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Abstract—Multifunctional and reconfigurable multiple-input  provide enhanced spatial diversity that can fortify the tech-
multiple-output (MR-MIMO) antennas are capable of dynam- niques combating interference. One can imagine that each
ically changing the operation frequencies, polarizations and aconfigurable mode of operation of an MRA, a.k.a. antenna

radiation patterns, and can remarkably enhance system capabil- d ¢ diff t ant it h diff i
ities. However, in coherent communication systems, using MR- mode, creates a difierent anienna as It may have a diieren

MIMO antennas with a large number of operational modes may Operation frequency, polarization and radiation pattern. Various
incur prohibitive complexity due to the need for channel state enabling technologies (e.g., MEMS switching, semi-conductor

estimation for each mode. To address this issue, we derive answitches, liquid metals) and design approaches (e.g., variable
explicit relation among the radiation patterns for the antenna aqctive loading, parasitic tuning and structural/material mod-

modes and the resulting channel gains. We propose a joint ... .
channel estimation/prediction scheme where only a subset of ications) have been developed to create MRAs [1].

all the antenna modes is trained for estimation, and then, the  In this paper, we specifically consider the MRAs based on
channels associated with the modes that are not trained are the parasitic tuning approach [4], [5]. In this MRA technology,

predicted using the correlations among the different antenna an active antenna element is accompanied by a reconfigurable
modes. We propose various training mechanisms with reduced parasitic pixel layer whose pixels (electrically small rectan-

overhead and improved estimation performance, and study the | h d tallic el t int ted b
impact of channel estimation error and training overhead on the 9Ular shaped metallic elements) are interconnected by means

MR-MIMO system performance. We demonstrate that one can Of switching that are controlled via DC biased lines. By

achieve significantly improved data rates and lower error prob- properly modifying the switch statuses, the parasitic surface
abilities utilizing the proposed approaches. For instance, under |ayer is reshaped resulting in different radiation, frequency and
practical setfings, we observe about 25% throughput increase ,q\arization properties, i.e., a different antenna mode. We note
or about 3 dB signal-to-noise ratio (SNR) improvement under however, that the cha’nnel, modelling as well as the analysis,

the same training overhead with respect to non-reconfigurable i
antenna systems. and design approaches developed throughout the paper can be

Index Terms—Multifunctional and reconfigurable antennas, applied to any MRA system, i.e., they are not specific to the

MIMO, multipath channels, channel estimation, antenna radi- Parasitic tuning technology. o
ation patterns. The use of MRASs in wireless communication systems has

recently attracted significant attention due to the additional
degrees of freedom they offer which may be exploited to
achieve superior performance [6]-[12] as compared to systems

Multifunctional and reconfigurable antennas (MRAs) fornemploying antennas with fixed properties. Combined with the
a new class of antennas that can dynamically be configumaditiple-input multiple-output (MIMO) antenna technology,
to operate at different frequency bands, and with differetite resulting MR-MIMO antennas offer even greater degrees of
polarizations and radiation patterns [1], [2]. Such antennas direedom to combat the adverse effects of wireless propagation
strong candidates for 5G and beyond technologies whereervironments [13]. On the other hand, for such systems, ex-
single device may need to support multiple radio access tet@Rrsive channel estimation requirements arise as a challenging
nologies with different set of operational requirements (e.gand important issue. Since a rich scattering medium results in
frequency band, polarization) [3]. In addition, the availabilitynultipath propagation, changes in antenna radiation patterns
of multiple radiation patterns with different polarizations caresult in different gains for different departure and arrival

paths, and hence, their superposition results in different chan-
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I. INTRODUCTION
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Some attempts have been made to attack the channellearn the CSI even when only a small set of antenna modes
timation problem for MRAs in [14]-[16]. Eslami et. al. [14]are explicitly trained.
proposes a reduced complexity training approach that involvesThe rest of the paper is organized as follows. In the next
the selection of a number of modes and using only those modestion, we provide the details on the underlying MRAs
for communication. The authors attempt to reduce the numtzard MR-MIMO antennas, and extend an existing MIMO
of modes to be trained via statistical or direction findinghannel model to the case of MR-MIMO. In Section I, we
based approaches where the effective angle of arrivals desscribe the proposed channel estimation approaches for MR-
determined to select better antenna modes. They also analyt®O systems. Extensive numerical examples are provided in
the use of all available modes being trained for differer8ection IV, and finally, concluding remarks with some future
pilot overheads. However, their approach does not allow fogsearch directions are given in Section V.
an effective utilization of the antenna modes dismissed fromNotation: The notationf: fo€y + fe€y denotes spherical
training sessions. In [15], Gulati and Dandekar propose caordinate representation of complex electric field veithand
multi-bandit learning algorithm to select the antenna modé€y referring the unit vectors ifi and¢ directions, respectively.
to reduce the required training overhead for CSI estimatio(f, g) = f390 + f;94 denotes the inner product whefg*
Again, the goal is to actively use a smaller number of antenimlicates the complex conjugate operation. Similarly, the inner
states for data transmission. In [16], Grau et. al. investigateoduct for matricesC'y x1s = <ijLangM> is defined as
the use of a class of generic reconfigurable antennas under I
a Kronecker channel correlation model and the assumption _ 1 5

Cnm =Y ([Alnt, [Blim).

that a number of antenna ports can be decoupled. However, =
the decoupling assumption may not be valid for many MRA =
design approaches, and it may limit the available number [oA]n,m (01 [A],») denotes ther x mi entry of the matrix
antenna modes for performance optimization. A (or A, ). CN(a,b) denotes circularly symmetric complex

Different from the previous approaches, in this paper, w@aussian distribution with meam and varianceb. A ® B
first consolidate the relation among the antenna modes and de@otes the Kronecker product of and B, and ve¢A)
wireless channel. We formulate the relationship among the atenotes vectorization of the matrix by stacking its columns
tenna modes associated with radiation fields from MR-MIM®@ a one dimensional vector. For a vectordiag v) represents
antennas and the resulting channel realizations with the goabofliagonal matrix with elements af on the main diagonal,
developing low-overhead channel estimation techniques wahd for a set ofL matricesV;, i = 1,...,L, diagV;),
reduced estimation errors. We consider a realistic 3D doublé-represents a block diagonal matrix constructed frgyis.
directional channel model for the MR-MIMO antenna linkTr(A) denotes the trace of square matrlx
and also assume that any of the available antenna modes can
potentially be activated during transmission [17], [18]. Using ||. CHANNEL MODEL FORMR-MIMO A NTENNA LINK
the_bgams_pace MIMG concept [19]' the effects of MR-MIMO ¢ 4 ple directional MIMO (DD-MIMO) channel model
radiation field on_the channel gains can be de<_:oup|ed fr r1n7]' [20]-[23] is a widely accepted model that combines ideas
thosg of the multlpath _propagatlon_me(jmm. Th,'s,aHOWSf fom ray tracing and statistical channel modeling where a
casting the CSI estimation as an estimation/prediction prOb_I‘?mmber of discrete direction of arrivals and departures are

where the antenna modes to be trained are used for Obta'r%&erated randomly using certain distributions. DD-MIMO
a;}low—gmensmnal obszrvatlon matél_x frngVr‘:h'Ch Ithe_CSI ffo hannel model is suitable for accurately modelling the wireless
the other antenna modes are predicted. The selection o gﬁ%nnel taking into account the antenna radiation patterns. We

training modes can further be optimized. first extend this model to the case of MR-MIMO antenna links,

Ogr_ contr_lbut|0ns can be summarized as follows: (i) and then develop the corresponding signaling model.
explicit relation among the antenna modes and the resulting

channel gains are determined for MR-MIMO antennas, (ii ]

an efficient and effective channel estimation procedure 45 Legacy MIMO versus MR-MIMO Antenna Links
developed which utilizes a relatively small number of modes Fig. 1.a compares a legacy MIMO antenna having elements
for explicit training and predicts the CSI for all availablewith fixed properties and an MR-MIMO antenna consisting
modes, and (ii) methods for antenna mode set selectiondb MRA elements (see Fig. 1.b) with variable properties.
improve the CSI estimation performance are developed. MRA elements provide additional degrees of freedom to the
our study, we consider the well-known Orthogonal Frequen8iIMO system due to the variable element factors. For the
Division Multiplexing (OFDM) based transmissions (e.g., abIRA design depicted in Fig. 1.b, this is accomplished by
in the LTE and WiFi physical layers), and via extensivehanging the geometry of the parasitic surface via the on-off
simulations, we show that about 25% theoretical throughpswitches embedded in between the metallic pixels constituting
gain or about 3 dB signal-to-noise ratio (SNR) improvemette parasitic layer. Due to space constraints, we refer the reader
can be achieved with respect to non-reconfigurable MIM®@ [24] for details on the design and optimization of this MRA
antenna systems in realistic scenarios. With suitable selectgsign approach. The MRA depicted in Fig. 1.b comprises
of training mode set according to the spatial correlation amd a 3 x 3 parasitic pixel surface interconnected by p-i-n

the coherence time of the channel, we demonstrate that thiede switches. Thus, a total @f? different switch states,
proposed estimation/prediction technique can be employedi.®, antenna modes, exist. A given set of switch states define
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Fig. 1. (a) Legacy MIMO antenna versus MR-MIMO antenna, each Witrantenna elementsu,, = |wm,|e?<*™ is the complex weight for antenna;
m =1,..., M. DC lines are used to excite the specific antenna mpgesm =1, ..., M, at antennam. (b) An MRA design based on parasitic coupling.

A 3 x 3 metallic pixel surface interconnected by 12 on-off switches (e.g., via p-i-n diodes).

a specific polarization, frequency and radiation pattern, whiethere the parameters are summarized in Table I.
is referred to as the mode of operation. Let [H]nm(,v) = hpm(tm,vyn) denote theN x M

In this paper, we focus on MR-MIMO antennas wittMIMO channel matrix. Each departure path is coupled with
identical reconfigurable elements, but each element may dech of the arrival paths resulting in a totallgfL,. resolvable

—

set to a different mode. Lef(6, ¢, n) denote the elemental paths whose gain and propagation delay are denoted, by
complex far-field radiation pattern wheree {1,2,...,L,} andr;;,, respectively;=1,...,L;,j=1,..., L,. We denote
is the antenna mode index representing the excited modettud L, x L, channel gain matrix byX.

operation andL,, is the number of antenna modes. Then, To express (2) in a more compact form, let us first define

for an MR-MIMO antenna withM MRA elements, ignoring the transmit and receive steering matrices for the transmit and
. o ' . arrival paths asB = [b; ... by, andA = [a; ... ar,],
the mutual coupling among the parasitic surfaces of d'ﬁerel%tspectively, whereb; and a; are the transmit and receive

elements, the complex pattern for theth element can be steering vectors given by

expressed as
P b, = [1 e*joﬂkT(ei7¢i)(P2*Pl) ) __e*jo”kT(ewbi)(PM*Pl)]T (3)

—

f(ea ¢a ,um) = f@(ea (ba Mm)ge + ftb(ea (ba Mm)éﬁ (1) fori—1.. .. L and

with p,, € {1,...,L,} representing the mode index of 2T o Y aear) 25 kT (900 ) (@ — i1 T
antennam, m = 1,..., M. Note that there ard}/ differ- %/~ [Lem? > o e AT @
ent modes of operation corresponding to different radiatiofpr j = 1,..., L,. Next, by defining the pattern vectors
patterns.

fﬂ(ﬂm) - [.]?Q(ela ¢17Mm)7 .. .,.]FQ(QL“(]SL”/LW]T

P g g T
B. Double Directional MIMO Channel Model for MR-MIMO Fo(vn) = [fo(D1,01,vn), -, fu(IL,, 0L, vn)]

Systems and expressing the rows of the steering matrices as diagonal

Fig. 2 illustrates the double directional channel modehatrices
[20,21] for an MR-MIMO system withM transmit andN i .
receive MRAs. According to this model, under the balancel = di@d[bm.1 - bin.r,]); bmi = [Blmi i =1,..., L,
array [20] and plane wave propagation assumptions, an¥, = diag[an1 ... anr,.]), @ni=[Aln;,ji=1,..., Ly,
assuming that the channel is fixed during the symbol durationne can rewrite (2) as
the complex base-band channel gain between transmit MRAY

m and receive MRAw for a narrow-band signal at frequencyh,, ., (1, vn) = f& o (m)Um X' TV, o 0(vn)

can be expressed as
N P + 18 s (1)U XV, fir 5 (vn)
L Ly ¢ 1 s
= - e - m 7Hn m Vn 5
hn,m(ﬂmayn) = § § xj,i<fQ(9i7¢i7/Lm)7f‘I’(19jaSojayn» <fQ(M ) ,‘ f‘l’( )> ( )
j=1i=1 where[X'];; = x;;e/2™aite=32m<Tii and

% eI F (KT (0:,6:) (Pm—p1)+k" (05,05)(an—a1)) =276 ; (2) (Fn] B] 4] (X001 Lii=1 I
n,mli,j = m,i " n,j * gyt = Ly gy ) = Ly ooy L.
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Fig. 2. Double directional channel modéll transmit and/V receive MRA elementsL; direction of departures, antl, direction of arrivals. The reference
coordinates are also depicted for the transmit and receive antennas.

TABLE |
DOUBLE DIRECTIONAL MIMO MODEL PARAMETERS
[ Parameter | Definition || Parameter [ Definition

L Number of departure paths L, Number of arrival paths

k(0, ¢) Unit length wave-vector for departure paths k(9, ) Unit length wave-vector for arrival paths

(0;, i) Angle of departure for DoD; ¢ =1,..., Lt (95, ¢5) Angle of arrival for DoAy, = 1,..., L,

0p,9B) Transmit antenna tilt direction (UB,9B) Receive antenna tilt direction

x5 Channel gain for the path between Dead DoA-j Sd,j Doppler shift for jth arrival path, ¢5; =

LYl kT (9, 0;)v, v: Velocity vector

T Delay for the path between DoDand DoA-j A wavelength

Dm Transmit antennas coordinate an Receive antenna- coordinate

m M transmit antenna mode indice$1, ..., unr), v N receive mode indices(vi,...,vN), vn €
pe{l,...,L,},m=1,....M {1,...,L,},n=1,...,N

L, Number of modes for transmit MRA element L, Number of modes for receive MRA element

fg(e, ¢, um) | E-field pattern for them® transmit MRA ele- fq; (¥, ¢,vn) | E-field pattern for then receive MRA element
ment taking into account the boresight tilt directigh taking into account the boresight tilt directiop
(0B,¢8) (I8, ¥B)

Note that (5) decouples the impact of element-wise recoior a narrow-band transmission can be written as

figuration of the MR-MIMO antenna from the other terms M
related to steering vectors and the multipath propagation o, vn) = Z Boom (Mo y Vn ) Win S + 20, (6)
effects. In addition, the inner product expression among the m=1

electric field vectors reflects the impact of the field polarizatiognere it is assumed that the channel is fixed during the symbol
mismatch among the received signal polarization and antenpghsmission time, and, ~ CN(0,02) denotes the additive
polarizations [25], [26]. Furthermore, (5) shows explicitly thghite Gaussian noise at the receive antennan (6), 5m
dependence of the channel variations on the scatterers gadotes the unit power signal emanating from antenpand

the user speed throughy; and<a,;. In what follows, it is , s the complex gain weighting at that antenna. From (5)
assumed that the scatterers are quasistatic, that is, they remgiff (6), it is seen that changing the transmit and/or receive
the same over a long period of time, while the temporghtenna modes result in different channel realizations for
variations due tog, ; are more pronounced. Note that fofne same propagation medium. This point will be elaborated
MR-MIMO antennas, (5) can be employed to generate thgher in the following sections.

channel matrixH,, ., (i, v). For legacy MIMO with identical

elements, this relation can be simplified i = BH,A” . CHANNEL ESTIMATION FOR MR-MIMO A NTENNA
whereH is the L; x L,. matrix whose entries are the complex SYSTEMS

path gains between all departure and arrival angles includin

the associated antenna gains [20]. gEmploylng MRAs at the transmitter and/or receiver intro-

duces variations due to antenna reconfigurations in addition to
the usual temporal and spatial variations created by multipath
fading. Each one of the large number of antenna modes

Using the superposition principle [25], [26], after matchedssociated with an MRA creates a different channel, thereby
filtering [27, Chapter 4], the signal received from antemna-making channel estimation a challenging task. In order to fully
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exploit the degrees of freedom available, it is necessary wiherecr,,,, and-~,, are, respectively, the, x 1 andf, x 1

estimate the channel for different (perhaps all) antenna modsgsithesis coefficients for transmit and receive pattefh?'.s

within the coherence time of the channel. With the presenttee L, x F; basis radiation pattern values evaluate@ato;),

of a large number of modes (e.g096 for the MRA shown fori=1,..., L, andW is the L, x f , basis radiation pattern

in Fig. 1.b), the channel estimation based on an exhaustixues evaluated &t);, ;), fori = 1,..., L,. To obtain (9),

training requires excessive overhead and delay, which makewdt collect the terms other than the antenna mode configuration

undesirable, or even infeasible. Therefore, an efficient MIM@to anf; x F, matrix usingH.,,., = (Q, H,, ,, ¥). Hence,

channel estimation procedure for MRA systems requiresa#i the unknown variables appear in the mat#k, ,,,. With

unified framework taking into account both the structurthe exact knowledge of this matrix, along with the synthesis

of the wireless medium and the underlying MRA radiatiogoefficients t,,, and +,, that can be calculated off-line,

capabilities. With this motivation, we utilize the beamspag@®) can be used to evaluate the relation among the element

representation of radiation patterns [28]-[30] and resultingdiation patterns and the channel gains for all the antenna

wireless channels [31]-[33], and develop an analytical frammodes.

work for the combined estimation and prediction procedure, Using (9), the cross correlation between the channel with

The explicit relation in (5) among the underlying antennd©9€Stm = i, vn = j and pu, = kv, = I, denoted by
o (i,7,k,1), is given by

modes and the channel realizations enables the developrT{)élrﬂ1

of a formulation where only a small set of antenna modes negd ; . ;. ) _ E{hn,m (6 3)h5 m (k, D}
to be explicitly trained, and the remaining modes are predicted VE{[Ihn,m (@ D2 E{[[hnm (k, DI[2}
using the correlations among them. Tr ((’yl*"y]:p ®o¢kaiH)R@)

\/Tr ((’Y;’Y]T ® aiafI)Ri> Tr (v ® areaf)Ra)

A. Antenna Patterns and the Wireless Channel (10)
Equation (5) relates the underlying antenna radiation pat- - .
q (5) ) ying ant . I?where:ﬁ = vedH, ), Rz = E{zz}, and we exploit
terns and the resulting channel realizations. This relation, : : )
. . the relation T(AB) = Tr(BA). It is seen that as long

however, requires the explicit knowledge of departure an : . . :

. . o . —as the correlation matri®; remains same, the correlation

arrival angles. To avoid this issue and evaluate the impac . .
) . .._petween the channels for the different modes of operation

of different radiation patterns on the CSI, one can utilizé

the beamspace concept of [21] [19, Chapter 3]. To thgmains the same. This observation is important espema”y fqr
. slowly varying channel where the scatterers are quasistatic
end, let there existL,, antenna modes for the element of

an MR-MIMO antenna, and therefor, different radiation and channel real_lzat_|0n for a given mode can be predicted fr(_)m
> the channel realization of another or some other modes using

be £ 1, ononermal bass fadiaion pattem uncionde corelationsy.(). The channel corelations between
(6 ¢)— ; :“ 1 I which can be used to represent all th(‘Jn‘ferent mp_des of operation can also be jusyﬁed @rc_ectly from
ra:diz;\tio’n patt7e.rr.1.s’ F’or instance, for a given set of radiati$%) where itis observed that a small chang.e n radlatllon pattern
pattern functionsf(@ b 1), e, (1 L.}, the Gram- unquor_\s can create only a_small change in rgspecuve channel
Schmidt process ca{n ’be, used to 7(;(.).rr’1pll;te, one such barlgf'zll_lza_tl_ons. The changes in the chz?mnel gain depend on_the

Whilarities among the antenna radiation patterns. Equation

fsuT:;ﬂgg:?;itl'g},f::pter 3]. Thus, we have the analy3|(<1—o) provides a mathematical framework for this observation.
y ! : The relation in (10) can further be simplified provided that

. r the medium is a uniformly rich scattering environment where
F0,6,) = aii(6, ) R, is modelled as an identity matrix, i.e.,
i=1
. (v 1) - (e eui)
L i = _’i i . n,m i7j7k7l = 11
st api= [ 1710.0.0.6,0.6) o 0 ol 10 = o T Tl TlaalT- o] Y
From (7), we can express correlation among radiation pattetigich depicts a more clear relation between the pattern cor-
corresponding to modes, and; as relations and the channel correlations. That is, those antenna
modes that have smaller pattern cross-correlations will result
H . . .
P _ %% @ n smaller channel correlations. If the mode of the transmit or
FERE Yo, || e || the receive antenna is fixed, one can further simplify (11) to
wherea,, = [o,1 ... o, ] Applying (7) to both the transmit o »ij»yl*
and receive radiation patterns in (5) (for brevity, we drop the Pum(io, s i0, 1) = AR (12)
(t, f) for this section), we obtain H
.o . oG oy
= ~ = pnﬂﬂ(%jOa ka]O) = T - (13)
hn,m(,uma Vn) = < a,umaHn,m‘I")’un> ||al|| : ||ak||
afj <ﬁ,ﬂn m‘I_}>7un where iy denotes the transmit MRA mode, ang denotes
— ol H, vy the receive MRA mode indices in (12) and (13), respectively.
’:”” o "’;’; _ For (11)-(13), it is seen that the channel correlations reduce
= (W, ® )" ved Hy m) 9 to radiation pattern correlations defined in (8). We note that
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the expressions in (11)-(13) are provided to highlight th&ession, and lett;, k; ;), ¢ = 1,..., Ly, j = 1,..., K,
relationship between the pattern and channel correlatiodgnote the symbol and subcarrier indices of the resource

For actual system analysis and numerical examples in thements (REs) at which pilot signalg,,, m = 1,..., M,
subsequent sections, we employ (10) to evaluate the charfn@in antennan are transmitted. Assuming a symbol duration
correlations. T,, we havet = t,T5, and¢ = k; ;Af. L, is the number

Let us study the relationship between different antenmd training symbols (e.g., channel uses) such that ¢; <
modes and the resulting channel gains using a numerical exam-< tr,, < T,, and K; is the number of training subcarriers
ple. Fig. 3 depicts the relations among the pattern correlatiolos symbol< such thatl < K; < K.. Hence, a total of
using (10) and the corresponding realized channel correlatiaits = Zf:pl K; out of T.K. subcarriers are employed for
obtained by changing the antenna mode while keeping tiraining. The received signal at antenman = 1,..., N, is
propagation medium fixed. We investigate both a relativetyiven by
low scattering environment modeled by micro-cell channel
model B1 from Winner+ project [34]—[37], and a uniformly
rich scattering environment modeled vi@0 transmit andi00
receive rays with 3D uniform AoD and AoA spreads. In this
example, the receive antenna mode is fixed and the chanjgrsl =L...
are generated for 25 different transmit antenna modes, which r(p,v) = Ph(p,v) + 2 (14)
amounts to a total of 325 auto- and cross-correlation values.

The correlation values are sorted according to the absolie stacking ther, (g, vn ;) and zn 4k, , 10 NLp x 1
value of the radiation pattern correlations, and at each ind&&Ctors, i, i (tm, ¢, Vnt;) 10 MNL7 x 1, vector and ex-

the corresponding channel correlation is plotted. In both cas@&gssing the pilot sequence as a block d|agonal marix

it is seen that as the radiation pattern correlations mcreagélg{Pu ® Inxn} @ = 1,...,Lp, j = -, K, with

the channel correlations tend to increase as well; however,; = [P1,t; ki ---PM,tik w] The minimum mean square
this relationship is more pronounced for a uniform scatterirgjror estimation (MMSE) [38] for the channel and the corre-
environment. This result clearly demonstrates that the Csponding mean square error covariance matrix are then given
estimates for a number of modes will help predict the CHly

. -1
for the others. h(p,v) = Run (th + P*1RZZP*H) P 'r(p,v),
Rec(p,v) = Ron — Run(Run + PilezpiH)ithhv (15)

3 3

M
Tn (ll’tm U’Vhti,) = E h%m (,Um,t” Vn,t; )pm,tivkm + Zntiski g

,Lp,j=1,..., K;, which can be rewritten as

1 T T T
|,|n| |r'P" V\;“\hw \} A‘/“'u\‘ respectively. HereRy, and R., = o2y N1, are the co-
fi ":';l,“ F ‘h\ ' W\M» , variance matrices of the channel vector and the noise vector,
]7 ! . i :{vnn ".f i | respectively. Note thak is a vector containing channel gains
l i : ’ ' '4 ,,’”I" M" ' at REs at which pilot symbols are transmitted over different
!l\' rﬂ.:,f\l?"", i 1 antennas, and hencBp, contains temporal, spectral and
it LAY 2k spatial correlations.
i Note that for reduced training overhead, the amount of
‘ 1 training symbols should be kept small. Typically, a portion
Pattern Correlations of the subcarriers are reserved for pilot transmission in an
0.4 rig , ' ~  ~ Channel correlations - Winner B1 ] OFDM symbol which means that data is also being transmitted
Channel correlations - Rich scattering ..
concurrently. Let us assume that the mode training procedure
is activated from time to time. That is, during a regular
0z, - o 1 e e wn transmission period, the transmitter uses the selected antenna
Mode Pair Indices mode for both training and data transmission. During the
mode training session, the transmitter activafésantenna
Fig. 3. Pattern correlations versus channel correlatiome dhannels are modes meanwhile usual data transmission is performed at the
avelragte;d over 20 different multipath conditions each with 10000 channghis sybcarriers. During the training period, ideas similar to
reaizations. adaptive modulation and coding [39], [40] can be used to take
into account the excitation of different antenna modes. Finally,
B. Channel Estimation for MR-MIMO Links we note that we consider the transmit antenna reconfiguration
while keeping receive antenna at a fixed configuration in the
We consider pilot-assisted training with narrow-band trangsliowing. It is straightforward to extend the proposed con-

mission where a known pilot signal sequence is intermittentfents to the general case where both transmitter and receiver
transmitted to allow the receiver to perform channel eSt'mﬁErform mode configuration.

tion. In addition, we assume an orthogonal training mechanism
for the MIMO case where only one transmit antenna is active
for a given training symbol duration. C. Antenna Mode Training for MR-MIMO
Let T, and K. denote the number of symbols and subcar- When there are many antenna modes, it may not be feasible
riers, respectively, in a channel training and data transmissitartrain all the modes during one coherence block. To develop a

l\ Al | U\ ’J
.wf‘fn\..w.-, i 5: f H".:"'?‘

o
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(n=1)T, Training periodn — 1 nTe . . .. .
. criterion. For example, for a training mode pédju,v), as-
Lp Te-Lp Lp suming equal power allocation, one such metric is the average
So,., S, achievable rate estimate
Time 1 1 - A H
C(ll'7 V) = Up.,u Z 10g2 I+ o__gH(uv V)H (,u7 V)

Fig. 4.  Channel training protocol for transmission with nefigurable Rkl At A

?ntenr_\a{S- Eﬁch triﬂning period fﬁl %hanphel uses employs, Ch_ar;n‘i uses where U“"’ _is the number of REs for which the mode_ pair
or tralengt ? mp e groug,,, for the n! training sLessmn, W!t n = (n (,u,l/) is trained, and[H(u,u)} = b, m(um t»aVn.t') is
mod T“) With fixed mode groupssy, b =0,..., 7% — 1, this protocol . n,m ’ T o
corresponds to exhaustive mode training. The training groups can ba upd%@ estimatedV x A/ MIMO channel.
according to intelligent mode update criteria as well. During the training sessions, the receiver sorts the modes
according to the resulting channel qualities and stores them.
Within a certain number of training sessions, the receiver
complete scheme, let us first extend the periodic-training basggthers a list of antenna modes with relatively good channel
channel estimation procedure to a MR-MIMO link where thgualities. At the end of the training sessions, the receiver
channels for a relatively small number of antenna modes aegorts the list to the transmitter implying that the upcoming
to be estimated. transmissions will employ only the modes within the list.
1) Exhaustive TrainingOut of the all possibld.,, transmit Thus, a lower number of antenna modes will be trained, and
modes, the transmitter and receiver arbitrarily agree on the fehce the training overhead will be reduced. Such a procedure
of transmit antenna mode sets also alleviates the estimation problem when some or all of
Sy = {tto1, .o i) selected tr_ained modes 8, experience a _deep fade as
e the transmitter updates the modes to be trained for the next
for the bth antenna mode group. There are a tota[LQJ’/F training round. Note that the list may be updated whenever
different groups to be employed for transmission. Each atiie channel qualities for the selected list of antenna modes
tenna mode is trained for an equal number of channel udgcome worse. To do so, the transmitter and/or receiver may
denoted bys = % As depicted in Fig. 4, the channel training’equest to reset the list and restart the training procedure with
with the subsequent mode group staftschannel uses later. the initially agreed upon list.
It is assumed that the training groups are repeated according

to moduloZ,,/F if the total transmission time to the userp, joint Estimation and Prediction for MR-MIMO Channels

LuTe . L
takes longer thar-j (-:h.annel USES. Durlng_ the |n|_t|de The overhead due to the training mechanisms described in
channel uses of the training period, the receiver estimates Cetion [11-C may be prohibitive in the presence of many

T oo e s e a0 Mo mres n order o reduce s overnead, we e

' . - channel representations developed in the previous section.
res'F of the coherence l.)IOCk until the next channel traini ing the analysis developed in Section IlI-A, one can exploit
period. Note that with this .approach, rega_rdlgss of the numq% presence of correlations among the channels at different
of antenna modes, the training overhead is fixed af T. K. ntenna modes. For instance, a subset of antenna modes can be
Reducing the number of training symbols per antenna mo Elected to train the channel to obtain an estimatBgf,, and
results in larger delays for CSI estimation of the remainiqglen the channel gains for all other modes can be predicted.

modes. Lgter, it wil be. shown by numerical examples th that end, let us assume th&tantenna modes are selected
the selection of the design parameters strongly depends on the

. . . channel training. At a given instance, the CSI for thése
channel coherence time and the correlations among d'ﬁer?r%des can be written from (9) as
antenna modes. B

2) Intelligent Mode Update: While small scale fading hy,m =Tved H, ), (16)
causes relatively fast temporal variations, the higher order T o T HoT
variations, such as spatial correlation of the MIMO chann ,'th L'=[n®a, .. v ol andh,, =

HFE
- .
vary much more slowly. This is mainly due to the fact that th nm(H1, V), hnm (e, V)] . By using (9), the same pro-

main scatterers do not change significantly for Iow—mobilit?edc:lJre can bbe_rer;]eated for all (tjhe rerr]nalnlnlg— F antenna
users over multiple coherence blocks [20]. This implies thJt0des to obtain the corresponding channel state estimates

certain antenna modes will better fit to a propagation environ- he = [P (UEs1s V), - hm(pir, )]
ment. Thus, as transmissions go on, the system may be able ’ ’ :

to learn the appropriate antenna modes and limit the anterkifferent prediction algorithms can be used. For instance, by
reconfiguration to those. using the least squares (LS) criterion, we can represgnt

To that end, we assume that there is a low-rate feedbdgierms of the channel realizations from the training/sgt,
channel where the antenna modes selected by the recef@r

are fed back to the transmitter. The transmitter and receiver he —=T¢ (I‘HI‘)*l Th, ., (17)
initially agree on the set of antenna mode pairs as in the '
exhaustive mode training approach. The receiver then moniterish T° = [} @ ol ... 7] @ /] |7

the system performance during data transmission periods andivhen F; F,. > F, which is typical for the underlying MR-
updates the training mode groufs according to some MIMO systems, the system is under-determined since we
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have more unknown variables than the available observatiotraining symbol is transmitted. During this time, the transmitter
Therefore, the LS solution may not perform well and thand the receiver may agree to employ a specific mode, for
performance may get worse as the number of untraingdstance, the most recent mode reported since it is likely to
modesL, — F increases well beyond the number of trainetle still a good choice for slow fading channels. This feedback
modes. Furthermore, the errors inherited from the estimatidelay is typically very small and fofy, < T, its impact
of trained modes may become more critical for the predictiam the performance will be negligible. Fig. 5 depicts a typical
performance. On the other hand, as described in Section Ill-éstimation/prediction timing using an OFDM frame structure
channel correlations exist among different antenna modes, avtiere at any transmission subframe, one of the modes is used
thus, the problem can be formulated as an MMSE predictiéor probing the channel training. In the exampedifferent
problem as described next. modes exist, and of them are selected for training. Note
MMSE Estimation and PredictionWWe can utilize the in- that before the actual training starts with the selected modes,
herent correlation between the channel realizations of differdhe system may employ the procedure described in Section
antenna modes for the same channel propagation state. Usik§ to train all the 8 modes and obtain estimates for the
MMSE to obtainh¢ ,, from the received signak(u,») in  channel covariance matrices to be employed during the MMSE

(14), we obtain the channel estimates as prediction step.
kS . = Rhen(Run + P 'R..P~H)"1P !y A
—17 Antenna Active antenna mode
= RhCthhh7 (18) Modes - Predicted modes

which clearly indicates that the estimates gy ,,, can be pre- moaes [

. . . 7 . 7
dicted from the estimates @f,, ,,, using the cross-correlations
among the channel realizations of the trained modes and thes

1
1 Trained modes:
145and7

Selected mode from

AR R RN

[ . . . . 4 : previous feedback
remaining ones. The error covariance matrix for this estimator s F-4—f— -1 «— Selected mode: 2
is given by o FIIdbllkr!‘IIIIIIIIIIIII
mode eedback delay
Recec (,U/, 1/) = Rhchc —_ Rh(’,h(th -|— PilezpiH)ithhc. $———————— Mode training ~ ————gp————  Data period ————¢ -
(19) Time (subframes) ~

Using the estimation and prediction covariance matrices fy. 5. Example MRA training over time.
(15) and (19), the overall mean square error for channel
estimation and prediction from the received signal can beNumber of Training ModesWe next develop a technique
expressed as to determine a suitable value for the number of modeéksto
iTr(th + Rnene) be trained. Since the estimates of the wireless channel gains
L, are valid within the coherence time of the channel, let us
—1— iTr ((Rih + RuneR%e) (Ran _‘_PfleszH)*l) ~ consider a training within a coherence block Bf symbols

Ly during which the channel remains fixed. Assuming that each

€ =

We observe that the selection #F training modes fromL,, Mode is trained for3 € {1,2,...,[7]} symbols, we have
candidates can be cast as an optimization problem to minimize = S symbols where the transmission is performed via
¢;, which can be simplified to the trained modes, anfl. — SF symbols with transmission
) . employing the best modey*. The average achievable rate
(", V") = arg mﬂ%’XTf ((th + thCthC) for this transmission can be approximated by (using Jensen’s

_ inequality along with Shannon capacity for a fading channel)
X (th + P_lezP_H) 1) . (20) [20]

At high SNRs, e.g., a.. — 0, we can further simplify (20) B F 1 BF
e C(F) £ 4 Y lows(1+ E(Gu)Ph + (1- 27 )
C i=1 Uz c
VY = Tr(Rf},. Ry j Rhne). 21 1 .
() = arg e T B By Bt (1) <log(1+ — E{Ih(:)) (22)
The optimization in (21) is a combinatorial problem where the Sttt = arg max ﬁ( Z)
selection ofF" modes amounts to finding @nx F sub-matrix, o pE{p1,ein, } ‘

Rpn, the resulting” x L, — " cross-correlation matid2nne  \here ,* is obtained at the end of mode training session.

from _the Ly x Ly correlation matrices evaluat_ed for tiie, With the MMSE based estimation/prediction method, we have
candidate modes. For a small number of candidate modes,tﬂl ) = h(u) + e(u) where the estimation error(y;) ~

search can be performed quickly. In case of a large number, (0,02) With 02 = [Reelis, for i € {1,...,F} and

modes, random search methods can be utilized to determinaeza:’[Reic Jipi e; for i e {F7 . L} Given )

sub-optimal but efficient solution (see, e.g. [41]). Ze: 1 Ez Fwézican express(ﬂ*)’ééw ni v
Once the channel for each mode are estimated/predicted, the ™’ """ *’

receiver reports the selected antenna mode(s) to the transmitter Lu R R

after a feedback delay. L&t;;, denote the number of channel (1) = > h(ua) TT IR I1P = 1a()l)  (23)

uses required for transmitter to receive this report after the last =1 n#i

1536-1276 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2016.2626291, IEEE

Transactions on Wireless Communications

TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. X, NO. Y, MONH 201X 9

6 h
k
ab i
—_ 2 B
X
£
[
6
=
Q.
S -2t & T =360
S c
=} —x—T =72
= c
=l —o—T =36
c
—v—Tc =18
-6 r
-8 L
1 2 3 4 5 6 7 8 9
=
(@)
Fig. 6. Average throughput gaiﬂoo(g((f))

15

10

Throughput Gain (%)
o

-10 [

15 I I I I I I I I
0 2 4 6 8 10 12 14 16 18 20
E

(b)

— 1) for § =2, and (a)L,, = 9 modes, (b)L,, = 20 modes.

where I(-) is the indicator function, i.e.J(4) = 1 if the with

condition defined byA is satisfied. Using total expectation

theorem, we can write

LIJ'
E{h(u")*y = B> E{llh(u)|?
i=1

< TTEUREDIZ = (pa) 1) A(p2), Vi)
L, A
= B> B Plh(u), Vi)
i=1

x FE

LT 2RI = 1A |A(w:), Vi

(24)

(25)

2 2
Th; + Oc;

Qi<y>:/|\hu22—

2
TOh,Oe;

lyll®
X
exp (0_}211 + a_gi

Substituting (26) ande{||h(u)||*} = o7 in (22), we can
finally calculate the expected rate usidg trained modes.
We note that (22) quantifies the trade-off between the esti-
mation/prediction performance and the resulting achievable
rate. For smallF, one will use less resources for mode
training, however, due to the inferior prediction performance,
the selected modg* is more likely to be suboptimal, and
transmission with this mode will contribute less to the average
rate. On the other hand, for largé, more resources will be
employed for the training session which reduces prediction

— hl? hl?
SUEL PN

2
og, T,

where (25) follows ash(y;) and I(h(p;) > h(u;)) are €rrors, and thus improves the mode selection performance.
conditionally independent giver(y;),Vi. This expression HOWever, in this case, less resources will be employed for
can be evaluated numerically, however, to obtain a tractaffi@nsmission with the improved mode.

analytical solution, let us consider the case whetg;) ~

A numerical example for optimization df' based on (22)

CN(0,07), with 02 = [Rpnlii, i = 1,...,F, and is provided in Fig. 6. Here, (22) is evaluated via Monte-Carlo
07 = [Ruencli—ri-r, i = F +1,...,L,, are mutually integration techniques to calculate the average throughput gain
independent. Then, we can write defined as100 % — 1), i.e., the percentage gain with

Ly
E{|h(u")*} = E ZE{IIh(ui)I\Qlﬂ(m)}

x TLE {10AGI = NG lh(es)

_ 2uyu22
<1 —e "t >

lyll?
1 T2 2
e “hit7% dy

—i/@i(y)n

>< —_—
71'(0,2” +02)

(2

6)

respect to the case df = 1 trained modes. We study two
cases withL,, = 9 andL,, = 20 available modes and for each
case we consider variods values corresponding to different
levels of mobility. It is seen that higher coherence time values
of T, allows for largerF' indicating that one can improve the
expected throughput by training more modes. On the other
hand, for lowerT, values, for example, wheh,. = 18, 36 for
L, =9 and7, = 40,80 for L, = 20 modes, it is seen that
the expected gains increase up to a certain point and then the
gains start to decrease with increasifig

The mode selection criteria described above relies on the
average covariance matrices and thus the average MSE perfor-
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mance. Thus, for selection of mode set d@ndh this manner, the best mode is selected at the end of each training session.

we attempt to optimize the average estimation performandée selected mode is employed during the following data

We note that this scheme can be further improved by motmansmission period.

itoring the channel gains for trained and nontrained modes,

and then using the intelligent mode update scheme described IV. TRANSMISSION WITHMRAS

in Section 11I-C where the modes with higher channel gains | . , )

(obtained from earlier estimation/prediction sessions) may He Signaling with OFDM Modulation

selected for subsequent training. In this case, the trained modeBue its widespread use in state-of-the art wireless tech-

will provide improved estimation performance, and in returmologies [43]-[45], we consider an OFDM based MIMO

the channel prediction will be more reliable. transmission in our simulations [46]. Assuming a cyclic prefix
Estimation of Covariance MatricesFor realistic channel (Icp) of sufficient duration, i.e.Tcp > max;; 7;;, and

estimation schemes used in practice, the covariance matripesfect time and frequency synchronization, we can express

should also de estimated from the observations [42]. Here, ¥ input-output signal relation from antennato antennas,

assume a sample covariance matrix estimation method whatdime ¢t = T, ¢ = 1,2,..., and at subcarrief, + kAf,

the instantaneous observations and channel estimates arekob-—N;/2,...,N;s/2 —1, as

tained at each OFDM subframe transmission and averaged via

an exponential filter over time. Let us express the channel

between the transmit antennaand the receive antennaat

symbol timel = 1,2,.. ., for the modes:, ..., ur, as anF x _ )

1 Vector by, (1, V) = [hnmt (11, 1), -+ s homa (o, V)] - yvhere_TS = Aif +_Tcp is the_ total OFI_DM symbol dura’Flon

The sample covariance matrix can be estimated via a firdicluding the cyclic prefixf. is the carrier frequencyl\f is

order IR filter [42] the subcarrier spacing, andy is the DFT size of the OFDM
- - signal. Here,z denotes the additive circularly symmetric
Run(l+1) = CRun(l) + (1 = Qhuma(p,v)RE,,  (1,v) (27)  zero-mean complex Gaussian noise with varianég2 per

r%Jlimension, and,, ; r is the signal transmitted from theth

Hhtenna at symbal and subcarriek. The transmit symbol

M
rn,i,k(uv Vn) = Z hn,m,i,k(,uma Vn)sm,i,k + Zn,i,k (30)

m=1

where( is a constant determining the memory of the averagi

filter over time. . : . ! .
. . o energies are normalized to unity so that the transmit SNR is
Temporal Smoothing via a Kalman FilterThe MMSE defined as TXSNR- 0_12

estimation/prediction described above utilizes spatial domaln.l.he MRA in all of the examples below hasa 3 parasitic

correlations to determine and/or smooth the channel estimates, . . . . . .
. o . ixel surface withl2 interconnecting switches (see Fig. 1.b in
From Fig. 5, it is clearly seen that the time between t

successive training beriods for a given antenna mode maection II-A). The principles on the design and optimization of

. 9P 9 node M&¥%imilar MRA is available in [24]. A uniform linear array of
get larger if the number of modes used for training N3 N — 9 MRASs with A\/2 interelement spacing is assumed
creases. In this case, the temporal correlations for the chan{%el

samples during this period may be optimally estimated v, ¥ the MR-MIMO system created by these MFRA%or each

an augmented Kalman filter where the temporal correlatio RA, several modes of operation are generated using the
9 P . .Eﬁenetic Algorithm as described in [5]. The full-wave analysis
and the channel values for those subframes during Whlf:

o . . . . ol HFSS [47] is employed to generate 3D complex radiation
no training signal is transmitted are estimated. To that en8 [47] pioy 9 P
. . . atterns.
we consider a first-order state-space representation for 8’1e
temporal variations of the channel, namely,

o1 (p,v) = T+ L DRy i(p,v) +0i(1) - (28) In this section, we analyze the channel estimation algorithms
whereT7 (I+1,1) denotes the channel state transmission matfixoposed so far via simulations. We consider the frame nu-
from one symbol time to the next, and(/) denotes the state merology from 3GPP LTE-A where the minimum resource
estimation error arising from modeling. The channel estimatbkck (subframe) for scheduling containg subcarriers and
are smoothed temporally over time using the received signals OFDM symbols [48]. We set the subcarrier spacing as

Ay = 15 kHz. With Tcp = 4.7 us cyclic prefix length, we
Pt (s V) = R 1 (s V)Pt + Zn (29)  have a symbol time of1 us. Thus each subframe is ms.
I = lo,lo + Ao + 2A,.... where A denotes the time We assume that a periodic pilot signal is transmitted every

interval between two successive training for a given modeSYmMbols over time and every subcarrier over frequency
pe {uny. .. ur) which amounts to 4 pilot symbols per subframe. For the double

Note that the Kalman filter update is an iterative approadiéctional channel model, we assume the spatial channel

to reach MMSE solution. Hence, its application in the prdndel from Winner+ B1 channel [35] with6 taps, each
ith 20 non-resolvable subpaths. Since we assume spatially

posed mode estimation/prediction scheme can be imaginf¥ : ;
as obtaining an improved MMSE solution to the chann&fthogonal pilots, we focus on a single channel from the
estimation/prediction scheme by utilizing the temporal corrd@NSMit antennar to the receive antenna-

lations. With the Kalmf”m filter updates, the eSt'mate§ of thewye note that the analysis that follows is not limited to this specific MIMO
channel state information for all the modes are obtained amdenna geometry, and the arguments can be generalized with ease.

B. Performance with MRAs
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Fig. 7. User speed = 1 km/h. (a) Theoretical and realistic channel estimation error comparison for narrowband transmission, (b) Shannon capacities with
ideal and realistic CSI estimation, (c) outage probabilities as humber of antenna modes is varied, (d) channel capacities with narrowband and wideband based

mode selection.

Figs. 7 and 8 illustrate performance of an MRA at a usesession [,) and data transmissiof{ — L,), are varied to
speed ofl km/h. To obtain these resultd,, = 9 candidate find the values with the best system performance, which turns
modes out of th&5 are selected, which reflects a snapshot @ut to be L, = 18 (9 subframes) and’. — L, = 54 (27
the intelligent mode update based solution described in Secteubframes), respectively, for this example.

[ll. During the initial training period of450 subframes, alb The mean square error values in Fig. 7.a for estimation
modes are trained periodically such that in each subframgd prediction are averaged over tBeraining modes and
one of the modes is used during transmission. Thus, eagprediction modes, respectively, to indicate an average per-
mode is trained witth0 subframes separated Bysubframes. formance. Clearly, the performance for both ideal and realistic
During this period, the sample covariance matrices of channgls| estimation is superior to the performance for prediction
among different modes are obtained using the approachesriodes as expected since the channel prediction is based only
I-C1 and IlI-D. After the initial training period,F" = 3 on the trained modes and the available correlations resulting
modes are selected for the following training periods, whilgom the modes of operation. However, as shown from the
the remainingL,, — F' = 6 modes are predicted using theachievable rate performance results illustrated in Fig. 7.b,
MMSE approach along with the temporal smoothing basede theoretical SNR gains from the ideal mode selection
on the Kalman filtering procedure described in the previodge around3 dB and the practical mode selection based on
section. The selection of modes to be trained within $he the proposed estimation/prediction process is arondB
modes is performed using (21). The periodic training sessigbmpared to a random mode selection scheme. Using the
parameters, e.g., the number of OFDM symbols for trainingymbol error rates for uncoded transmission with 16-QAM
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Fig. 8. Symbol error rate (a) narrowband (b) wideband transmission. For both cases, mode selection based on a single subcarrier is performed using (21).
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Fig. 9. Out of 25 antenna modes, 20 modes are selected randomly for transmission. Fixed receive mode. For realistic CSI estimation/prediction, after an
initial training period of all 20 modes, 4 of them are randomly selected for further training while other 16 modes are predicted using MMSE approach. 1
km/h user speed. (a) Mean square error results for CSI estimation and prediction, (b) Shannon capacity results for CSI estimation and prediction.

(see Figs. 8.a and 8.b), it is also seen that the MRA wittan be achieved using MRAs. For example, 10% outage rate
mode selection achieves up3a@B SNR gains. Note that theseimproves by 125% and 85% at SNR =0 dB and 5 dB,

gains are obtained with identical overhead for both MRA améspectively, with25 antenna modes. It is also seen, as one
fixed antenna systems. The curves marked as random muaaelld expect, that only diminishing returns are available as
selection in Figs. 7.b and 7.d indicate the performance oftlee number of modes is increased. This implies that one may
link with an (arbitrarily picked) fixed antenna mode. get most of the gains out of an MRA system using a proper

: mode subset selection.
In order to evaluate the impact of the number of modes on

the system performance, we depict the outage probabilitiedn Fig. 7.d, a comparison between performance for two
for various scenarios in Fig. 7.c. Here, for each SNR amtifferent mode selection mechanisms is provided. In the single
for each curve at a given SNR, the outage probabilities asabcarrier based mode selection scheme, the gain of the chan-
calculated forF modes,F = 1,...,25, and for eachF, nel at a single subcarrier is employed, while in the wideband
the outage probability is averaged ovEI00 realizations of capacity based selection, the antenna mode with the highest
S = {wm,...,ur}. Hence, the results indicate an averageideband capacity averaged over all pilot tones is used at any
performance obtained by employing an MRA with active time. The results are obtained for two different MRAs with
modes of operation. It is clearly seen that significant gaifisand 20 modes. From Fig. 7.d, we observe only a slight
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Fig. 10. Shannon rate comparisons for (a) 5 km/h (b) 20 km/h. For both cases, mode selection based on a single subcarrier is performed using (21).

Wideband transmission

1008 10°

10t ] 10 ]
o . —©— Optimal - Ideal CSI
I —©6— Optimal - Ideal CSI i ——8&— Random - Ideal CSI
0 —&— Random - Ideal CSI n — © — Optimal - CSl estimation
— © — Optimal - CSI estimation — 8 — Random - CSlI estimation
— 8 — Random - CSlI estimation —-©-— Optimal - 4 SF delay J
102} —-©-— Optimal - 4 SF delay 102
i)
10,3 1 1 1 1 1 10,3 1 1 1 1 1
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Tx SNR [dB] Tx SNR [dB]
(@) (b)
Fig. 11. Symbol error rate for 5 km/h (a) narrowband (b) wideband transmission. For both cases, mode selection based on a single subcarrier is performed
using (21).

degradation (of less than 1 dB) with the suboptimal mods MRA system witl20 active modes withl of them selected
selection based on a single subcarrier for both cases. for training. We again us800 subframes for initial training,

In Fig. 8, we also illustrate the impact of feedback dela§Plying that each mode is trained for oril§ times. After the
for reporting the selected mode to the transmitter. We assutfiial training, 4 modes are selected for further training. Fig. 9
a4 ms (e.g.4 subframes) feedback delay [48] correspondiri@dicates the resulting MSE and ergodic Shannon capacity. It
to 4 subframes in the simulations. In this case, out of2he IS again observed that the proposed CSI estimation/prediction
subframes used for data transmission, the transmitter empl@j#l mode selection methods can obtain most of the gains
the best mode from the previous data transmission sessfyilable with MRA systems, i.e., the performance is within 1
during the first! subframes, and then shifts to the best select& Of the best attainable performance, and it provides around
mode for this session for the remaini2g subframes. We see 4.5 dB SNR gain compared to the system using an arbitrarily
that there is a negligible loss of less tha dB for narrow- Picked mode.
band transmission, and arouridd dB loss for wide-band
transmission, due to the feedback delay, hence the propo§edmpact of Mobility

scheme remains effective. We next investigate the impact of user speed on the MRA
In order to study the impact of time lags in the presence ofsgstem performance with the proposed channel estimation
larger number of antenna modes, we repeat the experimentssciieme (Figs. 10-12). As the user speeds increase, since the
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Fig. 12. Symbol error rate for 20 km/h (a) narrowband (b) wideband transmission. For both cases, mode selection based on a single subcarrier is performed
using (21).

channel variations become more rapid, the periodic trainiegndidate for 5G and beyond. In this work, we focus on a
parameters need to be reselected. For 5 km/h, suitable numileck MMSE based channel estimation/prediction procedure.
of training and data symbols are found to b2 and 36, Noting that the channel estimation for MRA antenna systems
respectively, while foR0 km/h, 6 and18 symbols provide the fits very well to the compressive sensing problem since we
best results. We observe that with the faster mode selectiattempt to predict the channel for many different antenna
the proposed scheme can track the best mode of operation eradies using only a small subset of trained modes, a possible
achieve a better performance compared to non-MRA systenmesearch direction is to develop compressed sensing based
The channel capacity results are summarized in Fig. 10, actthnnel estimation and sparse Bayesian learning solutions for
the resulting symbol error rates are depicted in Figs. 11 atite mode selection scheme. An analytic framework associating
12. The symbol error rates with feedback delay of 4 subframéine sparsity of multipath channel and radiation pattern space
are also included in the figures. It is observed that &tn/h, with the spatial correlations may be investigated towards that
the SNR loss is only abowt5 dBs, while for the higher speedend. In addition, the relation between the configuration modes
of 20 km /h, the SER is only slightly better than that for thend the wireless channel can be further explored to implement
system with a fixed antenna mode. Therefore, for chann®dRAs that can create modes that are matched to the statistics
with low coherence times, we suggest the use of MRAs fof the scattering environment allowing for improved channel
long-term performance improvements rather than extractiegtimation along with superior performance.

short-term gains.
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