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Abstract—Multifunctional and reconfigurable multiple-input
multiple-output (MR-MIMO) antennas are capable of dynam-
ically changing the operation frequencies, polarizations and
radiation patterns, and can remarkably enhance system capabil-
ities. However, in coherent communication systems, using MR-
MIMO antennas with a large number of operational modes may
incur prohibitive complexity due to the need for channel state
estimation for each mode. To address this issue, we derive an
explicit relation among the radiation patterns for the antenna
modes and the resulting channel gains. We propose a joint
channel estimation/prediction scheme where only a subset of
all the antenna modes is trained for estimation, and then, the
channels associated with the modes that are not trained are
predicted using the correlations among the different antenna
modes. We propose various training mechanisms with reduced
overhead and improved estimation performance, and study the
impact of channel estimation error and training overhead on the
MR-MIMO system performance. We demonstrate that one can
achieve significantly improved data rates and lower error prob-
abilities utilizing the proposed approaches. For instance, under
practical settings, we observe about 25% throughput increase
or about 3 dB signal-to-noise ratio (SNR) improvement under
the same training overhead with respect to non-reconfigurable
antenna systems.

Index Terms—Multifunctional and reconfigurable antennas,
MIMO, multipath channels, channel estimation, antenna radi-
ation patterns.

I. I NTRODUCTION

Multifunctional and reconfigurable antennas (MRAs) form
a new class of antennas that can dynamically be configured
to operate at different frequency bands, and with different
polarizations and radiation patterns [1], [2]. Such antennas are
strong candidates for 5G and beyond technologies where a
single device may need to support multiple radio access tech-
nologies with different set of operational requirements (e.g.,
frequency band, polarization) [3]. In addition, the availability
of multiple radiation patterns with different polarizations can
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provide enhanced spatial diversity that can fortify the tech-
niques combating interference. One can imagine that each
reconfigurable mode of operation of an MRA, a.k.a. antenna
mode, creates a different antenna as it may have a different
operation frequency, polarization and radiation pattern. Various
enabling technologies (e.g., MEMS switching, semi-conductor
switches, liquid metals) and design approaches (e.g., variable
reactive loading, parasitic tuning and structural/material mod-
ifications) have been developed to create MRAs [1].

In this paper, we specifically consider the MRAs based on
the parasitic tuning approach [4], [5]. In this MRA technology,
an active antenna element is accompanied by a reconfigurable
parasitic pixel layer whose pixels (electrically small rectan-
gular shaped metallic elements) are interconnected by means
of switching that are controlled via DC biased lines. By
properly modifying the switch statuses, the parasitic surface
layer is reshaped resulting in different radiation, frequency and
polarization properties, i.e., a different antenna mode. We note,
however, that the channel modelling as well as the analysis
and design approaches developed throughout the paper can be
applied to any MRA system, i.e., they are not specific to the
parasitic tuning technology.

The use of MRAs in wireless communication systems has
recently attracted significant attention due to the additional
degrees of freedom they offer which may be exploited to
achieve superior performance [6]–[12] as compared to systems
employing antennas with fixed properties. Combined with the
multiple-input multiple-output (MIMO) antenna technology,
the resulting MR-MIMO antennas offer even greater degrees of
freedom to combat the adverse effects of wireless propagation
environments [13]. On the other hand, for such systems, ex-
tensive channel estimation requirements arise as a challenging
and important issue. Since a rich scattering medium results in
multipath propagation, changes in antenna radiation patterns
result in different gains for different departure and arrival
paths, and hence, their superposition results in different chan-
nels for each radiation pattern, giving rise to pattern diversity.
Since each antenna mode creates a different channel, one needs
to estimate the corresponding channel state information (CSI)
separately. For cases with a few antenna modes, this overhead
may be tolerable, however, if there exists a large number of
antenna modes, the estimation overhead may be prohibitive.
This is the main motivation of this work which attempts to
develop efficient CSI estimation procedures for MR-MIMO
systems.
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Some attempts have been made to attack the channel es-
timation problem for MRAs in [14]–[16]. Eslami et. al. [14]
proposes a reduced complexity training approach that involves
the selection of a number of modes and using only those modes
for communication. The authors attempt to reduce the number
of modes to be trained via statistical or direction finding
based approaches where the effective angle of arrivals are
determined to select better antenna modes. They also analyze
the use of all available modes being trained for different
pilot overheads. However, their approach does not allow for
an effective utilization of the antenna modes dismissed from
training sessions. In [15], Gulati and Dandekar propose a
multi-bandit learning algorithm to select the antenna modes
to reduce the required training overhead for CSI estimation.
Again, the goal is to actively use a smaller number of antenna
states for data transmission. In [16], Grau et. al. investigate
the use of a class of generic reconfigurable antennas under
a Kronecker channel correlation model and the assumption
that a number of antenna ports can be decoupled. However,
the decoupling assumption may not be valid for many MRA
design approaches, and it may limit the available number of
antenna modes for performance optimization.

Different from the previous approaches, in this paper, we
first consolidate the relation among the antenna modes and the
wireless channel. We formulate the relationship among the an-
tenna modes associated with radiation fields from MR-MIMO
antennas and the resulting channel realizations with the goal of
developing low-overhead channel estimation techniques with
reduced estimation errors. We consider a realistic 3D double-
directional channel model for the MR-MIMO antenna link
and also assume that any of the available antenna modes can
potentially be activated during transmission [17], [18]. Using
the beamspace MIMO concept [19], the effects of MR-MIMO
radiation field on the channel gains can be decoupled from
those of the multipath propagation medium. This allows for
casting the CSI estimation as an estimation/prediction problem
where the antenna modes to be trained are used for obtaining
a low-dimensional observation matrix from which the CSI for
the other antenna modes are predicted. The selection of the
training modes can further be optimized.

Our contributions can be summarized as follows: (i) an
explicit relation among the antenna modes and the resulting
channel gains are determined for MR-MIMO antennas, (ii)
an efficient and effective channel estimation procedure is
developed which utilizes a relatively small number of modes
for explicit training and predicts the CSI for all available
modes, and (iii) methods for antenna mode set selection to
improve the CSI estimation performance are developed. In
our study, we consider the well-known Orthogonal Frequency
Division Multiplexing (OFDM) based transmissions (e.g., as
in the LTE and WiFi physical layers), and via extensive
simulations, we show that about 25% theoretical throughput
gain or about 3 dB signal-to-noise ratio (SNR) improvement
can be achieved with respect to non-reconfigurable MIMO
antenna systems in realistic scenarios. With suitable selection
of training mode set according to the spatial correlation and
the coherence time of the channel, we demonstrate that the
proposed estimation/prediction technique can be employed to

learn the CSI even when only a small set of antenna modes
are explicitly trained.

The rest of the paper is organized as follows. In the next
section, we provide the details on the underlying MRAs
and MR-MIMO antennas, and extend an existing MIMO
channel model to the case of MR-MIMO. In Section III, we
describe the proposed channel estimation approaches for MR-
MIMO systems. Extensive numerical examples are provided in
Section IV, and finally, concluding remarks with some future
research directions are given in Section V.

Notation: The notation~f = fθ~eθ + fφ~eφ denotes spherical
coordinate representation of complex electric field with~eθ and
~eφ referring the unit vectors inθ andφ directions, respectively.
〈~f,~g〉 = f∗

θ gθ + f∗
φgφ denotes the inner product where(·)∗

indicates the complex conjugate operation. Similarly, the inner
product for matrices,CN×M = 〈 ~AN×L, ~BL×M 〉 is defined as

cn,m =

L
∑

l=1

〈[ ~A]n,l, [ ~B]l,m〉.

[A]n,m (or [ ~A]n,m) denotes then ×mth entry of the matrix
A (or ~An,m). CN (a, b) denotes circularly symmetric complex
Gaussian distribution with meana and varianceb. A ⊗ B

denotes the Kronecker product ofA and B, and vec(A)
denotes vectorization of the matrixA by stacking its columns
to a one dimensional vector. For a vectorv, diag(v) represents
a diagonal matrix with elements ofv on the main diagonal,
and for a set ofL matricesVi, i = 1, . . . , L, diag(Vi),
∀i represents a block diagonal matrix constructed fromVi’s.
Tr(A) denotes the trace of square matrixA.

II. CHANNEL MODEL FORMR-MIMO A NTENNA L INK

The double directional MIMO (DD-MIMO) channel model
[17], [20]–[23] is a widely accepted model that combines ideas
from ray tracing and statistical channel modeling where a
number of discrete direction of arrivals and departures are
generated randomly using certain distributions. DD-MIMO
channel model is suitable for accurately modelling the wireless
channel taking into account the antenna radiation patterns. We
first extend this model to the case of MR-MIMO antenna links,
and then develop the corresponding signaling model.

A. Legacy MIMO versus MR-MIMO Antenna Links

Fig. 1.a compares a legacy MIMO antenna having elements
with fixed properties and an MR-MIMO antenna consisting
of MRA elements (see Fig. 1.b) with variable properties.
MRA elements provide additional degrees of freedom to the
MIMO system due to the variable element factors. For the
MRA design depicted in Fig. 1.b, this is accomplished by
changing the geometry of the parasitic surface via the on-off
switches embedded in between the metallic pixels constituting
the parasitic layer. Due to space constraints, we refer the reader
to [24] for details on the design and optimization of this MRA
design approach. The MRA depicted in Fig. 1.b comprises
of a 3 × 3 parasitic pixel surface interconnected by12 p-i-n
diode switches. Thus, a total of212 different switch states,
i.e., antenna modes, exist. A given set of switch states define
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Fig. 1. (a) Legacy MIMO antenna versus MR-MIMO antenna, each withM antenna elements.wm = |wm|ej∠wm is the complex weight for antenna-m,
m = 1, . . . ,M . DC lines are used to excite the specific antenna modesµm, m = 1, . . . ,M , at antenna−m. (b) An MRA design based on parasitic coupling.
A 3× 3 metallic pixel surface interconnected by 12 on-off switches (e.g., via p-i-n diodes).

a specific polarization, frequency and radiation pattern, which
is referred to as the mode of operation.

In this paper, we focus on MR-MIMO antennas with
identical reconfigurable elements, but each element may be
set to a different mode. Let~f(θ, φ, µ) denote the elemental
complex far-field radiation pattern whereµ ∈ {1, 2, . . . , Lµ}
is the antenna mode index representing the excited mode of
operation andLµ is the number of antenna modes. Then,
for an MR-MIMO antenna withM MRA elements, ignoring
the mutual coupling among the parasitic surfaces of different
elements, the complex pattern for themth element can be
expressed as

~f(θ, φ, µm) = fθ(θ, φ, µm)~eθ + fφ(θ, φ, µm)~eφ (1)

with µm ∈ {1, . . . , Lµ} representing the mode index of
antenna-m, m = 1, . . . ,M . Note that there areLM

µ differ-
ent modes of operation corresponding to different radiation
patterns.

B. Double Directional MIMO Channel Model for MR-MIMO
Systems

Fig. 2 illustrates the double directional channel model
[20,21] for an MR-MIMO system withM transmit andN
receive MRAs. According to this model, under the balanced
array [20] and plane wave propagation assumptions, and
assuming that the channel is fixed during the symbol duration,
the complex base-band channel gain between transmit MRA-
m and receive MRA-n for a narrow-band signal at frequency
ς can be expressed as

hn,m(µm, νn) =

Lr
∑

j=1

Lt
∑

i=1

xj,i〈~fΩ(θi, φi, µm), ~fΨ(ϑj , ϕj , νn)〉

× e−j 2π
λ

(kT (θi,φi)(pm−p1)+kT (ϑj ,ϕj)(qn−q1))−j2πςτi,j (2)

where the parameters are summarized in Table I.
Let [H ]n,m(µ,ν) = hn,m(µm, νn) denote theN × M

MIMO channel matrix. Each departure path is coupled with
each of the arrival paths resulting in a total ofLtLr resolvable
paths whose gain and propagation delay are denoted byxj,i

andτj,i, respectively,i = 1, . . . , Lt, j = 1, . . . , Lr. We denote
theLr × Lt channel gain matrix byX.

To express (2) in a more compact form, let us first define
the transmit and receive steering matrices for the transmit and
arrival paths as,B = [b1 . . . bLt

] andA = [a1 . . . aLr
] ,

respectively, wherebi and aj are the transmit and receive
steering vectors given by

bi = [1 e
−j 2π

λ
kT (θi,φi)(p2−p1) . . . e

−j 2π
λ

kT (θi,φi)(pM−p1)]T (3)

for i = 1, . . . , Lt,, and

aj = [1 e
−j 2π

λ
kT (ϑj ,ϕj)(q2−q1) . . . e

−j 2π
λ

kT (ϑj ,ϕj)(qN−q1)]T , (4)

for j = 1, . . . , Lr. Next, by defining the pattern vectors

~fΩ(µm) = [~fΩ(θ1, φ1, µm), . . . , ~fΩ(θLt
, φLt

, µm]T

~fΨ(νn) = [~fΨ(ϑ1, ϕ1, νn), . . . , ~fΨ(ϑLr
, ϕLr

, νn)]
T

and expressing the rows of the steering matrices as diagonal
matrices

Um = diag([bm,1 . . . bm,Lt
]), bm,i = [B]m,i, i = 1, . . . , Lt,

Vn = diag([an,1 . . . an,Lr
]), an,i = [A]n,j , j = 1, . . . , Lr,

one can rewrite (2) as

hn,m(µm, νn) = fH
Ω,θ(µm)UmX ′TVnfΨ,θ(νn)

+ fH
Ω,φ(µm)UmX ′TVnfΨ,φ(νn)

= 〈 ~fΩ(µm), H̃n,m
~fΨ(νn)〉 (5)

where[X ′]j,i = xj,ie
j2πςd,jte−j2πςτj,i , and

[H̃n,m]i,j = [B]m,i · [A]n,j · [X
′]j,i, i = 1, . . . , Lt, j = 1, . . . , Lr.
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Fig. 2. Double directional channel model.M transmit andN receive MRA elements,Lt direction of departures, andLr direction of arrivals. The reference
coordinates are also depicted for the transmit and receive antennas.

TABLE I
DOUBLE DIRECTIONAL MIMO MODEL PARAMETERS

Parameter Definition Parameter Definition

Lt Number of departure paths Lr Number of arrival paths
~k(θ, φ) Unit length wave-vector for departure paths ~k(ϑ, ϕ) Unit length wave-vector for arrival paths
(θi, φi) Angle of departure for DoD-i, i = 1, . . . , Lt (ϑj , ϕj) Angle of arrival for DoA-j, j = 1, . . . , Lr

(θB , φB) Transmit antenna tilt direction (ϑB , ϕB) Receive antenna tilt direction

xj,i Channel gain for the path between DoD-i and DoA-j ςd,j Doppler shift for jth arrival path, ςd,j =
fc|v|

c
kT (ϑj , ϕj)v, v: Velocity vector

τj,i Delay for the path between DoD-i and DoA-j λ wavelength
pm Transmit antenna-m coordinate qn Receive antenna-n coordinate
µ M transmit antenna mode indices(µ1, . . . , µM ),

µ ∈ {1, . . . , Lµ}, m = 1, . . . ,M
ν N receive mode indices(ν1, . . . , νN ), νn ∈

{1, . . . , Lν}, n = 1, . . . , N
Lµ Number of modes for transmit MRA element Lν Number of modes for receive MRA element
~fΩ(θ, φ, µm) E-field pattern for themth transmit MRA ele-

ment taking into account the boresight tilt direction
(θB , φB)

~fΨ(ϑ, ϕ, νn) E-field pattern for thenth receive MRA element
taking into account the boresight tilt direction
(ϑB , ϕB)

Note that (5) decouples the impact of element-wise recon-
figuration of the MR-MIMO antenna from the other terms
related to steering vectors and the multipath propagation
effects. In addition, the inner product expression among the
electric field vectors reflects the impact of the field polarization
mismatch among the received signal polarization and antenna
polarizations [25], [26]. Furthermore, (5) shows explicitly the
dependence of the channel variations on the scatterers and
the user speed throughxj,i and ςd,j. In what follows, it is
assumed that the scatterers are quasistatic, that is, they remain
the same over a long period of time, while the temporal
variations due toςd,j are more pronounced. Note that for
MR-MIMO antennas, (5) can be employed to generate the
channel matrixHn,m(µ,ν). For legacy MIMO with identical
elements, this relation can be simplified toH = BHsA

T

whereHs is theLt×Lr matrix whose entries are the complex
path gains between all departure and arrival angles including
the associated antenna gains [20].

Using the superposition principle [25], [26], after matched
filtering [27, Chapter 4], the signal received from antenna-n

for a narrow-band transmission can be written as

rn(µ, νn) =

M
∑

m=1

hn,m(µm, νn)wmsm + zn (6)

where it is assumed that the channel is fixed during the symbol
transmission time, andzn ∼ CN (0, σ2

z) denotes the additive
white Gaussian noise at the receive antenna-n. In (6), sm
denotes the unit power signal emanating from antenna-m, and
wm is the complex gain weighting at that antenna. From (5)
and (6), it is seen that changing the transmit and/or receive
antenna modes result in different channel realizations for
the same propagation medium. This point will be elaborated
further in the following sections.

III. C HANNEL ESTIMATION FOR MR-MIMO A NTENNA

SYSTEMS

Employing MRAs at the transmitter and/or receiver intro-
duces variations due to antenna reconfigurations in addition to
the usual temporal and spatial variations created by multipath
fading. Each one of the large number of antenna modes
associated with an MRA creates a different channel, thereby
making channel estimation a challenging task. In order to fully
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exploit the degrees of freedom available, it is necessary to
estimate the channel for different (perhaps all) antenna modes
within the coherence time of the channel. With the presence
of a large number of modes (e.g.,4096 for the MRA shown
in Fig. 1.b), the channel estimation based on an exhaustive
training requires excessive overhead and delay, which makes it
undesirable, or even infeasible. Therefore, an efficient MIMO
channel estimation procedure for MRA systems requires a
unified framework taking into account both the structure
of the wireless medium and the underlying MRA radiation
capabilities. With this motivation, we utilize the beamspace
representation of radiation patterns [28]–[30] and resulting
wireless channels [31]–[33], and develop an analytical frame-
work for the combined estimation and prediction procedure.
The explicit relation in (5) among the underlying antenna
modes and the channel realizations enables the development
of a formulation where only a small set of antenna modes need
to be explicitly trained, and the remaining modes are predicted
using the correlations among them.

A. Antenna Patterns and the Wireless Channel

Equation (5) relates the underlying antenna radiation pat-
terns and the resulting channel realizations. This relation,
however, requires the explicit knowledge of departure and
arrival angles. To avoid this issue and evaluate the impact
of different radiation patterns on the CSI, one can utilize
the beamspace concept of [21] [19, Chapter 3]. To that
end, let there existLµ antenna modes for the element of
an MR-MIMO antenna, and thereforeLµ different radiation
patterns,~f(θ, φ, µ), µ ∈ {1, . . . , Lµ}. In addition, let there
be ̥ ≤ Lµ orthonormal basis radiation pattern functions,
~ωi(θ, φ), i = 1, . . . ,̥, which can be used to represent all the
radiation patterns. For instance, for a given set of radiation
pattern functions~f(θ, φ, µ), µ ∈ {1, . . . , Lµ}, the Gram-
Schmidt process can be used to compute one such basis
function set [19, Chapter 3]. Thus, we have the analysis-
synthesis relations as

~f(θ, φ, µ) =

̥
∑

i=1

αµ,i~ωi(θ, φ)

s.t.αµ,i =

∫∫

〈~f(θ, φ, µ), ~ωi(θ, φ)〉 sin(θ)dθdφ. (7)

From (7), we can express correlation among radiation patterns
corresponding to modesµk andµl as

ρ̆µk,µl
=

αH
µk
αµl

||αµk
|| · ||αµl

||
(8)

whereαµ = [αµ,1 . . . αµ,̥]. Applying (7) to both the transmit
and receive radiation patterns in (5) (for brevity, we drop the
(t, f) for this section), we obtain

hn,m(µm, νn) = 〈~Ωαµm
, H̃n,m

~Ψγνn〉

= αH
µm

〈~Ω, H̃n,m
~Ψ〉γνn

= αH
µm

H̄n,mγνm

= (γ∗
νn

⊗αµm
)Hvec(H̄n,m) (9)

whereαµm
andγνn are, respectively, the̥ t × 1 and̥r × 1

synthesis coefficients for transmit and receive patterns,~Ω is
theLt×̥t basis radiation pattern values evaluated at(θi, φi),
for i = 1, . . . , Lt, and~Ψ is theLr×̥r basis radiation pattern
values evaluated at(ϑi, ϕi), for i = 1, . . . , Lr. To obtain (9),
we collect the terms other than the antenna mode configuration
into an̥t ×̥r matrix usingH̄n,m = 〈~Ω, H̃n,m

~Ψ〉. Hence,
all the unknown variables appear in the matrix̄Hn,m. With
the exact knowledge of this matrix, along with the synthesis
coefficientsαµm

and γνn that can be calculated off-line,
(9) can be used to evaluate the relation among the element
radiation patterns and the channel gains for all the antenna
modes.

Using (9), the cross correlation between the channel with
modesµm = i, νn = j and µm = k, νn = l, denoted by
ρn,m(i, j, k, l), is given by

ρn,m(i, j, k, l) =
E{hn,m(i, j)h∗

n,m(k, l)}
√

E{||hn,m(i, j)||2}E{||hn,m(k, l)||2}

=
Tr

(

(γ∗
l
γT
j ⊗αkα

H
i )Rx̄

)

√

Tr
(

(γ∗
j γ

T
j ⊗αiα

H
i )Rx̄

)

Tr
(

(γ∗
l
γT
l

⊗αkα
H
k
)Rx̄

)

(10)

where x̄ = vec(H̄n,m), Rx̄ = E{x̄x̄H}, and we exploit
the relation Tr(AB) = Tr(BA). It is seen that as long
as the correlation matrixRx̄ remains same, the correlation
between the channels for the different modes of operation
remains the same. This observation is important especially for
a slowly varying channel where the scatterers are quasistatic
and channel realization for a given mode can be predicted from
the channel realization of another or some other modes using
the correlationsρn,m(·). The channel correlations between
different modes of operation can also be justified directly from
(2) where it is observed that a small change in radiation pattern
functions can create only a small change in respective channel
realizations. The changes in the channel gain depend on the
similarities among the antenna radiation patterns. Equation
(10) provides a mathematical framework for this observation.

The relation in (10) can further be simplified provided that
the medium is a uniformly rich scattering environment where
Rx̄ is modelled as an identity matrix, i.e.,

ρn,m(i, j, k, l) =
(γT

j γ
∗
l ) · (α

H
i αk)

||γj || · ||γl|| · ||αi|| · ||αk||
(11)

which depicts a more clear relation between the pattern cor-
relations and the channel correlations. That is, those antenna
modes that have smaller pattern cross-correlations will result
in smaller channel correlations. If the mode of the transmit or
the receive antenna is fixed, one can further simplify (11) to

ρn,m(i0, j, i0, l) =
γT
j γ

∗
l

||γj || · ||γl||
, (12)

ρn,m(i, j0, k, j0) =
αH

i αk

||αi|| · ||αk||
, (13)

where i0 denotes the transmit MRA mode, andj0 denotes
the receive MRA mode indices in (12) and (13), respectively.
For (11)-(13), it is seen that the channel correlations reduce
to radiation pattern correlations defined in (8). We note that
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the expressions in (11)-(13) are provided to highlight the
relationship between the pattern and channel correlations.
For actual system analysis and numerical examples in the
subsequent sections, we employ (10) to evaluate the channel
correlations.

Let us study the relationship between different antenna
modes and the resulting channel gains using a numerical exam-
ple. Fig. 3 depicts the relations among the pattern correlations
using (10) and the corresponding realized channel correlations
obtained by changing the antenna mode while keeping the
propagation medium fixed. We investigate both a relatively
low scattering environment modeled by micro-cell channel
model B1 from Winner+ project [34]–[37], and a uniformly
rich scattering environment modeled via400 transmit and400
receive rays with 3D uniform AoD and AoA spreads. In this
example, the receive antenna mode is fixed and the channels
are generated for 25 different transmit antenna modes, which
amounts to a total of 325 auto- and cross-correlation values.
The correlation values are sorted according to the absolute
value of the radiation pattern correlations, and at each index,
the corresponding channel correlation is plotted. In both cases,
it is seen that as the radiation pattern correlations increase,
the channel correlations tend to increase as well; however,
this relationship is more pronounced for a uniform scattering
environment. This result clearly demonstrates that the CSI
estimates for a number of modes will help predict the CSI
for the others.

Mode Pair Indices
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Fig. 3. Pattern correlations versus channel correlations. The channels are
averaged over 20 different multipath conditions each with 10000 channel
realizations.

B. Channel Estimation for MR-MIMO Links

We consider pilot-assisted training with narrow-band trans-
mission where a known pilot signal sequence is intermittently
transmitted to allow the receiver to perform channel estima-
tion. In addition, we assume an orthogonal training mechanism
for the MIMO case where only one transmit antenna is active
for a given training symbol duration.

Let Tc andKc denote the number of symbols and subcar-
riers, respectively, in a channel training and data transmission

session, and let(ti, ki,j), i = 1, . . . , Lp, j = 1, . . . ,Ki,
denote the symbol and subcarrier indices of the resource
elements (REs) at which pilot signals,pm, m = 1, . . . ,M ,
from antenna-m are transmitted. Assuming a symbol duration
Ts, we havet = tiTs, and ς = ki,j∆f. Lp is the number
of training symbols (e.g., channel uses) such that1 ≤ t1 <
. . . < tLp

≤ Tc, andKi is the number of training subcarriers
for symbol-i such that1 ≤ Ki ≤ Kc. Hence, a total of
LT =

∑Lp

i=1 Ki out of TcKc subcarriers are employed for
training. The received signal at antenna-n, n = 1, . . . , N, is
given by

rn(µti , νn,ti) =
M
∑

m=1

hn,m(µm,ti , νn,ti)pm,ti,ki,j
+ zn,ti,ki,j

,

for i = 1, . . . , Lp, j = 1, . . . ,Ki, which can be rewritten as

r(µ,ν) = Ph(µ, ν) + z (14)

by stacking thern(µti , νn,ti) and zn,ti,ki,j
to NLT × 1

vectors,hn,m(µm,ti , νn,ti) to MNLT × 1, vector and ex-
pressing the pilot sequence as a block diagonal matrixP =
diag{pT

i,j ⊗ IN×N}, i = 1, . . . , Lp, j = 1, . . . ,Ki, with
pi,j = [p1,ti,ki,j

. . . pM,ti,ki,j
]T . The minimum mean square

error estimation (MMSE) [38] for the channel and the corre-
sponding mean square error covariance matrix are then given
by

ĥ(µ,ν) = Rhh

(

Rhh +P
−1

RzzP
−H

)−1

P
−1

r(µ, ν),

Rǫǫ(µ,ν) = Rhh −Rhh(Rhh +P
−1

RzzP
−H )−1

Rhh, (15)

respectively. HereRhh and Rzz = σ2
zIMNLT

are the co-
variance matrices of the channel vector and the noise vector,
respectively. Note thath is a vector containing channel gains
at REs at which pilot symbols are transmitted over different
antennas, and henceRhh contains temporal, spectral and
spatial correlations.

Note that for reduced training overhead, the amount of
training symbols should be kept small. Typically, a portion
of the subcarriers are reserved for pilot transmission in an
OFDM symbol which means that data is also being transmitted
concurrently. Let us assume that the mode training procedure
is activated from time to time. That is, during a regular
transmission period, the transmitter uses the selected antenna
mode for both training and data transmission. During the
mode training session, the transmitter activatesF antenna
modes meanwhile usual data transmission is performed at the
data subcarriers. During the training period, ideas similar to
adaptive modulation and coding [39], [40] can be used to take
into account the excitation of different antenna modes. Finally,
we note that we consider the transmit antenna reconfiguration
while keeping receive antenna at a fixed configuration in the
following. It is straightforward to extend the proposed con-
cepts to the general case where both transmitter and receiver
perform mode configuration.

C. Antenna Mode Training for MR-MIMO

When there are many antenna modes, it may not be feasible
to train all the modes during one coherence block. To develop a
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Sbn−1

(n− 1)Tc nTc

Sbn

Time

Training periodn− 1

Lp Lp
Tc − Lp

Fig. 4. Channel training protocol for transmission with reconfigurable
antennas. Each training period ofTc channel uses employsLp channel uses
for training the mode groupSbn for thenth training session, withbn =

(

n

mod
Lµ

F

)

. With fixed mode groups,Sb, b = 0, . . . ,
Lµ

F
− 1, this protocol

corresponds to exhaustive mode training. The training groups can ba updated
according to intelligent mode update criteria as well.

complete scheme, let us first extend the periodic-training based
channel estimation procedure to a MR-MIMO link where the
channels for a relatively small number of antenna modes are
to be estimated.

1) Exhaustive Training:Out of the all possibleLµ transmit
modes, the transmitter and receiver arbitrarily agree on the set
of transmit antenna mode sets

Sb = {µb,1, . . . , µb,F }

for the bth antenna mode group. There are a total ofLµ/F
different groups to be employed for transmission. Each an-
tenna mode is trained for an equal number of channel uses
denoted byβ =

Lp

F
. As depicted in Fig. 4, the channel training

with the subsequent mode group startsTc channel uses later.
It is assumed that the training groups are repeated according
to modulo-Lµ/F if the total transmission time to the user
takes longer thanLµTc

F
channel uses. During the initialLp

channel uses of the training period, the receiver estimates the
channel for each mode and reports the best modes to the
transmitter. The transmitter uses the selected mode for the
rest of the coherence block until the next channel training
period. Note that with this approach, regardless of the number
of antenna modes, the training overhead is fixed atLT /TcKc.
Reducing the number of training symbols per antenna mode
results in larger delays for CSI estimation of the remaining
modes. Later, it will be shown by numerical examples that
the selection of the design parameters strongly depends on the
channel coherence time and the correlations among different
antenna modes.

2) Intelligent Mode Update:While small scale fading
causes relatively fast temporal variations, the higher order
variations, such as spatial correlation of the MIMO channel,
vary much more slowly. This is mainly due to the fact that the
main scatterers do not change significantly for low-mobility
users over multiple coherence blocks [20]. This implies that
certain antenna modes will better fit to a propagation environ-
ment. Thus, as transmissions go on, the system may be able
to learn the appropriate antenna modes and limit the antenna
reconfiguration to those.

To that end, we assume that there is a low-rate feedback
channel where the antenna modes selected by the receiver
are fed back to the transmitter. The transmitter and receiver
initially agree on the set of antenna mode pairs as in the
exhaustive mode training approach. The receiver then monitors
the system performance during data transmission periods and
updates the training mode groupsSb according to some

criterion. For example, for a training mode pair(µ,ν), as-
suming equal power allocation, one such metric is the average
achievable rate estimate

C(µ,ν) =
1

Uµ,ν

∑

i,j,µti
=µ,νti

=ν

log2

∣

∣

∣

∣

I +
1

σ2
z

Ĥ(µ,ν)ĤH(µ,ν)

∣

∣

∣

∣

whereUµ,ν is the number of REs for which the mode pair
(µ,ν) is trained, and

[

Ĥ(µ,ν)
]

n,m
= ĥn,m(µm,ti , νn,ti) is

the estimatedN ×M MIMO channel.
During the training sessions, the receiver sorts the modes

according to the resulting channel qualities and stores them.
Within a certain number of training sessions, the receiver
gathers a list of antenna modes with relatively good channel
qualities. At the end of the training sessions, the receiver
reports the list to the transmitter implying that the upcoming
transmissions will employ only the modes within the list.
Thus, a lower number of antenna modes will be trained, and
hence the training overhead will be reduced. Such a procedure
also alleviates the estimation problem when some or all of
selected trained modes inSbn experience a deep fade as
the transmitter updates the modes to be trained for the next
training round. Note that the list may be updated whenever
the channel qualities for the selected list of antenna modes
become worse. To do so, the transmitter and/or receiver may
request to reset the list and restart the training procedure with
the initially agreed upon list.

D. Joint Estimation and Prediction for MR-MIMO Channels

The overhead due to the training mechanisms described in
Section III-C may be prohibitive in the presence of many
antenna modes. In order to reduce this overhead, we utilize
the channel representations developed in the previous section.
Using the analysis developed in Section III-A, one can exploit
the presence of correlations among the channels at different
antenna modes. For instance, a subset of antenna modes can be
selected to train the channel to obtain an estimate ofH̄n,m and
then the channel gains for all other modes can be predicted.
To that end, let us assume thatF antenna modes are selected
for channel training. At a given instance, the CSI for theseF
modes can be written from (9) as

hn,m = Γvec(H̄n,m), (16)

with Γ = [γT
ν ⊗ αH

µ1
. . . γT

ν ⊗ αH
µF

]T , and hn,m =
[hn,m(µ1, ν), . . . , hn,m(µF , ν)]

T . By using (9), the same pro-
cedure can be repeated for all the remainingLµ − F antenna
modes to obtain the corresponding channel state estimates

hc
n,m = [hn,m(µF+1, ν), . . . , hn,m(µLµ

, ν)]T .

Different prediction algorithms can be used. For instance, by
using the least squares (LS) criterion, we can representhc

n,m

in terms of the channel realizations from the training sethn,m

as

hc
n,m = Γ

c
(

Γ
H
Γ
)−1

Γ
Hhn,m (17)

with Γ
c = [γT

ν ⊗ αH
µF+1

. . . γT
ν ⊗αH

µLµ
]T .

WhenFtFr > F , which is typical for the underlying MR-
MIMO systems, the system is under-determined since we
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have more unknown variables than the available observations.
Therefore, the LS solution may not perform well and the
performance may get worse as the number of untrained
modesLµ − F increases well beyond the number of trained
modes. Furthermore, the errors inherited from the estimation
of trained modes may become more critical for the prediction
performance. On the other hand, as described in Section III-A,
channel correlations exist among different antenna modes, and
thus, the problem can be formulated as an MMSE prediction
problem as described next.

MMSE Estimation and Prediction:We can utilize the in-
herent correlation between the channel realizations of different
antenna modes for the same channel propagation state. Using
MMSE to obtainĥc

n,m from the received signalr(µ,ν) in
(14), we obtain the channel estimates as

ĥc
n,m = Rhch(Rhh + P−1RzzP

−H)−1P−1r

= RhchR
−1
hhĥ, (18)

which clearly indicates that the estimates forhc
n,m can be pre-

dicted from the estimates ofhn,m using the cross-correlations
among the channel realizations of the trained modes and the
remaining ones. The error covariance matrix for this estimator
is given by

Rǫcǫc(µ, ν) = Rhchc −Rhch(Rhh + P
−1

RzzP
−H)−1

Rhhc .
(19)

Using the estimation and prediction covariance matrices in
(15) and (19), the overall mean square error for channel
estimation and prediction from the received signal can be
expressed as

ǫ =
1

Lµ

Tr(Rhh +Rhchc)

= 1−
1

Lµ

Tr
(

(

R
2
hh +RhhcR

H
hhc

)(

Rhh +P
−1

RzzP
−H

)−1
)

.

We observe that the selection ofF training modes fromLµ

candidates can be cast as an optimization problem to minimize
ǫt, which can be simplified to

(µ∗,ν∗) = argmax
µ,ν

Tr
((

R2
hh +RhhcRH

hhc

)

×
(

Rhh + P−1RzzP
−H

)−1
)

. (20)

At high SNRs, e.g., asRzz → 0, we can further simplify (20)
as

(µ∗,ν∗) = argmax
µ,ν

Tr(RH
hhcR

−1
hhRhhc). (21)

The optimization in (21) is a combinatorial problem where the
selection ofF modes amounts to finding anF×F sub-matrix,
Rhh, the resultingF×Lµ−F cross-correlation matrix,Rhhc

from theLµ × Lµ correlation matrices evaluated for theLµ

candidate modes. For a small number of candidate modes, this
search can be performed quickly. In case of a large number of
modes, random search methods can be utilized to determine a
sub-optimal but efficient solution (see, e.g. [41]).

Once the channel for each mode are estimated/predicted, the
receiver reports the selected antenna mode(s) to the transmitter
after a feedback delay. LetTfb denote the number of channel
uses required for transmitter to receive this report after the last

training symbol is transmitted. During this time, the transmitter
and the receiver may agree to employ a specific mode, for
instance, the most recent mode reported since it is likely to
be still a good choice for slow fading channels. This feedback
delay is typically very small and forTfb ≪ Tc, its impact
on the performance will be negligible. Fig. 5 depicts a typical
estimation/prediction timing using an OFDM frame structure
where at any transmission subframe, one of the modes is used
for probing the channel training. In the example,8 different
modes exist, and3 of them are selected for training. Note
that before the actual training starts with the selected modes,
the system may employ the procedure described in Section
III-C to train all the 8 modes and obtain estimates for the
channel covariance matrices to be employed during the MMSE
prediction step.

Active antenna modeAntenna
Modes

Time (subframes)

Mode training Data period

Predicted modes

Trained modes:
4, 5 and 7

Selected mode: 2

mode 1

2

mode 8

3

4

5

6

7

Feedback delay

Selected mode from
previous feedback

Fig. 5. Example MRA training over time.

Number of Training Modes:We next develop a technique
to determine a suitable value for the number of modes (F ) to
be trained. Since the estimates of the wireless channel gains
are valid within the coherence time of the channel, let us
consider a training within a coherence block ofTc symbols
during which the channel remains fixed. Assuming that each
mode is trained forβ ∈ {1, 2, . . . , ⌈Tc

F
⌉} symbols, we have

Lp = βF symbols where the transmission is performed via
the trained modes, andTc − βF symbols with transmission
employing the best mode,µ∗. The average achievable rate
for this transmission can be approximated by (using Jensen’s
inequality along with Shannon capacity for a fading channel)
[20]

C(F ) /
β

Tc

F
∑

i=1

log2(1 +
1

σ2
z

E{|h(µi)|
2}) +

(

1−
βF

Tc

)

× log2(1 +
1

σ2
z

E{|h(µ∗)|2}) (22)

s.t.µ∗ = arg max
µ∈{µ1,...,µLµ}

ĥ(µ).

where µ∗ is obtained at the end of mode training session.
With the MMSE based estimation/prediction method, we have
ĥ(µ) = h(µ) + e(µ) where the estimation errore(µi) ∼
CN (0, σ2

ei
) with σ2

ei
= [Rǫǫ]i,i, for i ∈ {1, . . . , F} and

σ2
ei

= [Rǫcǫc ]i−F,i−F for i ∈ {F + 1, . . . , Lµ}. Given ĥ(µi),
i = 1, . . . , Lµ, we can expressh(µ∗) as

h(µ∗) =

Lµ
∑

i=1

h(µi)
∏

n6=i

I(‖ĥ(µi)‖
2 ≥ ‖ĥ(µn)‖) (23)
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Fig. 6. Average throughput gain,100

(

C(F )
C(1)

− 1

)

for β = 2, and (a)Lµ = 9 modes, (b)Lµ = 20 modes.

where I(·) is the indicator function, i.e.,I(A) = 1 if the
condition defined byA is satisfied. Using total expectation
theorem, we can write

E{|h(µ∗)|2} = E







Lµ
∑

i=1

E{‖h(µi)‖
2

×
∏

n6=i

I(‖ĥ(µi)‖
2 ≥ ‖ĥ(µn)‖

2)|ĥ(µi), ∀i}







(24)

= E







Lµ
∑

i=1

E{‖h(µi)‖
2|ĥ(µi), ∀i}

× E







∏

n6=i

I(‖ĥ(µi)‖
2 ≥ ‖ĥ(µn)‖

2)|ĥ(µi), ∀i













(25)

where (25) follows ash(µi) and I(ĥ(µi) ≥ ĥ(µj)) are
conditionally independent given̂h(µi), ∀i. This expression
can be evaluated numerically, however, to obtain a tractable
analytical solution, let us consider the case whereh(µi) ∼
CN (0, σ2

hi
), with σ2

hi
= [Rhh]i,i, i = 1, . . . , F , and

σ2
hi

= [Rhchc ]i−F,i−F , i = F + 1, . . . , Lm, are mutually
independent. Then, we can write

E{|h(µ∗)|2} ≈ E







Lµ
∑

i=1

E{‖h(µi)‖
2|ĥ(µi)}

×
∏

n6=i

E
{

I(‖ĥ(µi)‖
2 ≥ ‖ĥ(µn)‖

2)|ĥ(µi)
}







=

Lµ
∑

i=1

∫

Qi(y)
∏

n6=i

(

1− e
− ‖y‖2

σ2
hn

+σ2
en

)

×
1

π(σ2
hi

+ σ2
ei
)
e
− ‖y‖2

σ2
hi

+σ2
ei dy (26)

with

Qi(y) =

∫

‖h‖2
σ2
hi

+ σ2
ei

πσ2
hi
σ2
ei

× exp

(

‖y‖2

σ2
hi

+ σ2
ei

−
‖y − h‖2

σ2
ei

−
‖h‖2

σ2
hi

)

dh.

Substituting (26) andE{‖h(µi)‖2} = σ2
hi

in (22), we can
finally calculate the expected rate usingF trained modes.
We note that (22) quantifies the trade-off between the esti-
mation/prediction performance and the resulting achievable
rate. For smallF , one will use less resources for mode
training, however, due to the inferior prediction performance,
the selected modeµ∗ is more likely to be suboptimal, and
transmission with this mode will contribute less to the average
rate. On the other hand, for largeF , more resources will be
employed for the training session which reduces prediction
errors, and thus improves the mode selection performance.
However, in this case, less resources will be employed for
transmission with the improved mode.

A numerical example for optimization ofF based on (22)
is provided in Fig. 6. Here, (22) is evaluated via Monte-Carlo
integration techniques to calculate the average throughput gain

defined as100

(

C(F )
C(1) − 1

)

, i.e., the percentage gain with

respect to the case ofF = 1 trained modes. We study two
cases withLµ = 9 andLµ = 20 available modes and for each
case we consider variousTc values corresponding to different
levels of mobility. It is seen that higher coherence time values
of Tc allows for largerF indicating that one can improve the
expected throughput by training more modes. On the other
hand, for lowerTc values, for example, whenTc = 18, 36 for
Lµ = 9 andTc = 40, 80 for Lµ = 20 modes, it is seen that
the expected gains increase up to a certain point and then the
gains start to decrease with increasingF.

The mode selection criteria described above relies on the
average covariance matrices and thus the average MSE perfor-
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mance. Thus, for selection of mode set andF in this manner,
we attempt to optimize the average estimation performance.
We note that this scheme can be further improved by mon-
itoring the channel gains for trained and nontrained modes,
and then using the intelligent mode update scheme described
in Section III-C where the modes with higher channel gains
(obtained from earlier estimation/prediction sessions) may be
selected for subsequent training. In this case, the trained modes
will provide improved estimation performance, and in return,
the channel prediction will be more reliable.

Estimation of Covariance Matrices:For realistic channel
estimation schemes used in practice, the covariance matrices
should also de estimated from the observations [42]. Here, we
assume a sample covariance matrix estimation method where
the instantaneous observations and channel estimates are ob-
tained at each OFDM subframe transmission and averaged via
an exponential filter over time. Let us express the channel
between the transmit antenna-m and the receive antenna-n at
symbol timel = 1, 2, . . ., for the modesµ1, . . . , µF , as anF×
1 vectorhn,m,l(µ, ν) = [hn,m,l(µ1, ν), . . . , hn,m,l(µF , ν)]

T .
The sample covariance matrix can be estimated via a first-
order IIR filter [42]

¯̂
Rhh(l + 1) = ζ

¯̂
Rhh(l) + (1− ζ)ĥn,m,l(µ, ν)ĥ

H
n,m,l(µ, ν) (27)

whereζ is a constant determining the memory of the averaging
filter over time.

Temporal Smoothing via a Kalman Filter:The MMSE
estimation/prediction described above utilizes spatial domain
correlations to determine and/or smooth the channel estimates.
From Fig. 5, it is clearly seen that the time between two
successive training periods for a given antenna mode may
get larger if the number of modes used for training in-
creases. In this case, the temporal correlations for the channel
samples during this period may be optimally estimated via
an augmented Kalman filter where the temporal correlations
and the channel values for those subframes during which
no training signal is transmitted are estimated. To that end,
we consider a first-order state-space representation for the
temporal variations of the channel, namely,

hn,m,l+1(µ, ν) = T (l + 1, l)hn,m,l(µ, ν) + υ1(l) (28)

whereT (l+1, l) denotes the channel state transmission matrix
from one symbol time to the next, andυ1(l) denotes the state
estimation error arising from modeling. The channel estimates
are smoothed temporally over time using the received signals

rn,l(µ, ν) = hn,m,l(µ, ν)pm,l + zn,l, (29)

l = l0, l0 + ∆, l0 + 2∆, . . . , where ∆ denotes the time
interval between two successive training for a given mode
µ ∈ {µ1, . . . , µF }.

Note that the Kalman filter update is an iterative approach
to reach MMSE solution. Hence, its application in the pro-
posed mode estimation/prediction scheme can be imagined
as obtaining an improved MMSE solution to the channel
estimation/prediction scheme by utilizing the temporal corre-
lations. With the Kalman filter updates, the estimates of the
channel state information for all the modes are obtained and

the best mode is selected at the end of each training session.
The selected mode is employed during the following data
transmission period.

IV. T RANSMISSION WITH MRAS

A. Signaling with OFDM Modulation

Due its widespread use in state-of-the art wireless tech-
nologies [43]–[45], we consider an OFDM based MIMO
transmission in our simulations [46]. Assuming a cyclic prefix
(TCP ) of sufficient duration, i.e.,TCP ≥ maxj,i τj,i, and
perfect time and frequency synchronization, we can express
the input-output signal relation from antenna-m to antenna-n,
at time t = iTs, i = 1, 2, . . ., and at subcarrierfc + k∆f ,
k = −Nf/2, . . . , Nf/2− 1, as

rn,i,k(µ, νn) =

M
∑

m=1

hn,m,i,k(µm, νn)sm,i,k + zn,i,k (30)

whereTs = 1
∆f

+ TCP is the total OFDM symbol duration
including the cyclic prefix,fc is the carrier frequency,∆f is
the subcarrier spacing, andNf is the DFT size of the OFDM
signal. Here,z denotes the additive circularly symmetric
zero-mean complex Gaussian noise with varianceσ2/2 per
dimension, andsm,i,k is the signal transmitted from themth

antenna at symboli and subcarrierk. The transmit symbol
energies are normalized to unity so that the transmit SNR is
defined as TxSNR= 1

σ2 .
The MRA in all of the examples below has a3×3 parasitic

pixel surface with12 interconnecting switches (see Fig. 1.b in
Section II-A). The principles on the design and optimization of
a similar MRA is available in [24]. A uniform linear array of
M = N = 2 MRAs with λ/2 interelement spacing is assumed
for the MR-MIMO system created by these MRAs1. For each
MRA, several modes of operation are generated using the
Genetic Algorithm as described in [5]. The full-wave analysis
tool HFSS [47] is employed to generate 3D complex radiation
patterns.

B. Performance with MRAs

In this section, we analyze the channel estimation algorithms
proposed so far via simulations. We consider the frame nu-
merology from 3GPP LTE-A where the minimum resource
block (subframe) for scheduling contains12 subcarriers and
14 OFDM symbols [48]. We set the subcarrier spacing as
∆f = 15 kHz. With TCP = 4.7 µs cyclic prefix length, we
have a symbol time of71 µs. Thus each subframe is1 ms.
We assume that a periodic pilot signal is transmitted every
7 symbols over time and every6 subcarrier over frequency
which amounts to 4 pilot symbols per subframe. For the double
directional channel model, we assume the spatial channel
model from Winner+ B1 channel [35] with16 taps, each
with 20 non-resolvable subpaths. Since we assume spatially
orthogonal pilots, we focus on a single channel from the
transmit antenna-m to the receive antenna-n.

1We note that the analysis that follows is not limited to this specific MIMO
antenna geometry, and the arguments can be generalized with ease.
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Fig. 7. User speed = 1 km/h. (a) Theoretical and realistic channel estimation error comparison for narrowband transmission, (b) Shannon capacities with
ideal and realistic CSI estimation, (c) outage probabilities as number of antenna modes is varied, (d) channel capacities with narrowband and wideband based
mode selection.

Figs. 7 and 8 illustrate performance of an MRA at a user
speed of1 km/h. To obtain these results,Lµ = 9 candidate
modes out of the25 are selected, which reflects a snapshot of
the intelligent mode update based solution described in Section
III. During the initial training period of450 subframes, all9
modes are trained periodically such that in each subframe,
one of the modes is used during transmission. Thus, each
mode is trained with50 subframes separated by9 subframes.
During this period, the sample covariance matrices of channels
among different modes are obtained using the approaches in
III-C1 and III-D. After the initial training period,F = 3
modes are selected for the following training periods, while
the remainingLµ − F = 6 modes are predicted using the
MMSE approach along with the temporal smoothing based
on the Kalman filtering procedure described in the previous
section. The selection of modes to be trained within the9
modes is performed using (21). The periodic training session
parameters, e.g., the number of OFDM symbols for training

session (Lp) and data transmission (Tc − Lp), are varied to
find the values with the best system performance, which turns
out to beLp = 18 (9 subframes) andTc − Lp = 54 (27
subframes), respectively, for this example.

The mean square error values in Fig. 7.a for estimation
and prediction are averaged over the3 training modes and
6 prediction modes, respectively, to indicate an average per-
formance. Clearly, the performance for both ideal and realistic
CSI estimation is superior to the performance for prediction
modes as expected since the channel prediction is based only
on the trained modes and the available correlations resulting
from the modes of operation. However, as shown from the
achievable rate performance results illustrated in Fig. 7.b,
the theoretical SNR gains from the ideal mode selection
are around3 dB and the practical mode selection based on
the proposed estimation/prediction process is around2 dB
compared to a random mode selection scheme. Using the
symbol error rates for uncoded transmission with 16-QAM
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Fig. 9. Out of 25 antenna modes, 20 modes are selected randomly for transmission. Fixed receive mode. For realistic CSI estimation/prediction, after an
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km/h user speed. (a) Mean square error results for CSI estimation and prediction, (b) Shannon capacity results for CSI estimation and prediction.

(see Figs. 8.a and 8.b), it is also seen that the MRA with
mode selection achieves up to3 dB SNR gains. Note that these
gains are obtained with identical overhead for both MRA and
fixed antenna systems. The curves marked as random mode
selection in Figs. 7.b and 7.d indicate the performance of a
link with an (arbitrarily picked) fixed antenna mode.

In order to evaluate the impact of the number of modes on
the system performance, we depict the outage probabilities
for various scenarios in Fig. 7.c. Here, for each SNR and
for each curve at a given SNR, the outage probabilities are
calculated forF modes,F = 1, . . . , 25, and for eachF ,
the outage probability is averaged over1000 realizations of
S = {µ1, . . . , µF }. Hence, the results indicate an average
performance obtained by employing an MRA withF active
modes of operation. It is clearly seen that significant gains

can be achieved using MRAs. For example, 10% outage rate
improves by 125% and 85% at SNR = 0 dB and 5 dB,
respectively, with25 antenna modes. It is also seen, as one
would expect, that only diminishing returns are available as
the number of modes is increased. This implies that one may
get most of the gains out of an MRA system using a proper
mode subset selection.

In Fig. 7.d, a comparison between performance for two
different mode selection mechanisms is provided. In the single
subcarrier based mode selection scheme, the gain of the chan-
nel at a single subcarrier is employed, while in the wideband
capacity based selection, the antenna mode with the highest
wideband capacity averaged over all pilot tones is used at any
time. The results are obtained for two different MRAs with
9 and 20 modes. From Fig. 7.d, we observe only a slight
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Fig. 10. Shannon rate comparisons for (a) 5 km/h (b) 20 km/h. For both cases, mode selection based on a single subcarrier is performed using (21).
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Fig. 11. Symbol error rate for 5 km/h (a) narrowband (b) wideband transmission. For both cases, mode selection based on a single subcarrier is performed
using (21).

degradation (of less than 1 dB) with the suboptimal mode
selection based on a single subcarrier for both cases.

In Fig. 8, we also illustrate the impact of feedback delay
for reporting the selected mode to the transmitter. We assume
a 4 ms (e.g.,4 subframes) feedback delay [48] corresponding
to 4 subframes in the simulations. In this case, out of the27
subframes used for data transmission, the transmitter employs
the best mode from the previous data transmission session
during the first4 subframes, and then shifts to the best selected
mode for this session for the remaining23 subframes. We see
that there is a negligible loss of less than0.2 dB for narrow-
band transmission, and around0.4 dB loss for wide-band
transmission, due to the feedback delay, hence the proposed
scheme remains effective.

In order to study the impact of time lags in the presence of a
larger number of antenna modes, we repeat the experiments for

an MRA system with20 active modes with4 of them selected
for training. We again use500 subframes for initial training,
implying that each mode is trained for only25 times. After the
initial training,4 modes are selected for further training. Fig. 9
indicates the resulting MSE and ergodic Shannon capacity. It
is again observed that the proposed CSI estimation/prediction
and mode selection methods can obtain most of the gains
available with MRA systems, i.e., the performance is within 1
dB of the best attainable performance, and it provides around
4.5 dB SNR gain compared to the system using an arbitrarily
picked mode.

C. Impact of Mobility

We next investigate the impact of user speed on the MRA
system performance with the proposed channel estimation
scheme (Figs. 10–12). As the user speeds increase, since the
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Fig. 12. Symbol error rate for 20 km/h (a) narrowband (b) wideband transmission. For both cases, mode selection based on a single subcarrier is performed
using (21).

channel variations become more rapid, the periodic training
parameters need to be reselected. For 5 km/h, suitable number
of training and data symbols are found to be12 and 36,
respectively, while for20 km/h,6 and18 symbols provide the
best results. We observe that with the faster mode selection,
the proposed scheme can track the best mode of operation and
achieve a better performance compared to non-MRA systems.
The channel capacity results are summarized in Fig. 10, and
the resulting symbol error rates are depicted in Figs. 11 and
12. The symbol error rates with feedback delay of 4 subframes
are also included in the figures. It is observed that at5 km/h,
the SNR loss is only about0.5 dBs, while for the higher speed
of 20 km /h, the SER is only slightly better than that for the
system with a fixed antenna mode. Therefore, for channels
with low coherence times, we suggest the use of MRAs for
long-term performance improvements rather than extracting
short-term gains.

V. D ISCUSSION ANDCONCLUDING REMARKS

We investigate the feasibility of pilot assisted channel es-
timation procedure for systems using MRAs. Exploiting the
channel correlations resulting from different MRA modes, we
propose a low-overhead CSI estimation procedure where only
a subset of the modes of operation are employed for training.
With the proposed approach, even with the presence of many
antenna modes, the system can learn the modes of operation
with a much smaller training subset. Using the developed
techniques, one can approach within1 dB of the achievable
rates of MRA system with ideal CSI. In addition, the resulting
symbol error rates indicate that one can achieve up to3 dB
SNR improvements compared to case assuming the availability
of ideal CSI.

We develop a simple but realistic framework to show that
with practical channel estimation approaches, one can achieve
significant gains with MRAs, hence we argue that the use of
MRAs in practical systems is promising as a future antenna

candidate for 5G and beyond. In this work, we focus on a
block MMSE based channel estimation/prediction procedure.
Noting that the channel estimation for MRA antenna systems
fits very well to the compressive sensing problem since we
attempt to predict the channel for many different antenna
modes using only a small subset of trained modes, a possible
research direction is to develop compressed sensing based
channel estimation and sparse Bayesian learning solutions for
the mode selection scheme. An analytic framework associating
the sparsity of multipath channel and radiation pattern space
with the spatial correlations may be investigated towards that
end. In addition, the relation between the configuration modes
and the wireless channel can be further explored to implement
MRAs that can create modes that are matched to the statistics
of the scattering environment allowing for improved channel
estimation along with superior performance.
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