )T )) in (18), we have:

Bη̂,d,T (s)
w

−−−−→

 t

0

(t − s)d

Γ (d + 1)
dST (η̂((⌊Ts⌋/T )T )).

But, from part (i), Theorem 3 of Cavaliere and Taylor (2007)
indicates that (ST (s), η̂(s)) jointly converges to (B(s), η(s)), thus
ST (η̂((⌊Ts⌋/T )T ))

w
−−−−→ Bη(s). Applying CMT with dST (η̂

((⌊Ts⌋/T )T ))
w

−−−−→ dBη(s), we obtain the result. �
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