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Abstract We propose a new family of vector similarity
measures. Each measure is associated with a convex cost
function. Given two vectors, we determine the surface nor-
mals of the convex function at the vectors. The angle between
the two surface normals is the similarity measure. Convex
cost function can be the negative entropy function, total varia-
tion (TV) function and filtered variation function constructed
from wavelets. The convex cost functions need not to be dif-
ferentiable everywhere. In general, we need to compute the
gradient of the cost function to compute the surface normals.
If the gradient does not exist at a given vector, it is possible
to use the sub-gradients and the normal producing the small-
est angle between the two vectors is used to compute the
similarity measure. The proposed measures are compared
experimentally to other nonlinear similarity measures and
the ordinary cosine similarity measure. The TV-based vec-
tor product is more energy efficient than the ordinary inner
product because it does not require any multiplications.
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1 Introduction

Inner product of twovectors is used inmanybig data analysis,
machine learning and signal processing algorithms [1,2] . In
this article, we define new “vector products” and construct
cosine similarity measures using the new vector products.
Some of the vector products that we introduce in this article
do not require any multiplications. As a result, they lead to
energy efficient cosine similarity measures because multipli-
cation requires more energy than addition and subtraction.

It is well known that the cosine similarity between two
vectors x1 and x2 is computed using the inner product of the
two vectors divided by the �2-norms of the vectors:

cos(x1, x2) = 〈x1, x2〉
‖x1‖‖x2‖ , (1)

Wewant to determine the similarity of two vectors accord-
ing to an associated convex cost function f . InFig. 1, themain
idea behind the new cost measure is graphically described.
Given a convex cost function f , tangent lines and the surface
normals e1 and e2 at (x1, f (x1)) and (x2, f (x2)) are deter-
mined, respectively, and the proposed similarity measure is
defined as the cosine similarity between the surface normals
(or surface tangents) of the two vectors x1 and x2 on the
convex cost function f as follows:

C(x1, x2) = 〈e1, e2〉, (2)

where e1 and e2 are the unit surface normal vectors of the
convex cost function f at x1, and x2, respectively. We call
the cosine measure C(x1, x2), Bregman angle between x1,
and x2.

This newmeasure is inspired by the well-known Bregman
divergence [3–6], which is based on the surface tangent of
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Fig. 1 Angle between e1 and e2 is the similarity value between the two
vectors x1 and x2

a given cost function f . The Bregman divergence D(x1, x2)
between the two vectors x1 and x2 is the “vertical” distance
between the cost function f and the tangent line at x2 eval-
uated at the vector x1:

D(x1, x2) = f (x1) − f (x2) − ∇ f (x2)T (x1 − x2) (3)

For example, when f (x) = ‖x‖2, then the Bregman diver-
gence reduces to Euclidean or the square distance between
the two vectors, i.e., D(x1, x2) = ‖x1 − x2‖2. Similarly,
when the cost function f is the Euclidean distance, the new
cosine measure is the same as the ordinary cosine similarity
measure defined in Eq. (1).

Our main motivation is to introduce a new family of sim-
ilarity functions to be used in various applications where the
inner product of two vectors is desired.We provide a compar-
ative experimental analysis of the proposed similarity mea-
sures to determine their performance of different datasets.

The paper is organized as follows. In Sect. 2, we describe
the Bregman angle-based cosine similarity measures. It is
possible to select the cost function as the well-known total
variation (TV) function. In this case, the resulting TV-based
cosine similarity measure can be implemented without per-
forming any multiplications. In Sect. 3, we describe �1-norm
based “cosine-like” similarity measures. The vector product
operations of the �2-norm based measures can be also com-
puted without performing any multiplications. As a result,
computationally efficient similarity measures are realized.
In Sect. 4, experimental results are presented.

2 Bregman angle similarity measure

Given a convex function f (x), the unit surface normal is
defined as follows:

e = [∇ f (x), − 1]
||[∇ f (x), − 1]|| (4)

InSect. 2.1,weuse the surface normals of the convex function
to construct vector similarity measures for various convex
functions such as the negative entropy and theTV function. In
Sect. 2.2, we use the surface gradients of the convex function
to construct vector similarity measures in a similar manner.
These measures are obviously related to each other.

2.1 Similarity measure based on surface normals

The general form of the proposed similarity measure based
on surface normals is defined as follows:

C(x1, x2)

= 〈∇ f (x1),∇ f (x2)〉 + 1√〈∇ f (x1),∇ f (x1)〉 + 1
√〈∇ f (x2),∇ f (x2)〉 + 1

(5)

When the cost function is thewell-knownnegative entropy
function f (x) = ∑

i x(i) log(x(i)), the surface normals are
given by:

Ei =
[
∂ f (xi )
∂xi (1)

, . . . ,
∂ f (xi )
∂xi (N )

,−1

]

= [
log(xi (1)) + 1, . . . ,−1

]
, i = 1, 2

(6)

and unit normals are:

ei = Ei

||Ei || , i = 1, 2 (7)

The cosine similarity based on the negative entropy func-
tion between the vectors is then defined as follows:

C(x1, x2)

=
∑

i (log(x1(i))+1)(log(x2(i))+1)+1
√∑

i (log(x1(i))+1)2+1
√∑

i (log(x2(i)) + 1)2 + 1

(8)

Since the entropy function is only defined for positive
values, we can use the modified entropy function introduced
in [7] to account for negative values:

f (x) =
∑

i

(

|x(i)| + 1

e

)

log

(

|x(i)| + 1

e

)

+ 1

e
(9)

In this case, the Bregman angle measure can be obtained
from the following surface normals:

Ei =
[

sign(xi (1))
(

log

(

|xi (1)| + 1

e

)

+ 1

)

, . . . ,−1

]

(10)

for i = 1 and 2.
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Entropy function-based cost functions require the com-
putation of logarithms. Therefore, they are computationally
more expensive than the ordinary cosine similarity measure.

A well-known convex cost function is the total variation
(TV) function [8]:

TV(x) =
∑

i

|xi+1 − xi | (11)

The surface normal vector SN(TV(x)) of the TV function is
given by:

SN(TV(x)) =
[
∂TV(x)

∂x1
,
∂TV(x)

∂x2
, . . . ,

∂TV(x)
∂xN

,−1

]

= [(sign(x2 − x1)), (sign(x2 − x1) − sign(x3 − x2)), . . . ,

(sign(xN − xN−1)),−1], (12)

where sign(·) is the signum function.We can easily construct
a vector similarity measure from the above vector. It turns
out that we get the best experimental results using the TV
function.

Similarly, for f (x) = ‖x‖2 the distance functionbecomes:

C(x1, x2) =
∑

i 4x1(i)x2(i) + 1
√∑

i 4x1(i)
2 + 1

√∑
i 4x2(i)

2 + 1
(13)

When we remove the last entry from the surface normals,
the Bregman cosine similarity becomes the ordinary cosine
similarity.

Figures 2 and 3 present two examples to compare the pro-
posed similarity measures for two extreme cases of sample
distributions. When the samples are defined over a circle, the
Euclidean distance is the same for all samples, but cosine
similarity and Bregman angle can distinguish between sam-
ples at different angles according to the center sample. When
the samples are defined on a line, the ordinary cosine sim-
ilarity cannot separate the samples, but proposed Bregman
angle measures produce different results.

2.2 Similarity measures based on surface gradients

When surface gradients are used instead of surface normals,
the similarity measure reduces to:

Ct (x1, x2) = 〈∇ f (x1),∇ f (x2)〉√〈∇ f (x1),∇ f (x1)〉√〈∇ f (x2),∇ f (x2)〉
(14)

Bregman distance uses surface gradients of the convex
cost function. Therefore, we can also use the surface gradi-
ents to define another cosine similarity measure. Given two
vectors x1 and x2, we compute the gradient vectors t1 and t2

Fig. 2 Distance similaritymeasures for concentric distribution of sam-
ples. a Distribution of samples. b Distance/similarity measures

of the cost function f at x1 and x2 and the angle between t1
and t2 is the cosine similarity measure.

For the negative entropy function, the vector similarity
measure becomes:

Ct (x1, x2)

=
∑

i (log(x1(i)) + 1)(log(x2(i)) + 1)
√∑

i (log(x1(i)))2 + 1
√∑

i (log(x2(i))2 + 1)

(15)

This is similar to the Eq. (8), but the dimension of the inner
product is smaller than Eq. (8).

When the cost function is the Euclidean distance func-
tion, Ct becomes the same as the ordinary cosine similarity
measure between the two vectors.
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Fig. 3 Distance similarity measures for linear distribution of samples.
a Distribution of samples. b Distance/similarity measures

3 Multiplication-free cosine similarity measures1

Another well-known convex cost function is the �1 norm
function f (x) = ||x||1. Its gradient leads to a widely used
correlation measure based on the sign information of input
vectors:

SG(x) = [sign(x1), sign(x2), . . . , sign(xN )]T (16)

In this case, the cosine similarity function is normalized by
the �2 norms of the above gradient vectors:

1 This work is partially presented in [9].

c0(x, y) �
∑N

i=1(SG(x))i × (SG(y))i
‖SG(x)‖2 × ‖SG(y)‖2 (17)

This similarity vector is too simple for many applications.
We recently introduced a related family ofmultiplication-free
vector products [10–14] . It is based on an additive operator
whose sign is the same as the multiplication. Let a and b be
two real numbers. The new operator � is defined as follows:

a � b = sign(a × b) · (|a| + |b|), (18)

where

sign(a × b) =

⎧
⎪⎨

⎪⎩

1, if a · b > 0,

0, if a · b = 0,

−1, if a · b < 0.

(19)

The operator� is basically a summation operation.However,
the sign of the result of a�b is the same as a×b. Therefore,
the � operator behaves like the multiplication operation.

We define a new “vector product” of two N-dimensional
vectors x1 and x2 based on � in RN as follows:

< x1 � x2 >=
N∑

i=1

x1(i) � x2(i), (20)

where x1(i) and x2(i) are the i-th elements of the vectors x1
and x2, respectively. Notice that the vector product of a vector
x with itself reduces to a scaled l1 norm of x as follows:

< x � x >=
N∑

i=1

x(i) � x(i) = 2
N∑

i=1

|x(i)| = 2||x||1.

(21)

Based on the new vector product, we define several vec-
tor similarity measures between the two vectors x and y as
follows:

c1(x, y) � < x � y >

‖x‖1 + ‖y‖1 , (22)

where ‖x‖1 and ‖y‖1 are the �1 norms of vectors x and y,
respectively. Similar to the ordinary cosine similarity mea-
sure, the numerator contains the vector product of the two
vectors and the vector product is normalized by the sum of
the �1 norms of the two vectors x and y. When x = y, c1(x, y)
= 1 because < x � x > = 2‖x‖1.

It is also possible to define other related measures using
relation operators:

c2(x, y) �
∑N

i=1 sign(xi × yi ) · max(|xi |, |yi |)
(‖x‖1 + ‖y‖1)/2 , (23)
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where sign(xi × yi ) is defined as in (19) and the vectors
x = [x1, x2, . . . , xN ]T and y = [y1, y2, . . . , yN ]T , respec-
tively. A related fourth cosine similarity measure is defined
as follows:

c3(x, y) �
∑N

i=1 sign(xi × yi ) · min(|xi |, |yi |)
(‖x‖1 + ‖y‖1)/2 , (24)

where the maximum operation in (23) is replaced by the
minimum operation. The similarity measure c1 can also be
normalized in a different manner as follows:

c4(x, y) �
∑N

i=1 sign(xi × yi ) · (|xi | + |yi |)
2 · ∑N

i=1 max(|xi |, |yi |)
(25)

Clearly, when x = y, c4(x, x) = 1. Similarly, c2 and c3
can also be normalized as in c4.

In all similarity measures defined in Eqs. (22–25), the
term sign(xi × yi ) is common and provides the correlation
information between the two vectors x and y. As a result,
the computational complexity and power consumption due
to signal analysis can be decreased significantly.

Obviously, ci(x, y) = ci(y, x), i = 1, 2, 3, 4 in all
three definitions [13–16]. Also, when x=y, they all produce
the same result, i.e., c1(x, y) = c2(x, y) = c3(x, y) =
c4(x, y) = 1. Multiplication requires more power than addi-
tion and relational max or min operations. Since all four
measures can be computed without performing any multipli-
cations, they are all low-power vector similarity measures.

4 Experimental results

In the first experiment, we compare the performance of the
Bregman angle measure with cosine similarity measure on a
gesture phase segmentation dataset. The gesture phase seg-
mentation dataset [17] was made available by UC Irvine
Machine Learning Repository. The dataset contains features
extracted from 7 videos with people performing various ges-
tures. The dataset contains 5 classes and 1747 gesture phase
data each having 18 attributes. In this paper, simulation exam-
ples are carried out using the first two classes which contain
total of 202 instances.

First, input vectors are multiplied by 107 in order to
improve classification performance of nonlinear similarity
measures. Then, means of input vectors are subtracted from
themselves to get zero-mean input vectors. In all experi-
ments, leave-one-out strategy is followed. The size of the
test set is one, and the training set contains the remain-
ing data. The test set is circulated to cover all instances. 2
class 1-nearest neighbor classification is performed using the
new Bregman similarity measures, and the similarity mea-
sures defined in Sect. 3. Classification accuracies are given in

Table 1. The best results are obtained by TV-based measure
and c4 defined in Sect. 3.

In this dataset, the gradient-based similarity function
described in Eq. (15) produces slightly lower results than
the surface normal-based similarity measure.

In the second experiment, we used the KTH-TIPS data-
base that contains 800 images for 10 different classes of col-
ored textures [18].We use half of the images for each class as
the training set and the rest as the test set. We use 1-neighbor
k-NN classifier and eight different distance/similarity mea-
sures. To extract features from the images, we used the
dual-tree complex wavelet transform (DT-CWT) as texture
features and histograms in HSV color space as color fea-
tures. Dual-tree complex wavelet transform tree is recently
developed to overcome the shortcomings of conventional
wavelet transform, such as shift variance and poor direc-
tional selectivity [19]. To obtain wavelet features, we divide
images into four non-overlapping blocks and calculate the
energies and variances of six different sub-bands (oriented at
±15,±45,±75) for each block. The combined feature vec-
tors of all blocks are used as the texture feature of the image.
The results for this test are shown in Table 2. As shown in
Table 2, the proposed measures have similar performance to
the cosine similarity measure. The measure c0 does not pro-

Table 1 Classification accuracies (percentage) for the 2 class 1-nearest
neighbor classification with 8 different similarity measures for gesture
phase segmentation dataset

Similarity/distance measure Classification accuracy (%)

Bregman angle (negative entropy) 97.5

Bregman angle (TV) 99.0

Cosine similarity 98.0

c0 80.7

c1 84.2

c2 84.7

c3 98.5

c4 99.0

Table 2 Classification accuracies (percentage) for KTH-TIPS dataset

Similarity/distance measure Classification accuracy (%)

Cosine similarity (380/400) 95.0

Bregman angle (entropy) (379/400) 94.75

Bregman angle (l2-norm) (380/400) 95.0

Bregman angle (TV) (314/400) 78.5

c1 (369/400) 92.25

c2 (231/400) 57.75

c3 (383/400) 95.75

c4 (382/400) 95.5
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Fig. 4 Running time of proposedBregman cosine similaritymeasures,
multiplication-free cosine similarity measures and the ordinary cosine
similarity measure ofMATLAB. The horizontal axis represents the size
of the vector. Hundred similarity measurements are calculated for each
dimension

duce meaningful results in this dataset. It is not included in
Table 2. The measure c3 produces the best result.

In the third experiment, we compare running times of pro-
posed Bregman cosine similarity measures, multiplication-
free cosine similarity measures presented in [9] and the
ordinary cosine similarity measure.

As seen in Fig. 4, multiplication-free cosine similarity
measures are faster than the ordinary cosine similarity mea-
sure. This is because they are normalized by the �-1 norms
of the vectors. Run-times of Bregman angle measures are
comparable to the ordinary cosine similarity measure.

In the fourth experiment, we present classification per-
formance of multiplication-free cosine similarity measures,
TV-based Bregman similarity measure and the ordinary
cosine similarity measure in a song lyrics dataset (Table 3).

TF-IDF is a computationally efficient method to compute
similarity of two text documents [20]. The TF-IDF matrix
is computed as in [20]. Ordinary TF-IDF methods use the
cosine similaritymeasure to compare TF-IDF vectors of doc-
uments. In this case, we compute the TF-IDF scores using
the new proposed similarity measures. We also use the new
multiplication-free similarity measures defined in Eqs. (22)–
(25) in order to further reduce the computational cost of query
retrieval.

In this example, 964 randomly chosen song lyrics are used.
The query is entered and TF-IDF vector of query is con-
structed. Then, TF-IDF values of each keyword is computed
for each song separately in order to construct 964 TF-IDF
vectors.Mean value of eachTF-IDFvector is subtracted from
itself in order to obtain zero-mean vectors. Similarity values
between TF-IDF vector of each song and the TF-IDF vector
of query is computed using 7 different similarity measures.
First ten songs with highest similarity values are presented
as query results.

The fifth experiment is also on the song lyrics dataset. In
this experiment, the fourth experiment is repeated 964 times
with different queries (Table 5). The i-th query is the title
of i-th song; therefore, the desired first place output is i-th
song (i = 1, 2, . . . , 964). If the desired song is retrieved at
the first place, it is counted as a correct retrieval. Otherwise,
it is counted as an incorrect retrieval.

As shown in Tables 3, 4 and 5, query retrieval perfor-
mance of multiplication-free cosine similarity measures are
comparable to the ordinary cosine similarity, while they are
all computationally cheaper than the ordinary cosine similar-
ity. In this dataset, the measure c1 produces the best result.
TV-based Bregman angle similarity measure also produces
comparable results to the ordinary cosine similarity. All pro-

Table 3 First ten songs with the
highest cosine similarity values
for query = “we will rock you”
using 7 different similarity
measures

Cosine c0 c1 c2 c3 c4 Bregman angle (TV)

#921 #901 #921 #921 #921 #921 #921

#144 #921 #144 #144 #144 #144 #144

#336 #144 #336 #336 #378 #844 #336

#378 #336 #378 #378 #336 #378 #277

#673 #378 #673 #673 #258 #673 #378

#258 #673 #258 #244 #673 #258 #901

#166 #166 #901 #901 #812 #901 #258

#901 #258 #661 #661 #661 #661 #661

#166 #166 #166 #612 #612 #166 #166

#612 #104 #612 #166 #166 #612 #612

The first column is the ordinary cosine similarity measure. Numbers denote song IDs. Song #921 is the
desired result “Queen—We Will Rock You”
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Table 4 First ten songs with the
highest cosine similarity values
for query = “something good
can work” using 7 different
similarity measures

Cosine c0 c1 c2 c3 c4 Bregman angle (TV)

#963 #771 #963 #963 #44 #963 #963

#44 #44 #44 #771 #963 #556 #44

#771 #166 #556 #44 #771 #44 #33

#556 #171 #771 #556 #608 #771 #771

#241 #817 #241 #89 #241 #188 #241

#817 #556 #498 #241 #556 #646 #556

#646 #241 #817 #646 #103 #241 #801

#103 #602 #646 #817 #389 #817 #817

#389 #389 #389 #177 #522 #184 #646

#184 #103 #103 #389 #955 #509 #103

The first column is the ordinary cosine similarity measure. Numbers denote song IDs. Song #963 is the
desired result “Two Door Cinema Club—Something Good Can Work”

Table 5 Query retrieving accuracy of 6 different similarity measures

Similarity/distance measure Classification accuracy (%)

Cosine similarity (927/964) 96.2

c1 (932/964) 96.7

c2 (930/964) 96.5

c3 (917/964) 95.1

c4 (905/964) 93.9

Bregman angle (TV) (925/964) 96.0

Table 6 Classification accuracies (percentage) for SUSY dataset

Similarity/distance measure Classification accuracy (%)

Cosine similarity (3327281/499e4) 66.67

Bregman angle (entropy) (3279653/499e4) 65.72

Bregman angle (l2-norm) (3334363/499e4) 66.81

Bregman angle (TV) (3038327/499e4) 60.89

c0 (2866967/499e4) 57.45

c1 (3010165/499e4) 60.32

c2 (2726263/499e4) 54.63

c3 (3423296/499e4) 68.60

c4 (3428785/499e4) 68.71

posed measures, except for c0 and c3, can retrieve the desired
song in the first place.

In the final part of the experiments, we use large datasets
from UC Irvine Machine Learning Repository to test the
performance of the proposed similarity measures. For these
datasets, we used k-NNwith k = 3. The first dataset is SUSY,
that has 5 million 18-element feature vectors obtained using
Monte Carlo simulations. The features correspond to exotic
particles and background signals. The aim is to separate par-
ticles from the background [21]. In the original paper, 4.5
million samples are used for the training and 500 thousand
samples are used for testing. We examine a more difficult

Table 7 Classification accuracies (percentage) for forest covertype
dataset

Similarity/distance measure Classification accuracy (%)

Cosine similarity (368671/569600) 64.73

Bregman angle (Entropy) (371395/569600) 65.20

Bregman angle (l2-norm) (368666/569600) 64.72

Bregman angle (TV) (285922/569600) 50.19

c0 (284774/569600) 49.99

c1 (287201/569600) 50.42

c2 (244722/569600) 42.96

c3 (365169/569600) 64.11

c4 (363544/569600) 63.82

scenario by using first 10 thousand samples for the training
and the rest for testing. The classification accuracies for this
experiment is shown in Table 6. In this dataset, c4 measure
obtains the best results.

Both c3 and c4 are more energy efficient than the ordinary
cosine similarity measure because they do not require any
multiplications.

The second dataset is forest covertype dataset that has
581012 54-element feature vectors describing seven differ-
ent types of forest cover. In the original paper, 58% success
rate is obtained using linear discriminant analysis and 70%
success rate is obtained using neural networks [22]. We use
the same setup, which has 11340 training samples. The clas-
sification accuracies for this experiment is shown in Table 7.
In this dataset, BregmanAngle(Entropy) measure obtains
the best results.

5 Conclusion

In this paper,we introduced a family of vector similaritymea-
sures. Each measure is defined according to a given convex
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cost function. The angle between the two surface normals or
surface gradients is used to construct the similaritymeasures.
When the cost function is the ordinary Euclidean function,
the surface tangent-based similarity measure reduces to the
ordinary cosine measure. It is experimentally observed that
TV function-based vector similarity measure produces the
best results in a dataset containing human gesture data. But
it is not possible to single out a similarity measure that pro-
vides good performance on all datasets. The performance of
a similarity function depends on the type of feature vectors
in the dataset. The theoretical analysis of the proposed func-
tions is a topic of the future work.

Some of the similarity measures introduced in this paper
are energy efficient measures. They can be computedwithout
performing any multiplications.
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