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Abstract—Hardware accelerators are known to be performance and power efficient. In this paper, we focus on accelerator design for
graph analytics applications which are commonly used kernels for cognitive systems. We propose a templatized architecture that is
specifically optimized for vertex centric graph applications with irregular memory access patterns, asynchronous execution, and
asymmetric convergence. Proposed architecture addresses the limitations of the existing CPU and GPU systems while providing a
customizable template. Our experiments show that the generated accelerators can outperform a high end CPU system with up to 3x
better performance and 65x better power efficiency.
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1 INTRODUCTION

Cognitive systems consist of many elements such as natural
language processing, artificial intelligence, machine learning, and
data analytics [1]. These systems rely on processing large amounts
of data, hence there are ongoing efforts to integrate big data
analytics with cognitive systems [2]. Graph analytics has been
gaining popularity recently especially due to the abundance of
data from web and social networks. Specifically, graph-based large
knowledge bases can be used by cognitive systems for reasoning
and human interactions [3].

There are many graph algorithms that are executed in the
inner loops of cognitive systems. Many speech recognition and
language processing models used in cognitive applications can
be represented as graphs [4]. For example, finite-state decoding
graphs are commonly used by WFST-based speech recognition
algorithms, where the objective is to compute the most likely paths
corresponding to the input sequences [4]. Belief propagation on a
Bayesian network is another graph analytics application that is
used by different cognitive applications [2]. Cognitive platforms
such as Unmanned Aerial Vehicles (UAVs) or self-driving cars run
single-source shortest-path (SSSP) algorithms in their inner loop
computations [5]. Personalized recommendations can be generated
from large datasets using algorithms such as Stochastic Gradient
Descent (SGD) on bipartite graphs. TextRank is a model proposed
for natural language applications such as tagging documents with
key phrases and sentence extraction for automatic summarization
[6]. TextRank operates on graphs where vertices represent text
units (e.g. terms) and edges represent the associations inferred
from the input texts.

The preliminary version of this article was published in ACM/IEEE Interna-
tional Symposium on Computer Architecture (ISCA) 2016.

Graph analytics-based cognitive applications are different than
traditional compute-intensive applications with regular access pat-
terns and abundant data and thread level parallelism. As will
be discussed later, graph applications are hard to parallelize due
to irregular execution patterns and synchronization requirements.
In this paper, we propose an accelerator architecture that is
specifically targeted at graph analytics applications. The proposed
architecture is implemented as a template to make modeling
different applications easy. Architects and designers can plug in
application-level data structures and functions into this template
to generate hardware implementations for a large class of graph
analytics applications.

2 GRAPH ANALYTICS APPLICATIONS

Graph analytics applications are among the core algorithms used
in cognitive systems. However, implementing these applications
on existing systems efficiently is not a trivial task due to several
reasons such as memory access bottlenecks, synchronization prob-
lems, and irregular computation/communication patterns. As will
be discussed shortly, these properties can be exploited to improve
performance and power efficiency by hardware customization.

Many graph algorithms are iterative in nature, where execution
continues until a convergence criteria is met. However, the number
of iterations required to converge individual vertices can vary
significantly. For instance, Figure 1(a) plots the percent of vertices
not converged throughout the PageRank iterations, where only less
than 1% of vertices require all iterations to converge. Our analysis
shows that enabling asymmetric convergence decreases the total
number of edges processed by 47% on average.

While single instruction multiple data (SIMD) type of ar-
chitectures can process multiple vertices simultaneously, they
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have control divergence issues when asymmetric convergence is
enabled.

Asynchronous execution, which allows neighbor vertices to
access the most recent data, can improve work efficiency even
further [7]. Figure 1(b) shows the relative number of edges
processed for PageRank when support for both asynchronous
execution and asymmetric convergence is enabled. As shown here,
these features reduce the number of edges processed by 66% on
average. However, if a programmer wants to utilize the work
efficiency of asynchronous execution then he/she should handle
synchronization and enforce sequential consistency in software to
prevent data race conditions. Fine-grain locking mechanisms slow
down the execution of both CPUs and throughput architectures.

One of the main bottlenecks in graph applications is memory
access because of low compute-to-communication ratios, low
spatial/temporal locality, and hard-to-predict memory accesses.

Some real world graphs, such as social networks, follow
Power law distribution where a few vertices have much higher
degrees when compared to the rest. In such an environment, static
partitioning of vertices to different threads greatly suffer from load
imbalances. An efficient implementation needs to distribute its
workload carefully, and more importantly, it should be able to
handle high degree vertices efficiently.

3 PROPOSED ARCHITECTURE TEMPLATE

There have been several graph frameworks proposed in the last
few years. The common objective is to hide the complexities
of parallel and distributed software development by providing
high-level programming interface. We follow a similar approach
for our template architecture. Specifically, we use the vertex-
centric (“think like a vertex”) abstraction model that consists of
Gather-Apply-Scatter (GAS) functions as in GraphLab [7]. In this
model, users need to define basic data structures corresponding to
each vertex/edge and implement serial functions for the following
operations:
• Gather: Collect and accumulate data from the neighboring

vertices and edges.
• Apply: Perform the main computation for the input vertex

using the Gather results.
• Scatter: Distribute the vertex data computed in Apply to

neighbors. Determine whether to schedule the neighboring
vertices for future execution.

The application specific data structures and functions in the
programming interface are clearly separated from the architecture
template implementation. All application-specific data structures
and functions are defined in plain C language, and are plugged into
our architecture template. The template automatically removes
the hardware corresponding to empty data structures and unused
features. As an example, the application-specific part of our
PageRank implementation is about 40 lines of C code, while
the common architecture template is more than 30,000 lines of
SystemC code, and not visible to the user.

The proposed accelerator is loosely-coupled with the host
processor and it is connected to the system DRAM. It is assumed
that the host processor will populate the graph data in DRAM,
and send a start signal to the accelerator. Once the accelerator
finishes computation, it will send a signal back to the host.
Figure 2(a) illustrates the proposed high-level architecture for a
single accelerator unit (AU). The main features can be summarized
as follows:

1) Tens of vertices and hundreds of edges are processed simul-
taneously to achieve high levels of memory-level parallelism.
This is done by maintaining partial states for multiple ver-
tices and edges while waiting for responses to long-latency
memory requests.

2) Scale-free graphs are handled through dynamic load balanc-
ing. For example, hundreds of edge states can be assigned to
a single high-degree vertex or can be distributed to multiple
low-degree vertices during execution.

3) Synchronization between concurrently processed vertices and
edges is done in the Sync Unit (SYU) module, which
is specifically designed for graph processing. This module
ensures sequential consistency with negligible performance
overhead. Furthermore, it works in a distributed fashion
without a centralized bottleneck.

4) The set of active (not-yet-converged) vertices is maintained
by the Active List Manager (ALM) module. This module en-
ables simultaneous high-throughput reads and writes from/to
the distributed Active List (AL) data structure without the
need for expensive locking mechanisms.

5) The memory subsystem is optimized for sparse graph data
structures.

In the following subsections, we describe different modules
in a single AU and then explain how to connect multiple AUs
together.

3.1 Computational Units

The main computational units in our accelerator are Gather Unit
(GU), Apply Unit (APU), and Scatter Unit (SCU) as shown in
Figure 2(a). These computational units are designed to perform the
respective Gather, Apply, and Scatter operations for each vertex.

Collecting and accumulating data from neighbors requires
several memory load operations, each of which can have long
latency to the system memory. For this reason, we propose a
latency tolerant architecture for the GU, where many vertices
and edges are processed concurrently, and partial vertex and edge
states are stored locally.

The limited local storage available in GU is shared among all
concurrently processed vertices. In the GU microarchitecture we
propose, a credit based mechanism is used to assign the available
edge slots dynamically to multiple vertices. The vertices that
are supposed to execute logically before others are given higher
priority during this assignment. For example, it is possible for a
high-priority and high-degree vertex to be assigned all available
edge slots. It is also possible for multiple low-degree vertices to
share the available storage. These decisions are done dynamically
based on vertex degrees and vertex priorities.

The APU is the module that performs computation for each
vertex using the data computed by GU without accessing the sys-
tem memory. The computation in this stage is typically pipelined
over multiple cycles so that different vertices can be processed at
different pipeline stages.

SCU implements the Scatter Program for each vertex v,
where the application specific Scatter functions determine how
to distribute the updated data of v to its neighbors. Similar to
GU, multiple vertices and edges are processed in parallel to hide
memory access latencies, and a credit-based mechanism dynami-
cally assigns local storage to vertices. For each out-neighbor u of
vertex v, the application-specific function also determines whether
v should activate u (i.e. schedule u for future execution) or not.
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(a) Asymmetric convergence of vertices for PageRank.

 0

 25

 50

wg pk lj

%
 o

f 
ed

g
es

 p
ro

ce
ss

ed

Dataset

(b) Work efficiency when asymmetric convergence and async. execution is enabled.

Fig. 1: Analysis of the PageRank application on three datasets: wg, pk, and lj.
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Fig. 2: Accelerator block diagram. For clarity some of the connections between the blocks are not shown.

3.2 Enabling Sequential Consistency
The Sync Unit (SYU) is the critical module that allows race-
free and sequentially consistent execution of all vertices in the
proposed architecture. SYU is in charge of coordination between
vertices such that read-after-write (RAW) and write-after-read
(WAR) dependencies are respected and no redundant activation
occurs.

The basic idea to ensure sequential consistency is to assign a
unique rank value to each vertex before it begins execution. The
rank values are increased monotonically so that the vertices that
start execution earlier have lower ranks and higher priorities. We
use the edge consistency model [7], which implements sequential
consistency by enforcing ordering between adjacent vertices, since
a vertex is allowed to update only its own data and the data of
edges connected to it. We briefly describe the basic operations in
the SYU microarchitecture below.

Maintain vertex states: Once a new vertex is received from
Runtime, it is assigned a unique rank, and stored in a table, which
contains all vertices currently being executed in the AU. The row
corresponding to vertex v contains its ID, rank, execution state, and
all stalled requests for v (as will be described). The execution state

of v is also updated when gather-done or scatter-done message is
received.

Maintain RAW ordering: Consider an edge e : u→ v where
rank(u) < rank(v), i.e. the execution of u should (logically)
happen before v. Sequential consistency dictates that v should not
read the data of vertex u or edge e before u updates them. The
neighboring vertex data (NVD) access requests from Gather Unit
(GU) go through SYU to ensure this ordering.

Maintain WAR ordering: Consider edge u → v. There is a
potential WAR dependency between u and v iff rank(u)> rank(v).
To maintain WAR ordering, the Scatter Unit (SCU) sends a
message to SYU corresponding to each edge e : u→ v, and waits
for acknowledgement before it writes data associated with e or u.

Avoid Unnecessary Activations: Consider an activation mes-
sage received from SCU corresponding to edge u → v. This
implies that vertex v should be added to the Active List (AL) for
future execution. However, if vertices u and v are being executed
concurrently, activation of v may be unnecessary depending on
the vertex ranks. Specifically, if rank(u) < rank(v), sequential
consistency mechanisms guarantee that vertex v will access the
data most recently updated by vertex u. So, it is unnecessary



4

to schedule v for future execution again. SYU filters out such
unnecessary activations before passing the activation requests to
the Active List Manager.

3.3 Managing Active Vertices
The Active List (AL) stores the set of vertices that need to be
executed in the future. The initial AL is application-dependent
and is part of the input data. Since the AL can potentially
contain all vertices in the input graph, it needs to be stored in
the system memory. As explained before, the application-specific
convergence condition is checked in SCU to determine which
vertices to schedule for future execution, while the unnecessary
activations are filtered out in SYU. The Active List Manager
(ALM) is responsible for the following tasks: 1) Extract vertices
from AL, and send them to Runtime for execution. 2) Receive new
activation requests from SYU, and add them to AL while avoiding
duplications.

For storage and data access efficiency, the AL consists of two
data structures: 1) A bit vector where each bit corresponds to the
presence or absence of a vertex in AL. 2) A queue of bit vector
indices where each index corresponds to a 256-bit segment of the
bit vector.

For the purpose of extracting new vertices for execution, ALM
reads the next bit vector index from the AL queue, and loads the
corresponding 256-bit segment of the bit vector. Then, it starts
sending the vertices that has set bits in the bit vector to Runtime
for execution.

When ALM receives an activation request for vertex v, it first
checks whether the bit corresponding to v is locally stored in
ALM. If so, it simply sets that bit locally. Otherwise, it sends the
request to the AL memory unit. Special care needs to be taken to
handle in-flight bit vectors and vertex indices. Specifically, when a
vertex index is sent to Runtime, it also needs to be registered with
Sync Unit, and an acknowledgment needs to be received before
removing the corresponding bit from the local storage of ALM.
Otherwise, an incoming activation request for the same vertex may
fail to detect that the vertex is already being executed. Similarly,
the in-flight bit vectors between ALM and AL memory need to be
handled with care to avoid adding duplicate vertices to AL.

3.4 Runtime
The Runtime (RT) module is in charge of monitoring available
resources in AU and scheduling new vertex executions. It reads
new vertices from ALM, and sends them to SYU when it detects
that there are available resources. It is also responsible for detect-
ing termination condition and sending out completion signal when
there are no in-flight or executing vertices and AL is empty. RT is
a simple module consisting of two counters to keep track of the
number of vertices in Gather and Scatter stages.

3.5 Specialized Memory Subsystem
There are different data structures that need to be accessed when
a vertex program is executed. In this paper, we assume that the
popular Compressed Sparse Row (CSR) format is used to store
the input graph topology. In this format, indices of the edges
connected to each vertex are stored contiguously in an array,
which is denoted as EdgeInfo (EI). The offsets to this array are
stored in a separate array denoted as VertexInfo (VI). In addition,
application specific data structures can be defined per vertex and

edge, which are denoted as Vertex Data (VD) and EdgeData (ED).
As explained previously, the Active List (AL) also needs to be
stored in main memory.

In the proposed architecture, we define a custom cache corre-
sponding to each graph object type as shown in Figure 2(a). The
access patterns for different object types can vary significantly. For
example, EI accesses tend to have good spatial locality because
of contiguous storage of indices. On the other hand, VD and
ED accesses typically have poor temporal and spatial locality
for unstructured graphs due to the random nature of accesses to
neighbors’ data. The individual cache parameters are customizable
in our templatized architecture, and they can be determined based
on the specific application requirements.

3.6 Multiple Accelerator Units

The throughput can be improved further by replicating AUs as
shown in Figure 2(b). In this paper, we focus on fine-grain
parallelism by tightly integrating a small number of AUs and
statically assigning vertices and edges to AUs based on their
indices. The memory subsystem is also partitioned according to
this assignment in a multi-bank fashion.

When multiple AUs are concurrently running, additional syn-
chronization mechanisms are needed. There are two light-weight
modules with minimal processing requirements as outlined below.

Global Rank Counter (GRC): As described previously, se-
quential consistency is implemented by assigning monotonically
increasing unique ranks to vertices. When multiple AUs are
involved, monotonicity is achieved by a global rank counter
(GRC) that sends an increment signal to all SYUs whenever an
SYU assigns a new rank. The uniqueness of ranks is ensured by
concatenating the AU ID to the least significant bit of the original
ranks. GRC is connected to the SYU of each AU.

Global Termination Detector (GTD): The Runtime (RT) of
each AU is responsible for detecting termination condition for that
AU. When multiple AUs are involved, GTD collects the termina-
tion signals from individual RTs, and determines the termination
condition of the whole system. GTD is responsible for notifying
the host processor that the computation is finished.

GRC and GTD are the only centralized modules in a multi-AU
system. Both implement very simple operations that are not in the
critical path for performance. Hence, the execution happens in a
distributed fashion without any centralized bottleneck.

4 EMPIRICAL STUDY

4.1 Setup

In this work, we have selected 4 different graph analytics applica-
tions which are used as part of cognitive systems.

PageRank (PR) is a well known ranking algorithm, where it
is used not only to rank web pages, but also to summarize text
as in TextRank and LexRank [8]. Stochastic Gradient Descent
(SGD) is an iterative machine learning algorithm which is used
in personalized recommendations. This is especially important
as many web services depend on personalized recommendations
to improve user experience. Additionally, Single Source Shortest
Path (SSSP) is a kernel used in UAVs which are among future
cognitive systems. SSSP is also used in network analytics as a
kernel for Betweenness Centrality calculations. Moreover, image
processing and belief propagation are crucial to cognitive systems
which Loopy Belief Propagation (LBP) collectively uses.
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TABLE 1: Datasets used in our experiments [9].

Application Dataset # Vert. # Edges

PageRank
SSSP
(Directed)

wg 916K 5.1M
pk 1.6M 30M
lj 4.8M 69M
g24 16.8M 268M
g25 33.5M 536M
g26 67M 1000M

LBP
(Undirected)

1M 1M 2M
4M 4M 8M
9M 9M 18M

SGD
(Undirected)

1M 9.7K 1M
10M 80K 10M

For each benchmark, we tried to use the most efficient imple-
mentations either by taking from available benchmark suites or
manually optimizing. Further details of applications and selected
benchmark implementations can be found in our preliminary
work [9].

We test each application with various datasets taken from well-
known graph databases [9]. The number of vertices and edges in
selected graphs ranges from 916K vertices and 5.1M edges to 67M
vertices and 1000M edges for PageRank and SSSP applications.
On the other hand, 3 different images are used for LBP with
1000x1000, 2000x2000, and 3000x3000 pixels. For SGD, 2 movie
datasets are selected with approximately 1M and 10M ratings.
Details of the selected datasets can be found in Table 1.

To calculate the energy and power consumption of the native
system, we used Running Average Power Limit. On the other
hand, for our accelerator, we used 22nm libraries for standard cells
and metal layers, CACTI for caches, and DramSim2 for memory.
We used a commercial high-level synthesis (HLS) tool to generate
RTL from our SystemC-based performance models in order to
estimate area, performance, and power. For all applications, the
number of AUs is chosen as four. However, other microarchitec-
tural parameters (e.g. cache sizes, number of vertices/edges pro-
cessed concurrently) have been tuned individually per application.
Further details of our experimental setup including the parameters
used can be found in [9].

4.2 Results and Discussion

We used a 24-core IvyBridge server system as baseline for our
experiments. As can be seen in Figure 4(a), our accelerator
(ACC) outperforms or shows similar performance in 9 out of 17
test cases when compared to the 24-core CPU system. Among
4 applications, PageRank is the best example that can benefit
from asynchronous execution and asymmetric convergence [7].
Specifically, our accelerator outperforms the 24-core CPU in 4
cases while having very close execution times in the remaining 2
cases. Additionally, our accelerator shows speedups in the range
of 2x to 20x relative to 12 cores. As expected, we observe up to
39% work efficiency which in turn, improves the performance.

The speedup of the LBP application is observed to be between
2.5x and 3x with respect to 24 cores. As shown in [7], LBP-like
applications can benefit from asynchronous execution (we have
also observed up to 70% work efficiency with our accelerator)
thanks to better convergence behavior, but implementing sequen-
tial consistency can slow down the execution [10]. For SGD, our
accelerator performs better than the 24-core CPU. The reason is
that the large number of arithmetic operations per vertex (due
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Fig. 3: Scalability of accelerator in terms of execution time
and memory bandwidth utilization normalized with respect to 1
accelerator).

to vector product calculation for each edge) can be done more
efficiently in custom hardware.

In contrast, SSSP is the only application where we observe
worse performance compared to the 24-core CPU, because the
CPU implementation uses the delta stepping algorithm, which
cannot be modeled by the GAS abstraction. However, we observed
that the performance of the accelerator is better than 12 cores for
the same kernel.

We observe that power consumed in the accelerator is dom-
inated by the DRAM power as also was shown by previous
studies [11]. Note that, DDR3 power is projected to DDR4 power
for CPU experiments and we observed that core+uncore power
dominates the power consumption for CPU.

Figure 4(b) shows the power consumption of our accelerators
compared to a 24 core CPU. As can be seen from this figure,
our accelerator is up to 65x more power efficient. In particular,
although SSSP shows worse performance compared to the 24-core
system, we observe that it is 65x more power efficient.

Figure 3(a) and 3(b) give the execution time and memory
bandwidth as a function of the number of Accelerator Units (AUs).
We observe good speedups up to 4 AUs, but beyond this, we
see diminishing returns due to the memory bandwidth saturation.
When Figure 3(a) and 3(b) are considered, one can see that
performance and memory bandwidth utilization follow a similar
pattern for irregular graph applications. Note that, PR and SSSP
can achieve high memory bandwidth utilization even with 1 or 2
AUs because they require limited amount of computation per edge
compared to LBP and SGD.

In conclusion, we have proposed an accelerator architecture
targeted at graph analytics applications that follow the well-known
Gather-Apply-Scatter abstraction. Due to irregular memory access
patterns in these applications, the performance bottleneck is the
system memory bandwidth. We have shown that the proposed
accelerators can utilize this bandwidth in a much more power
efficient way than multi-core CPUs. Furthermore, the proposed
template architecture includes work efficiency features targeted
at iterative graph applications, which lead to performance im-
provements of up to 3x. Although we have studied fixed-function
accelerators in this paper, it is possible to make the proposed
architecture software programmable by replacing the application-
specific logic with simple processors in a future work. Another
future work is to generalize the proposed architecture beyond the
Gather-Apply-Scatter abstraction model.
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