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Varentropy Decreases Under the Polar Transform
Erdal Arıkan, Fellow, IEEE

Abstract— We consider the evolution of variance of
entropy (varentropy) in the course of a polar transform operation
on binary data elements (BDEs). A BDE is a pair (X, Y)
consisting of a binary random variable X and an arbitrary side
information random variable Y . The varentropy of (X, Y) is
defined as the variance of the random variable − log pX|Y (X|Y).
A polar transform of order two is a certain mapping that takes
two independent BDEs and produces two new BDEs that are
correlated with each other. It is shown that the sum of the
varentropies at the output of the polar transform is less than or
equal to the sum of the varentropies at the input, with equality
if and only if at least one of the inputs has zero varentropy. This
result is extended to polar transforms of higher orders and it
is shown that the varentropy asymptotically decreases to zero
when the BDEs at the input are independent and identically
distributed.

Index Terms— Polar coding, varentropy, dispersion.

I. INTRODUCTION

WE USE the term “varentropy” as an abbreviation
for “variance of the conditional entropy random

variable” following the usage in [1]. In his pioneering work,
Strassen [2] showed that the varentropy is a key parameter for
estimating the performance of optimal block-coding schemes
at finite (non-asymptotic) block-lengths. More recently, the
comprehensive work by Polyanskiy et al. [3] further elucidated
the significance of varentropy (under the name “dispersion”)
and rekindled interest in the subject. In this paper, we study
varentropy in the context of polar coding. Specifically, we
track the evolution of average varentropy in the course of polar
transformation of independent identically distributed (i.i.d.)
BDEs and show that it decreases to zero asymptotically as
the transform size increases. As a side result, we obtain an
alternative derivation of the polarization results of [4] and [5].

A. Notation and Basic Definitions

Our setting will be that of binary-input memoryless channels
and binary memoryless sources. We treat source and channel
coding problems in a common framework by using the neutral
term “binary data element” (BDE) to cover both. Formally,
a BDE is any pair of random variables (X,Y ) where X takes
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values over X �= {0, 1} (not necessarily from the uniform
distribution) and Y takes values over some alphabet Y which
may be discrete or continuous. A BDE (X,Y ) may represent,
in a source-coding setting, a binary data source X that we wish
to compress in the presence of some side information Y ; or,
it may represent, in a channel-coding setting, a channel with
input X and output Y .

Given a BDE (X,Y ), the information measures of interest
in the sequel will be the conditional entropy random variable

h(X |Y ) �= − log pX |Y (X |Y ),
the conditional entropy

H (X |Y ) �= E h(X |Y ),
and, the varentropy

V(X |Y ) �= Var(h(X |Y )).
Throughout the paper, we use base-two logarithms.

The term polar transform is used in this paper to to refer to
an operation that takes two independent BDEs (X1,Y1) and
(X2,Y2) as input, and produces two new BDEs (U1,Y) and

(U2; U1,Y) as output, where U1
�= X1 ⊕ X2, U2

�= X2, and

Y �= (Y1,Y2). The notation “⊕” denotes modulo-2 addition.

B. Polar Transform and Varentropy

The main result of the paper is the following.
Theorem 1: The varentropy is nonincreasing under the

polar transform in the sense that, if (X1,Y2), (X2,Y2) are
any two independent BDEs at the input of the transform and
(U1,Y), (U2; U1,Y) are the BDEs at its output, then

V(U1|Y)+ V(U2|U1,Y) ≤ V(X1|Y1)+ V(X2|Y2), (1)

with equality if and only if (iff) either V (X1|Y1) = 0 or
V (X2|Y2) = 0.

For an alternative formulation of the main result, let us
introduce the following notation:

hin,1
�= h(X1|Y1), hin,2

�= h(X2|Y2), (2)

hout,1
�= h(U1|Y), hout,2

�= h(U2|U1,Y). (3)

Theorem 1 can be reformulated as follows.
Theorem 1′: The polar transform of conditional entropy

random variables, (hin,1, hin,2) → (hout,1, hout,2), produces
positively correlated output entropy terms in the sense that

Cov(hout,1, hout,2) ≥ 0, (4)

with equality iff either Var(hin,1) = 0 or Var(hin,2) = 0.
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This second form makes it clear that any reduction in
varentropy can be attributed entirely to the creation of a
positive correlation between the entropy random variables
hout,1 and hout,2 at the output of the polar transform.

Showing the equivalence of the two claims (1) and (4) is a
simple exercise. We have, by the chain rule of entropy,

hout,1 + hout,2 = hin,1 + hin,2; (5)

hence, Var(hout,1 + hout,2) = Var(hin,1 + hin,2). Since hin,1
and hin,2 are independent, Var(hin,1 + hin,2) = Var(hin,1) +
Var(hin,2); while Var(hout,1 + hout,2) = Var(hout,1) +
Var(hout,2)+ 2 Cov(hout,1, hout,2). Thus, the claim (1), which
can be written in the equivalent form

Var(hout,1)+ Var(hout,2) ≤ Var(hin,1)+ Var(hin,2),

is true iff (4) holds.
A technical question that arises in the sequel is whether the

varentropy is uniformly bounded across the class of all BDEs.
This is indeed the case.

Lemma 1: For any BDE (X,Y ), V (X |Y ) ≤ 2.2434.
Proof: It suffices to show that the second moment of

h(X |Y ) satisfies the given bound.

E[h(X |Y )2] ≤ max
0≤x≤1

[x log2(x)+ (1 − x) log2(1 − x)]
≤ 2 max

0≤x≤1
[x log2(x)] = 8e−2 log2(e) ≈ 2.2434.

(A numerical study shows that a more accurate bound on
V (X |Y ) is 1.1716, but the present bound will be sufficient
for our purposes.) �

This bound guarantees that all varentropy terms in this paper
exist and are bounded; it also guarantees the existence of the
covariance terms since by the Cauchy-Schwarz inequality we
have | Cov(hout,1, hout,2)| ≤ √

Var(hout,1)Var(hout,2).
We will end this part by giving two examples in order to

illustrate the behavior of varentropy under the polar transform.
The terminology in both examples reflects a channel coding
viewpoint; although, each model may also arise in a source
coding context.

Example 1: In this example, (X,Y ) models a binary
symmetric channel (BSC) with equiprobable inputs and a
crossover probability 0 ≤ ε ≤ 1/2; in other words, X and
Y take values in the set {0, 1} with

pX,Y (x, y) =
{

1
2 (1 − ε), if x = y;
1
2ε, if x �= y.

Fig. 1 gives a sketch of the varentropy and covariance
terms defined above, with Var(hin) denoting the common
value of Var(hin,1) and Var(hin,2)). (Formulas for computing
the varentropy terms will be given later in the paper.) The
non-negativity of the covariance is an indication that the
varentropy is reduced by the polar transform.

Example 2: Here, (X,Y ) represents a binary erasure
channel (BEC) with equiprobable inputs and an erasure
probability ε. In other words, X takes values in {0, 1}, Y takes
values in {0, 1, 2}, and

pX,Y (x, y) =
{

1
2 (1 − ε), if x = y;
1
2ε, if y = 2.

Fig. 1. Variance and covariance of entropy for BSC under polar transform.

Fig. 2. Variance and covariance of entropy for BEC under polar transform.

In this case, there exist simple formulas for the varentropies.
Var(hin,1) = Var(hin,2) = Var(hin) = ε(1 − ε),Var(hout,2) =
(2ε − ε2)(1 − ε)2,Var(hout,1) = ε2(1 − ε2). The covariance is
given by Cov(hout,1, hout,2) = ε2(1 − ε)2. The corresponding
curves are plotted in Fig. 2.

C. Organization

The rest of the paper is organized as follows. In Section II,
we define two canonical representations for a BDE (X,Y )
that eliminate irrelevant details from problem description
and simplify the analysis. In Section III, we review some
basic facts about the covariance function that are needed
in the remainder of the paper. Section IV contains the
proof of Theorem 1′. Section V considers the behavior of
varentropy under higher-order polar transforms and contains a
self-contained proof of the main polarization result of [4].

Throughout, we will often write p to denote 1 − p for a
real number 0 ≤ p ≤ 1. For 0 ≤ p, q ≤ 1, we will write p ∗q
to denote the convolution pq + p q.

II. CANONICAL REPRESENTATIONS

The information measures of interest relating to a given
BDE (X,Y ) are determined solely by the joint probability
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distribution of (X,Y ); the specific forms of the alphabets X
and Y play no role. We have already fixed X as {0, 1} so
as to have a standard representation for X . It is possible and
desirable to re-parametrize the problem, if necessary, so that
Y also has a canonical form. Such canonical representations
have been given for Binary Memoryless Symmetric (BMS)
channels in [6]. The class of BDEs (X,Y ) under consideration
here is more general than the class of BMS channels, but
similar ideas apply. We will give two canonical representations
for BDEs, which we will call the α-representation and the
β-representation. The α-representation replaces Y with a
canonical alphabet A ⊂ [0, 1], and has the property of being
“lossless”. The β-representation replaces Y with B ⊂ [0, 1/2];
it is “lossy”, but happens to be more convenient than the
α-representation for purposes of proving Theorem 1′.

A. The α-Representation

Given a BDE (X,Y ), we associate to each y ∈ Y the
parameter

α(y) = αX |Y (y)
�= pX |Y (0|y)

and define A
�= α(Y ). The random variable A takes values

in the set A �= {α(y) : y ∈ Y}, which is always a subset
of [0, 1]. We refer to A as the α-representation of (X,Y ).
The α-representation provides economy by using a canonical
alphabet A in which any two symbols y, y′ ∈ Y are merged
into a common symbol a whenever α(y) = α(y ′) = a.

We give some examples to illustrate the α-representation.
For the BSC of Example 1, we have α(0) = 1 − ε, α(1) = ε,
A = {ε, 1−ε}. In the case of the BEC of Example 2, we have
α(0) = 1, α(1) = 0, α(2) = 1/2, A = {0, 1/2, 1}. As a third
example, consider the channel y = (−1)xc + z where c > 0
is a constant and z ∼ N(0, 1) is a zero-mean unit-variance
additive Gaussian noise, independent of x . In this case, we
have

α(y) = e−(y−c)2/2

e−(y−c)2/2 + e−(y+c)2/2
= 1

1 + e−2cy
,

giving A = (0, 1).
The α-representation provides “sufficient statistics” for

computing the information measures of interest to us.
To illustrate this, let (X,Y ) be an arbitrary BDE and let
A = α(Y ) be its α-representation. Let FA denote the
cumulative distribution function (CDF) of A.

The conditional entropy random variable is given by

h(X |Y ) = h(X |A) =
{

− log A, X = 0;
− log A, X = 1.

(6)

Hence, the conditional entropy can be calculated as

H (X |Y ) = E h(X |Y ) = E h(X |A) = EAEX |A h(X |A)
= EAH(A) = EH(A) =

∫ 1

0
H(a) dFA(a), (7)

where H(a) �= −a log a − a log a, a ∈ [0, 1], is the binary
entropy function. Likewise, the varentropy is given by

V (X |Y ) = V (X |A) = EH2(A)−
[
EH(A)]2

, (8)

where H2(a)
�= −a log2 a − a log2 a and

EH2(A) =
∫ 1

0
H2(a) dFA(a).

Finally, we note that H (X) = H(pX (0)) = H(E A). Thus,
all information measures of interest in this paper can be
computed given knowledge of the distribution of A.

B. The β-Representation

Although the α-representation eliminates much of the
irrelevant detail from (X,Y ), there is need for an even more
compact representation for the type of problems considered in
the sequel. This more compact representation is obtained by
associating to each y ∈ Y the parameter

β(y) = βX |Y (y)
�= min{pX |Y (0|y), pX |Y (1|y)}.

We define the β-representation of (X,Y ) as the random

variable B
�= β(Y ). We denote the range of B by B �= {β(y) :

y ∈ Y} and note that B ⊂ [0, 1/2].
The β-representation can be obtained from the

α-representation by

β(y) = min{α(y), 1 − α(y)}, B = min{A, A };

but, in general, the α-representation cannot be recovered from
the β-representation.

For the BSC of Example 1, we have β(0) = β(1) = ε,
giving B = {ε}. For the BEC of Example 2, we have β(0) =
β(1) = 0, β(2) = 1/2, and B = {0, 1/2}. For the binary-input
additive Gaussian noise channel, we have

β(y) = 1

1 + e2c|y| ,

with B = (0, 1/2].
As it is evident from (6), the conditional entropy random

variable h(X |Y ) cannot be expressed as a function of (X, B).
However, if the CDF FB of B is known, we can compute
H (X |Y ) and V(X |Y ) by the following formulas that are
analogous to (7) and (8):

H (X |Y ) = EH(B), V (X |Y ) = EH2(B)−
[
EH(B)]2

.

To see that B is less than a “sufficient statistic” for
information measures, one may note that H (X) is not
determined by knowledge of FB alone. For example, for a
BDE (X,Y ) with Pr(Y = X) = 1, we have Pr(B = 0) = 1,
independently of pX (0).

Despite its shortcomings, the β-representation will be useful
for our purposes due to the fact that the binary entropy function
H(p) is monotone over p ∈ [0, 1/2] but not over p ∈ [0, 1].
Thus, the random variable H(B) is a monotone function of B
over the range of B , but H(A) is not necessary so over the
range of A. This monotonicity will be important in proving
certain correlation inequalities later in the paper.
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TABLE I

CLASSIFICATION OF BDES

C. Classification of Binary Data elements

Table I gives a classification of a BDE (X,Y ) in terms of the
properties of B = β(Y ). The classification allows an erasing
BDE to be extreme as a special case.

For a pure (X,Y ), we obtain from (7) and (8) that

H (X |Y ) = H(b), V (X |Y ) = b(1 − b) log2
(

b

1 − b

)
,

where b is the value that B = β(Y ) takes with probability 1.
A simple corollary to this is the following characterization of
an extreme BDE.

Proposition 1: Let (X,Y ) be a BDE and B = β(Y ).
The following three statements are equivalent: (i) (X,Y ) is
extreme, (ii) H (X |Y ) = 0 or H (X |Y ) = 1, (iii) V(X |Y ) = 0.

We omit the proof since it is immediate from the above
formulas for H (X |Y ) and V (X |Y ) for a pure BDE.

For an erasing (X,Y ), it is easily seen that

H (X |Y ) = p, V (X |Y ) = p(1 − p)

where p = P[β(Y ) = 1/2] is the erasure probability.
Parenthetically, we note that while the entropy function

satisfies H (X |Y ) ≤ H (X), there is no such general
relationship between V (X |Y ) and V (X). For an erasing (X,Y )
with pX (1) = 1 − pX (0) = q and erasure probability p,
we have V (X) = q(1 − q) log2[q/(1 − q)] while V (X |Y ) =
p(1 − p). Either V (X) < V (X |Y ) or V (X) > V (X |Y ) is
possible depending on q and p.

D. Canonical Representations Under Polar Transform

In this part, we explore how the α- and β-representations
evolve as they undergo a polar transform. Let us return to the
setting of Sect. I-B. Let (U1,Y) and (U2; U1,Y) denote the
two BDEs obtained from a pair of independent BDEs (X1,Y1)
and (X2,Y2) by the polar transform. Let hin,1, hin,2, hout,1, and
hout,2 denote the entropy random variables at the input and
output of the polar transform. For i = 1, 2, let Ain,i and Bin,i
be the α- and β-representations for the i th BDE at the input
side; and let Aout,i and Bout,i be those for the i th BDE at
the output side. Let the sample values of these variables be
denoted by small-case letters, such as ain,i for Ain,i , bin,i for
Bin,i , etc.

Proposition 2: The α-parameters at the input and output of
a polar transform are related by

Aout,1 = Ain,1 ∗ Ain,2, (9)

Aout,2 =
{

Ain,1 Ain,2/(Ain,1 ∗ Ain,2), U1 = 0;
Ain,1 Ain,2/(Ain,1 ∗ Ain,2), U1 = 1.

(10)

Remark 1: In (10), the event {Ain,1 ∗ Ain,2 = 0} leads
to an indeterminate form Aout,2 = 0/0, but the conditional
probability of {Ain,1 ∗ Ain,2 = 0} given {U1 = 0} is zero:
Ain,1 ∗ Ain,2 = 0 implies (Ain,1, Ain,2) ∈ {(0, 1), (1, 0)}, which
in turn implies (X1, X2) ∈ {(1, 0), (0, 1)}, giving U1 = 1.
Similarly, the event {Ain,1 ∗ Ain,2 = 0} is incompatible with
{U1 = 1}.

Proof: For a fixed Y = (y1, y2), the sample values of
Aout,1 are given by

aout,1(y1, y2)
�= pU1|Y1,Y2(0|y1, y2)

=
∑

u2

pU1,U2|Y1,Y2(0, u2|y1, y2)

=
∑

u2

pX1|Y1(u2|y1)pX2|Y2(u2|y2)

= ain,1(y1) ∗ ain,2(y2).

From this, the first statement (9) follows. The second
statement (10) can be obtained by similar reasoning. �

The above result leads to the following “density evolution”
formula. Let Fin,1, Fin,2, Fout,1, and Fout,2 be the CDFs of
Ain,1, Ain,2, Aout,1, and Aout,2, respectively.

Proposition 3: The CDFs of the α-parameters at the output
of a polar transform are related to the CDFs of the
α-parameters at the input by

Fout,1(a) =
∫∫

a1∗a2≤a

dFin,1(a1) dFin,2(a2)

Fout,2(a) =
∫∫

(a1a2/a1∗a2)≤a

(a1 ∗ a2) dFin,1(a1) dFin,2(a2)

+
∫∫

(a1a2/a1∗a2)≤a

(a1 ∗ a2) dFin,1(a1) dFin,2(a2)

These density evolution equations follow from (9) and (10).
In the expression for Fout,2(a), the integrands (a1 ∗ a2) and
(a1 ∗a2) correspond to the conditional probability of U1 being
0 and 1, respectively, given that Ain,1 = a1 and Ain,2 = a2.
We omit the proof for brevity.

For the β-parameters, the analogous result to Proposition 2
is as follows.

Bout,1 = γ (Bin,1 ∗ Bin,2),

Bout,2 =
{
γ (Bin,1 Bin,2/(Bin,1 ∗ Bin,2)), � > 0;
γ (B in,1 Bin,2/(B in,1 ∗ Bin,2)), � ≤ 0,

where γ (x)
�= min{x, 1 − x} for any x ∈ [0, 1] and �

�=
(1/2 − U1)(1/2 − Ain,1)(1/2 − Ain,2). We omit the derivation
of these evolution formulas for the β-parameters since they
will not be used in the sequel. The main point to note here
is that the knowledge of (Bin,1, Bin,2,U1) is not sufficient to
determine �, hence not sufficient to determine Bout,2. So, there
is no counterpart of Proposition 3 for the β-parameters.

Although there is no general formula for tracking the
evolution of the β-parameters through the polar transform,
there is an important exceptional case in which we can track
that evolution, namely, the case where at least one of the BDEs
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TABLE II

POLAR TRANSFORM OF EXTREME BDEs

at the transform input is extreme. This special case will be
important in the sequel, hence we consider it in some detail.

Table II summarizes the evolution of the β-parameters for
all possible situations in which at least one of the input BDEs
is extreme. (In the table “p.r.” stands for “purely random”.)

The following proposition states more precisely the way the
β-parameters evolve when one of the input BDEs is extreme.

Proposition 4: If Bin,1 is extreme, then the β-parameters at
the output are given by

Bout,1 =
{

Bin,2, if Bin,1 is perfect
1
2 , if Bin,1 is p.r.; (11)

Bout,2 =
{

0, if Bin,1 is perfect

Bin,2, if Bin,1 is p.r..
(12)

If Bin,2 is extreme, then (11) and (12) hold after interchanging
Bin,1 and Bin,2.

Proof: Suppose Bin,1 ≡ 0 (perfect), then Ain,1 can only
take the values 0 and 1, and we obtain from (9) that

Aout,1 = Ain,1 ∗ Ain,2 =
{

Ain,2, Ain,1 = 0;
Ain,2, Ain,1 = 1.

Thus, Bout,1 = min(Aout,1, Aout,1) = min(Ain,2, Ain,2) =
Bin,2, completing the proof of the first case in (11). We skip
the proof of the remaining three cases since they follow by
similar reasoning. �

III. COVARIANCE REVIEW

In this part, we collect some basic facts about the covariance
function, which we will need in the following sections. The
first result is the following formula for splitting a covariance
into two parts.

Lemma 2: Let S, T be jointly distributed random vectors
over R

m and R
n, respectively. Let f, g : R

m+n → R

be functions such that Cov[ f (S,T), g(S,T)] exists, i.e.,
E f (S,T)g(S,T), E f (S,T), and Eg(S,T) all exist. Then,

Cov[ f (S,T), g(S,T)] = ET CovS|T[ f (S,T), g(S,T)]
+ CovT[ES|T f (S,T),ES|Tg(S,T)].

(13)

Although this is an elementary result, we give a proof here
mainly for illustrating the notation. Our proof follows [7].

Proof: We will omit the arguments of the functions for
brevity.

Cov( f, g) = ES,T f g − ES,T f · ES,Tg

= ETES|T f g − ET
[
ES|T f · ES|Tg

]

+ET
[
ES|T f · ES|Tg

] − ETES|T f · ETES|Tg

= ET CovS|T( f, g)+ CovT(ES|T f,ES|Tg).

�

The second result we recall is the following inequality.
Lemma 3 (Chebyshev’s Covariance Inequality): Let X be

a random variable taking values over R and let f, g :
R → R be any two nondecreasing functions. Suppose
that Cov( f (X), g(X)) exists, i.e., E f (X)g(X), E f (X), and
Eg(X) all exist. Then,

Cov( f (X), g(X)) ≥ 0. (14)

Proof: Let X ′ be an independent copy of X . Let E and
E

′ denote expectation with respect to X and X ′, respectively.
The proof follows readily from the following identity whose
proof can be found in [8, p. 43].

Cov( f (X), g(X)) = E f (X)g(X)− E f (X)Eg(X)

= 1

2
E

′
E[( f (X)− f (X ′))(g(X)− g(X ′))].

Now note that for any x, x ′ ∈ R, f (x)− f (x ′) and g(x)−g(x ′)
have the same sign since both f and g are nondecreasing.
Thus, ( f (x) − f (x ′))(g(x) − g(x ′)) ≥ 0, and non-negativity
of the covariance follows. �

IV. PROOF OF THEOREM 1′

Let us recall the setting of Theorem 1′. We have
two independent BDEs (X1,Y1) and (X2,Y2) as inputs of
a polar transform, and two BDEs (U1,Y) and (U2; U1,Y)
at the output, with U1 = X1 ⊕ X2, U2 = X2, and Y =
(Y1,Y2). Associated with these BDEs are the conditional
entropy random variables hin,1, hin,2, hout,1, and hout,2, as
defined by (2) and (3). We will carry out the proof mostly

in terms of the canonical parameters Ai
�= αXi |Yi (Yi ) and

Bi
�= βXi |Yi (Yi ), i = 1, 2. For shorthand, we will often

write X = (X1, X2), U = (U1,U2), A = (A1, A2), and
B = (B1, B2).

We will carry out our calculations in the probability space
defined by the joint ensemble (X,Y). Probabilities over this
ensemble will be denoted by P(·) and expectations by E[·].
Partial and conditional expectations and covariances will be
denoted by EY, EX|Y, CovY, CovX|Y, etc. Due to the 1-1nature
of the correspondence between U and X, expectation and
covariance operators such as EU|Y and CovU|Y will be
equivalent to EX|Y and CovX|Y, respectively. We will prefer
to use expectation operators in terms of the primary variables
X and Y rather than the secondary (derived) variables such
as U, A, B, to emphasize that the underlying space is (X,Y).
We note that, due to the independence of Y1 and Y2, A1 and
A2 are independent; likewise, B1 and B2 are independent.

A. Covariance Decomposition Step

As the first step of the proof of Theorem 1′, we use the
covariance decomposition formula (13) to write

Cov(hout,1, hout,2) = EY CovX|Y(hout,1, hout,2)

+ CovY(EX|Yhout,1,EX|Yhout,2). (15)

For brevity, we will use the notation

Cov1
�= EY CovX|Y(hout,1, hout,2)

Cov2
�= CovY(EX|Yhout,1,EX|Yhout,2)
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to denote the two terms on the right hand side of (15). Our
proof of Theorem 1′ will consist in proving the following two
statements.

Proposition 5: We have Cov1 ≥ 0, with equality iff either
(X1,Y1) or (X2,Y2) is an erasing BDE.

Proposition 6: We have Cov2 ≥ 0.
Remark 2: We note that Cov2 = 0 iff, of the two BDEs

(X1,Y1) and (X2,Y2), either one is extreme or both are pure.
We note this only for completeness but do not use it in the
paper.

The rest of the section is devoted to the proof of the above
propositions.

B. Proof of Proposition 5

For p, q ∈ [0, 1], define

f (p, q)
�= (p ∗ q)(p ∗ q) log

(
p ∗ q

p ∗ q

)

×
[
H

(
p q

p ∗ q

)
− H

(
p q

p ∗ q

)]
. (16)

We will soon give a formula for Cov1 in terms of this function.
First, a number of properties of f (p, q) will be listed. The
following symmetry properties are immediate:

f (p, q) = f (p, q) = f (p, q) = f (p, q), (17)

f (p, q) = f (q, p). (18)

Lemma 4: We have f (p, q) ≥ 0 for all p, q ∈ [0, 1] with
equality iff p ∈ {0, 1/2, 1} or q ∈ {0, 1/2, 1}.

Proof: We use (17) to write

f (p, q) = f (r, s) (19)

where r
�= min{p, p} and s

�= min{q, q}. Thus, instead of
proving f (p, q) ≥ 0, it suffices to prove f (r, s) ≥ 0 for
0 ≤ r, s ≤ 1/2. In fact, using (18), it suffices to prove
f (r, s) ≥ 0 for 0 ≤ r ≤ s ≤ 1/2. Assuming 0 ≤ r ≤ s ≤ 1/2,
it is straightforward to show that

r ∗ s ≥ r ∗ s and
rs

r ∗ s
≤ r s

r ∗ s
≤ 1

2
. (20)

Thus, if we write out the expression for f (r, s), as in (16)
with (r, s) in place of (p, q), we can see easily that each
of the four factors on the right hand side of that expression
are non-negative. More specifically, the logarithmic term is
non-negative due to the first inequality in (20) and the
bracketed term is non-negative due to the second inequality
in (20). This completes the proof that f (p, q) ≥ 0 for all
p, q ∈ [0, 1].

Next, we identify the necessary and sufficient conditions for
f (p, q) to be zero over 0 ≤ p, q ≤ 1. Clearly, f (p, q) = 0
iff one of the four factors on the right hand side of (16)
equals zero. By straightforward algebra, one can verify the
following statements. The first factor p ∗ q equals zero iff
(p, q) ∈ {(0, 1), (1, 0)}. The second factor p∗q equals zero iff
(p, q) ∈ {(0, 0), (1, 1)}. The log term equals zero iff p = 1/2
or q = 1/2. Finally the difference of the entropy terms equals
zero iff pq/p ∗ q = pq/p ∗ q or pq/p ∗ q = 1 − pq/p ∗ q
which in turn is true iff p ∈ {0, 1/2, 1} or q ∈ {0, 1/2, 1}.

Taking the logical combination of these conditions we
conclude that f (p, q) = 0 iff p ∈ {0, 1/2, 1} or
q ∈ {0, 1/2, 1}. �

Lemma 5: We have

Cov1 = E f (A) = E f (B). (21)

Proof: Fix a sample y = (y1, y2). Note that

CovX|y(hout,1, hout,2) = CovX|y(h(U1|y), h(U2|U1, y))

= EX|y
{[

h(U1|y)− H (U1|y)
]

× h(U2|U1, y)
}

=
∑

u1

pU1|Y(u1|y)
[
h(u1|y)− H (U1|y)

]
H (U2|u1, y).

After some algebra, the term
[
h(u1|y)− H (U1|y)

]
simplifies

to

(1 − pU1|Y(u1|y)) log
1 − pU1|Y(u1|y)

pU1|Y(u1|y) .

Substituting this in the preceding equation and writing out the
sum over U1 explicitly, we obtain

CovX|y(hout,1, hout,2) = pU1|Y(0|y)pU1|Y(1|y)
· log

pU1|Y(0|y)
pU1|Y(1|y)

[
H (U2|U1 = 1, y)− H (U2|U1 = 0, y)

]
.

Expressing each factor on the right side of the above equation
in terms of ai = α(yi ), i = 1, 2, we see that it equals
f (a1, a2). Taking expectations, we obtain Cov1 = E f (A).
The alternative formula Cov1 = E f (B) follows from the fact
that f (B) = f (A) due to the symmetries (17). �

Proposition 5 now follows readily. We have Cov1 ≥ 0 since
f (a1, a2) ≥ 0 for all a1, a2 ∈ [0, 1] by Lemma 4. By the
same lemma, strict positivity, E f (A) > 0, is possible iff
the events A1 /∈ {0, 1/2, 1} and A2 /∈ {0, 1/2, 1} can occur
simultaneously with non-zero probability, i.e., iff

P

(
A1 /∈ {0, 1

2
, 1}

)
P

(
A2 /∈ {0, 1

2
, 1}

)
> 0, (22)

since A1 and A2 are independent. Condition (22) is true iff

P

(
B1 /∈ {0, 1

2
}
)

P

(
B2 /∈ {0, 1

2
}
)
> 0, (23)

which in turn is true iff neither B1 nor B2 is erasing. This
completes the proof of Proposition 5.

C. Proof of Proposition 6

Let g1(p, q)
�= H(p ∗ q) and g2(p, q)

�= H(p) + H(q)−
H(p∗q) for p, q ∈ [0, 1]. These functions will be used to give
an explicit expression for Cov2. First, we note some symmetry
properties of the two functions. For i = 1, 2, we have

gi (p, q) = gi (p, q) = gi(p, q) = gi(p, q), (24)

gi (p, q) = gi (q, p). (25)

We omit the proofs since they are immediate.
Lemma 6: We have, for i = 1, 2,

EX|Yhout,i = gi (A) = gi(B). (26)
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Proof: These results follow from (6), (9), and (10).
We compute EX|Yhout,1 as follows.

EX|Yhout,1 = EU|Ahout,1 = H(A1 ∗ A2) = g1(A).

For the second term, we use the entropy conservation (5).

EX|Yhout,2 = EX|Yhin,1 + EX|Yhin,2 − EX|Yhout,1

= H(A1)+ H(A2)− H(A1 ∗ A2) = g2(A).

The second form of the formulas in terms of B follow from
the symmetry properties (24). �

As a corollary to Lemma 6, we now have

Cov2 = Cov[g1(B), g2(B)]. (27)

In order to prove that Cov2 ≥ 0, we will apply Lemma 3
to (27). First, we need to establish some monotonicity
properties of the functions g1 and g2. We insert here a general
definition.

Definition 1: A function g : R
n → R is called

nondecreasing if, for all x, y ∈ R
n, g(x) ≤ g(y) whenever

xi ≤ yi for all i = 1, . . . , n.
Lemma 7: g1 : [0, 1/2]2 → R

+ is nondecreasing.
Proof: Since g1(b1, b2) = g1(b2, b1), it suffices to show

that g1(b1, b2) is nondecreasing in b1 ∈ [0, 1/2] for fixed
b2 ∈ [0, 1/2]. So, fix b2 ∈ [0, 1/2] and consider g1(b1, b2)
as a function of b1 ∈ [0, 1/2]. Recall the well-known facts
that the function H(p) over p ∈ [0, 1] is a strictly concave
non-negative function, symmetric around p = 1/2, attaining
its minimum value of 0 at p ∈ {0, 1}, and its maximum value
of 1 at p = 1/2. It is readily verified that, for any fixed
b2 ∈ [0, 1/2], as b1 ranges from 0 to 1/2, b1 ∗ b2 decreases
from b2 to 1/2, hence g1(b1, b2) = H(b1 ∗b2) increases from
H(b2) to H(1/2) = 1, with strict monotonicity if b2 �= 1/2.
This completes the proof. �

Lemma 8: g2 : [0, 1/2]2 → R
+ is nondecreasing.

Proof: Again, since g2(b1, b2) = g2(b2, b1), it suffices
to show that g2(b1, b2) is nondecreasing in b1 ∈ [0, 1/2] for
fixed b2 ∈ [0, 1/2]. Recall that g2(b1, b2) = H(b1)+H(b2)−
H(b1 ∗b2). Exclude the constant term H(b2) and focus on the
behavior of I (b1)

�= H(b1 ∗ b2) − H(b1) over b1 ∈ [0, 1/2].
Observe that I (b1) is the mutual information between the input
and output terminals of a BSC with crossover probability b1
and a Bernoulli-b2 input. The mutual information between the
input and output of a discrete memoryless channel is a convex
function of the set of channel transition probabilities for any
fixed input probability assignment [9, p. 90]. So, I (b1) is
convex in b1 ∈ [0, 1/2]. Since I (0) = H(b2) and I (1/2) = 0,
it follows from the convexity property that I (b1) is decreasing
in b1 ∈ [0, 1/2], and strictly decreasing if b2 �= 0. This
completes the proof. �

Proposition 6 can now be proved as follows. First, we apply
Lemma 2 to (27) to decompose Cov2 as

Cov(g1(B), g2(B)) = EB1 CovB2(g1(B), g2(B))

+ CovB1(EB2 g1(B),EB2 g2(B)).

Each covariance term on the right side is positive by
Chebyshev’s correlation inequality (Lemma 3) and the fact

that g1 and g2 are nondecreasing in the sense of Def. 1. More
specifically, Chebyshev’s inequality implies that

CovB2(g1(b1, B2), g2(b1, B2)) ≥ 0

for any fixed b1 ∈ [0, 1/2] since g1(b1, b2) and g2(b1, b2)
are nondecreasing functions of b2 when b1 is fixed. Likewise,
Chebyshev’s inequality implies that

CovB1(EB2 g1(B),EB2 g2(B)) ≥ 0

since EB2 g1(b1, B2) and EB2 g2(b1, B2) are, as a simple
consequence of Lemma 8, nondecreasing functions of b1.

D. Proof of Theorem 1′

The covariance inequality (4) is an immediate consequence
of (15) and Propositions 5 and 6. We only need to identify
the necessary and sufficient conditions for the covariance to
be zero. For brevity, let us define

T
�= “B1 or B2 is extreme”.

The present goal is to prove that

Cov(hout,1, hout,2) = 0 iff T holds. (28)

The proof will make us of the decomposition

Cov(hout,1, hout,2) = Cov1 + Cov2

= E f (B)+ Cov(g1(B), g2(B)) (29)

that we have already established. Let us define

R
�= “B1 or B2 is erasing”

and note that R appears in Proposition 5 as the necessary
and sufficient conditions for Cov1 to be zero. Note also that
T implies R since “extreme” is a special instance “erasing”
according to definitions in Table I.

We begin the proof of (28) with the sufficiency part. in
other words, by assuming that T holds. Since T implies R,
T is sufficient for Cov1 = 0. To show that T is sufficient
for Cov2 = 0, we recall Proposition 4, which states that,
if T is true, then either Bout,1 or Bout,2 is extreme. To be
more specific, if Bin,1 or Bin,2 is p.r., then Bout,1 ≡ 1/2 and
g1(B) ≡ 1; if Bin,1 or Bin,2 is perfect, then Bout,2 ≡ 0
and g2(B) ≡ 0. (The notation “≡” should be read as
“equals with probability one”.) In either case, Cov2 =
Cov(g1(B), g2(B)) = 0. This completes the proof of the
sufficiency part.

To prove necessity in (28), we write T as

T = R ∧ (Rc ∨ T ) (30)

where Rc denotes the complement (negation) of R. The
validity of (30) follows from R ∧ T = T . To prove
necessity, we will use contraposition and show that T c implies
Cov(hout,1, hout,2) > 0. Note that T c = Rc ∨ (R ∧ T c). If T c

is true, then either Rc or (R ∧ T c) is true. If Rc is true, then
Cov1 > 0 by Proposition 5. We will complete the proof by
showing that R ∧ T c implies Cov(hout,1, hout,2) > 0. For this,
we note that when one of the BDEs is erasing, there is an
explicit formula for Cov2. We state this result as follows.
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Lemma 9: Let B1 be erasing with erasure probability

ε
�= P(B1 = 1/2) and let B2 be arbitrary with δ

�= H (X2|Y2).
Then,

Cov2 = ε(1 − ε)δ(1 − δ) (31)

This formula remains valid if B2 is erasing with erasure

probability ε
�= P(B2 = 1/2) and B1 is arbitrary with

δ
�= H (X1|Y1).

Proof: We first observe that

g1(B1, B2) =
{
H(B2), B1 = 0;
1, B1 = 1

2 ;

g2(B1, B2) =
{

0, B1 = 0;
H(B2), B1 = 1

2 .

Now, the claim (31) is obtained by simply computing the
covariance of these two random variables. The second claim
follows by the symmetry property (25). �

Returning to the proof of Theorem 1′, the proof of the
necessity part is now completed as follows. If R ∧ T c holds,
then at least one of the BDEs is strictly erasing (has erasure
probability 0 < ε < 1) and the other is non-extreme.
By Proposition 1, the conditional entropy H (X |Y ) of a
non-extreme BDE (X,Y ) is strictly between 0 and 1. So, by
Lemma 9, we have Cov2 > 0. This completes the proof.

V. VARENTROPY UNDER HIGHER-ORDER TRANSFORMS

In this part, we consider the behavior of varentropy under
higher-order polar transforms. The section concludes with
a proof of the polarization theorem using properties of
varentropy.

A. Polar Transform of Higher Orders

For any n ≥ 1, there is a polar transform of order N = 2n .
A polar transform of order N = 2n is a mapping ψN that
takes N BDEs {(Xi ,Yi )}N

i=1, as input, and produces a new set
of N BDEs {(Ui ; Ui−1,Y)}N

i=1, where Y = (Y1, . . . ,YN ) and
Ui−1 = (U1, . . . ,Ui−1) is a subvector of U = (U1, . . . ,UN ),
which in turn is obtained from X = (X1, . . . , X N ) by the
transform

U = XGN , GN
�= F⊗n, F �=

[
1 0
1 1

]
. (32)

The sign “⊗n” in the exponent denotes the nth Kronecker
power. We allow Yi to take values in some arbitrary set Yi ,
1 ≤ i ≤ N , which is not necessarily discrete. We assume
that (Xi ,Yi ), 1 ≤ i ≤ N , are independent but not necessarily
identically-distributed.

(An alternate form of the polar transform matrix, as used
in [4], is GN = BN F⊗n , in which BN is a permutation matrix
known as bit-reversal. The form of GN that we are using here
is less complex and adequate for the purposes of this paper.
However, if desired, the results given below can be proved
under bit-reversal (or, any other permutation) after suitable
re-indexing of variables.)

B. Polarization Results

The first result in this section is a generalization of
Theorem 1 to higher order polar transforms.

Theorem 2: Let N = 2n for some n ≥ 1. Let (Xi ,Yi ),
1 ≤ i ≤ N, be independent but not necessarily identically
distributed BDEs. Consider the polar transform U = XGN

and let (Ui ; Ui−1,Y), 1 ≤ i ≤ N, be the BDEs at the output
of the polar transform. The varentropy is nonincreasing under
any such polar transform in the sense that

N∑

i=1

V (Ui |Ui−1,Y) ≤
N∑

i=1

V (Xi |Yi ). (33)

The next result considers the special case in which the BDEs
at the input of the polar transform are i.i.d. and the transform
size goes to infinity.

Theorem 3: Let (Xi ,Yi ), 1 ≤ i ≤ N, be i.i.d. copies of a
given BDE (X,Y ). Consider the polar transform U = XGN

and let (Ui ; Ui−1,Y), 1 ≤ i ≤ N, be the BDEs at the output
of the polar transform. Then, the average varentropy at the
output goes to zero asymptotically:

1

N

N∑

i=1

V (Ui |Ui−1,Y) → 0, as N → ∞. (34)

C. Proof of Theorem 2

We will first bring out the recursive nature of the polar
transform by giving a more abstract formulation in terms of
the α-parameters of the variables involved. Let us recall that
a polar transform of order two is essentially a mapping of the
form

(Ain,1, Ain,2) → (Aout,1, Aout,2), (35)

where Ain,1 and Ain,2 are the α-parameters of the input
BDEs (X1,Y1) and (X2,Y2), and Aout,1 and Aout,2 are the
α-parameters of the output BDEs (U1,Y) and (U2; U1,Y).

Alternatively, the polar transform may be viewed as
an operation in the space of CDFs of α-parameters and
represented in the form

(Fout,1, Fout,2) = ψ2(Fin,1, Fin,2) (36)

where Fin,i and Fout,i are the CDFs of Ain,i and Aout,i ,
respectively.

Let M be the space of all CDFs belonging to random
variables defined on the interval [0, 1]. The CDF of any
α-parameter A belongs to M, and conversely, each CDF
F ∈ M defines a valid α-parameter A. Thus, we may regard
the polar transform of order two (36) as an operator of the
form

ψ2 : M2 → M2. (37)

We will define higher order polar transforms following this
viewpoint.

For each i = 1, . . . , N , let Ain,i denote the α-parameter
of the i th BDE (Xi ,Yi ) at the input, and let Fin,i denote the
CDF of Ain,i . Likewise, let Aout,i denote the α-parameter of
the i th BDE (Ui ; Ui−1,Y) at the output, and let Fout,i be
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the CDF of Aout,i . Let Fin = (Fin,1, . . . , Fin,N ) and Fout =
(Fout,1, . . . , Fout,N ). We will represent a polar transform of
order N abstractly as Fout = ψN (Fin).

There is a recursive formula that defines the polar transform
of order N in terms of the polar transform of order N/2. Let
us split the output Fout into two halves as Fout = (F′

out,F′′
out).

Each half is obtained by a size-N/2 transform of the form

F′
out = ψN/2(F′

in), F′′
out = ψN/2(F′′

in),

in which F′
in = (F ′

in,1, . . . , F ′
in,N/2), F′′

in = (F ′′
in,1, . . . , F ′′

in,N/2)
are obtained from Fin through a series of size-2 transforms

(F ′
in,i , F ′′

in,i ) = ψ2(Fin,i , Fin,i+N/2), 1 ≤ i ≤ N/2. (38)

The derivation of the above recursion from the algebraic
definition (32) is standard knowledge in polar coding, and will
be omitted.

Let us write V (F) to denote the varentropy V (X |Y ) of a
BDE (X,Y ) whose α-parameter has CDF F . Using (8), we
can write V (F) as

V (F) =
∫ 1

0
H2(a) dF(a)−

(∫ 1

0
H(a) dF(a)

)2

. (39)

We are now ready to prove Theorem 2. The proof will be by
induction. First note that the claim (33) is true for N = 2 by
Theorem 1. Let N ≥ 4 and suppose, as induction hypothesis,
that the claim is true for transforms of orders N/2 and smaller.
We will show that the claim is true for order N . By the
induction hypothesis, we have

N/2∑

i=1

V (F ′
out,i ) ≤

N/2∑

i=1

V (F ′
in,i ) (40)

and

N/2∑

i=1

V (F ′′
out,i ) ≤

N/2∑

i=1

V (F ′′
in,i ). (41)

Summing (40) and (41) side by side,

N∑

i=1

V (Fout,i ) ≤
N/2∑

i=1

[
V (F ′

in,i )+ V (F ′′
in,i )

]
(42)

Using the induction hypothesis again, we obtain

V (F ′
in,i )+ V (F ′′

in,i ) ≤ V (Fin,i )+ V (Fin,i+N/2) (43)

for all i = 1, . . . , N/2. The proof if completed by using (43)
to upper-bound the right side of (42) further.

D. Proof of Theorem 3

In this proof we will consider a sequence of polar transforms
indexed by n ≥ 1. For a given n, the size of the transform is
N = 2n; the inputs of the transform are (Xi ,Yi ), 1 ≤ i ≤ N ,
which are i.i.d. copies of a given BDE (X,Y ); the outputs of
the transform, which we will refer to as “the nth generation
BDEs”, are (Ui ; Ui−1,Y), 1 ≤ i ≤ N . Let F0 denote the
CDF of (X,Y ). Let Fn,i denote the CDF of (Ui ; Ui−1,Y),
the i th BDE in the nth generation, n ≥ 1, 1 ≤ i ≤ 2n , and

set F0,1 = F0. In this notation, we can express the normalized
varentropy compactly as

V n
�= 1

2n

2n∑

i=1

V (Ui |Ui−1,Y) = 1

2n

2n∑

i=1

V (Fn,i ), n ≥ 1,

and V 0
�= V (F0). The sequence {V n} is non-negative (since

each V n is a sum of varentropies), and nonincreasing by
Theorem 2. Thus {V n} converges to a limit c ≥ 0. Our goal
is to prove that c = 0.

The analysis in the proof of Theorem 2 covers the present
case as a special instance. In the present notation, the recursive
relation (38) takes the form

(Fn,i , Fn,i+2n−1 ) = ψ2(Fn−1,i , Fn−1,i ), 1 ≤ i ≤ 2n−1,

since here we have Fn−1,i = Fn−1,i+2n−1 due to i.i.d. BDEs
at the transform input. Using this relation, we obtain readily
an explicit formula for the incremental change in normalized
varentropy from generation n to (n + 1), namely,

Dn+1
�= V n+1 − V n = −

2n
∑

i=1

C(Fn,i ), n ≥ 0, (44)

where

C(Fn,i )
�= V (Fn,i )− [

V (Fn+1,i )+ V (Fn+1,i+2n )
]
/2. (45)

If we denote the conditional entropy random variables in the
polar transform as {hn,i }, it can be seen that

C(Fn,i ) = Cov(hn+1,i , hn+1,i+2n ).

Thus, we have C(Fn,i ) ≥ 0 by Theorem 1′, implying that
Dn ≤ 0 for all n ≥ 1. It is useful to note here that

c
�= lim

n→∞ V n = V (F0)−
∞∑

i=1

Dn, (46)

showing explicitly that c is the limit of a monotone
nonincreasing sequence of sums.

For δ ≥ 0, let

Mδ
�= {F ∈ M : V (F) ≥ δ}. (47)

and

�(δ)
�= inf{C(F) : F ∈ Mδ}. (48)

As we will see in a moment, the main technical problem that
remains is to show that

δ > 0 �⇒ �(δ) > 0. (49)

While this proposition seems plausible in view of the fact
that C(F) = 0 iff V (F) = 0 (by Theorem 1′), there is the
technical question of whether the “inf” in (48) is achieved as
a “min” by some F ∈ Mδ. We will first complete the proof
of Theorem 3 by assuming that (49) holds. Then, we will give
a proof of (49) in the Appendix.

Let Jn(δ)
�= {1 ≤ i ≤ 2n : Fn,i ∈ Mδ}, and Pn(δ)

�=
|Jn(δ)|/2n . For δ > 0, we may think of Jn(δ) as the set of
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“bad” BDEs in the nth generation and Pn(δ) as their fraction
in the same population. From (44), we obtain the bound

Dn ≤ −Pn(δ)�(δ), δ ≥ 0. (50)

To apply this bound effectively, we need a lower bound on
Pn(δ). To derive such a lower bound, we observe that, for any
δ ≥ 0,

V n ≤ [1 − Pn(δ)]δ + Pn(δ)M ≤ δ + Pn(δ)M (51)

where M
�= 2.3434 is the bound on varentropy provided by

Lemma 1. Let n0 be such that for all n ≥ n0, V n ≥ c/2.
Since {V n} converges to c ≥ 0, n0 exists and is finite.
This, combined with (51), implies the following bound on the
fraction of bad indices.

Pn(δ) ≥ V n − δ

M
≥ c/2 − δ

M
, n ≥ n0. (52)

Using (52) in (50) with δ = c/4 gives

Dn ≤ −(c/4M) ·�(c/4), n ≥ n0. (53)

From (46), we see that having c > 0 is incompatible with (53).
This completes the proof that c = 0 (subject to the assumption
that (49) holds, which is proved in the Appendix).

VI. CONCLUDING REMARKS

One of the implications of the convergence of average
varentropy to zero is that the entropy random variables
“concentrate” around their means along almost all trajectories
of the polar transform. This concentration phenomenon
provides a theoretical basis for understanding why polar
decoders are robust against quantization of likelihoood
ratios [10].

Theorem 3 may be seen as an alternative version of the
“polarization” results of [4]. In [4], the analysis was centered
around the mutual information function and martingale
methods were used to establish asymptotic results. The present
study is centered around the varentropy and uses weak
convegence of probability distributions. The use of weak
convergence in such problems is not new; Richardson and
Urbanke [6, pp. 187 and 188] used similar methods to deal
with problems of convergence of functionals defined on the
space of binary memoryless channels.

We should mention that Alsan and Telatar [11] have given
an elementary proof of polarization that avoids martingale
theory, and instead, uses Mrs. Gerber’s lemma [12]. It appears
possible to adopt the method of [11] to establish Theorem 3
without using weak convergence.

APPENDIX

PROOF OF (49)

Lemma 10: The space M of CDFs on [0, 1] is a compact
metric space.

Proof: This follows from a general result about probability
measures on compact metric spaces. [14, p. 45, Th. 6.4] states
that, for any compact metric space X , the space M(X) of all
probability measures defined on the σ -algebra of Borel sets in

X is compact. Our definition of M above coincides with the
M(X) with X = [0, 1]. �

For F ∈ M, let F− and F+ be defined by (see (37))

(F−, F+) = ψ2(F, F).

Define C : M → R as the mapping

C(F)
�= V (F)− [

V (F−)+ V (F+)
]
/2. (54)

This definition is a repetition of (45) in a more convenient
notation. We have already seen the interpretation of C(F) as
a covariance and mentioned that C(F) ≥ 0. It is also clear that
C(F) is bounded: C(F) ≤ V (F) ≤ M , where M = 2.3434.
Thus, we may restrict the range of C and write it as a mapping
C : M → [0,M].

Lemma 11: The mapping C : M → [0,M] is continuous
(w.r.t. the weak topology on M and the usual topology of
Borel sets in R).

Proof: We wish to show that if Fn ⇒ F0 (in the sense of
weak-convergence), then |C(Fn) − C(F0)| → 0. We observe
from (39) that V (F) is given in terms of expectations of two
bounded uniformly continuous functions, H : [0, 1] → [0, 1]
and H2 : [0, 1] → [0,M]. Thus, by definition of weak
convergence ([14, p. 40]), we have |V (Fn) − V (F0)| → 0.
In view of (54), the proof will be complete if we can show
that (Fn ⇒ F0) implies (F−

n ⇒ F−
0 ) and (F+

n ⇒ F+
0 ), where

F−
n

�= (Fn)
−, etc. By the “portmanteau” theorem (see, e.g.,

Theorem 6.1 in [14, p. 40]), it is sufficient to show that for
every open set G ⊂ [0, 1],

lim inf
n

∫

G
dF−

n (a) ≥
∫

G
dF−

0 (a), (55)

lim inf
n

∫

G
dF+

n (a) ≥
∫

G
dF+

0 (a). (56)

To prove (55), let f1 : [0, 1]2 → [0, 1] be such that
f1(a1, a2) = a1 ∗ a2. Then, we can write

P−
n (G)

�=
∫

G
dF−

n (a) =
∫∫

f −1
1 (G)

dFn(a1) dFn(a2),

which follows from the density evolution equation

F−
n (a) = ∫∫

a1∗a2≤a
dFn(a1) dFn(a2)

that was proved as part of Proposition 3. We note that (i) the
pre-image f1(G) ⊂ [0, 1]2 is an open set since the function f
is a continuous and (ii) the product measure Fn ×Fn converges
weakly to F0 × F0 [15, p. 21, Th. 3.2]; so, again by the
portmanteau theorem,

lim inf
n

∫∫

f −1
1 (G)

dFn(a1) dFn(a2) ≥
∫∫

f −1
1 (G)

dF0(a1) dF0(a2).

Since ∫∫

f −1
1 (G)

dF0(a1) dF0(a2) =
∫

G
dF−

0 (a),

the proof is complete.
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The second condition (56) can be proved in a similar
manner. We will sketch the steps of the proof but leave out the
details. The relevant form of the density evolution equation is
now

F+
n (a) =

∫∫

(a1a2/a1∗a2)≤a

(a1 ∗ a2) dFn(a1) dFn(a2)

+
∫∫

(a1a2/a1∗a2)≤a

(a1 ∗ a2) dFn(a1) dFn(a2).

We define f21(a1, a2) = a1a2/a1 ∗ a2 and f22(a1, a2) =
a1a2/a1 ∗ a2, and write

P+
n (G)

�=
∫

G
dF+

n (a) =
∫∫

f −1
21 (G)

(a1 ∗ a2) dFn(a1) dFn(a2)

+
∫∫

f −1
22 (G)

(a1 ∗ a2) dFn(a1) dFn(a2).

Next, we note that, by a general result on the preservation of
weak convergence [15, Th. 5.1],

(a1 ∗ a2) dFn(a1) dFn(a2) ⇒ (a1 ∗ a2) dF0(a1) dF0(a2),

(a1 ∗ a2) dFn(a1) dFn(a2) ⇒ (a1 ∗ a2) dF0(a1) dF0(a2).

(The important point here is that the functions (a1 ∗ a2) and
(a1 ∗ a2) are uniformly continuous and bounded over the
domain (a1, a2) ∈ [0, 1]2. The claimed convergences follow
readily from the definition of weak convergence.) The proof
is completed by writing

lim inf
n

P+
n (G) ≥

∫∫

f −1
21 (G)

(a1 ∗ a2) dF0(a1) dF0(a2)

+
∫∫

f −1
22 (G)

(a1 ∗ a2) dF0(a1) dF0(a2)

=
∫

G
dF+

0 (a).

�
Lemma 12: For δ > 0, �(δ) > 0.

Proof: Fix δ > 0. The set Mδ can be written as the
pre-image of a closed set under a continuous function: Mδ =
C−1([δ,M]). Hence, by a general result about continuity
([16, p. 86, Th. 4.8]), Mδ is closed; and, being a subset of
the compact set [0, 1], it is compact ([16, p. 37, Th. 2.35]).
Since C is continuous and Mδ is compact, the “inf” in
(48) is achieved by some F0 ∈ Mδ ([16, p. 89, Th. 4.16]):
�(δ) = C(F0). Since V (F0) ≥ δ > 0, F0 is not extreme, so
by Theorem 1′, C(F0) > 0 . �
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