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Abstract— An efficient and versatile broadband multilevel fast
multipole algorithm (MLFMA), which is capable of handling
large multiscale electromagnetic problems with a wide dynamic
range of mesh sizes, is presented. By invoking a novel concept
of incomplete-leaf tree structures, where only the overcrowded
boxes are divided into smaller ones for a given population
threshold, versatility of using variable-sized boxes is achieved.
Consequently, for geometries containing highly overmeshed local
regions, the proposed method is always more efficient than the
conventional MLFMA for the same accuracy, while it is always
more accurate if the efficiency is comparable. Furthermore,
in such a population-based clustering scenario, the error is
controllable regardless of the number of levels. Several canonical
examples are provided to demonstrate the superior efficiency
and accuracy of the proposed algorithm in comparison with the
conventional MLFMA.

Index Terms— Broadband solvers, incomplete leaf (IL),
low-frequency breakdown, multilevel fast multipole algo-
rithm (MLFMA), multiscale problems.

I. INTRODUCTION

ALTHOUGH the method of moments (MoM) [1] has been
verified to be one of the most versatile and accurate

techniques to solve radiation and scattering problems, it has
some serious disadvantages regarding memory consumption
and CPU time even for today’s powerful computers. Hence,
fast and accurate solvers have been developed based on itera-
tive solutions of matrix equations along with specialized accel-
eration techniques for matrix-vector multiplications (MVMs)
to empower this method. Some of the well-known methods to
accelerate the MoM are the fast multipole method (FMM) [2],
multilevel fast multipole algorithm (MLFMA) [3], adaptive
integral method [4], QR-based or SVD-based methods [5],
and adaptive cross approximation [6]. In many of these and
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other similar methods, the memory and CPU requirements are
reduced from O(N2) complexity to O(Nα) (1 ≤ α ≤ 2)
for single-level implementations and to O(N logα N) for the
corresponding multilevel versions, where N denotes the num-
ber of unknowns.

The concepts behind FMM and hence MLFMA (as its
multilevel version) have provided inspiration for many new
and novel computational methods during the last two decades.
Regardless of the methodology used in them, the ultimate goal
is to increase the efficiency and/or accuracy using a wide vari-
ety of analytical or numerical algorithms, matrix manipulation
techniques, and diverse parallelization schemes. Considering
the accuracy, one can briefly categorize possible error sources
commonly encountered in these methods as follows:

1) MoM-related errors due to surface and operator
discretizations and integrations over basis and testing
functions;

2) FMM-related errors due to truncated summations,
computations of special functions over unit sphere, and
interpolation/anterpolation operations;

3) other computational errors due to various numerical
integrations, compression and decomposition of matrices
(if any), and residual errors in iterative solutions.

For the above-mentioned error sources, there are many
primitive and elegant remedies leading to a wide range
of novel and practical methods. However, when multiscale
electromagnetic problems are considered, such as electrically
small, layered, and complicated antennas on large platforms
that require highly overmeshed local regions, another source
of error or a significant inefficiency originates from the fact
that almost all of the above-mentioned methods deploy fixed-
size boxes at each and every level of the corresponding tree
structures. In such multiscale problems, one may use very
dense meshes over the entire geometry to possess the fine
details, so that accurate results can be obtained using fixed-size
boxes. However, such an attempt is a brute-force solution with
a huge number of unknowns requiring an excess amount of
memory in addition to being extremely inefficient even when
a large number of levels are employed.

A better and widely preferred approach is to use nonuniform
meshes to discretize multiscale problems. In this approach, one
may use large boxes together with the lower number of levels
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to maintain the desired accuracy. Unfortunately, in this case,
an O(N2) complexity is inevitable in near-field computations
due to boxes enclosing locally overmeshed regions. On the
other hand, one can use smaller boxes with some deep levels
of the MLFMA to avoid the O(N2) complexity. However, leaf
level boxes at deep levels are too small to hold basis/testing
functions. Parts of the basis/testing functions may be located
in different boxes and some of these boxes may even be in the
far zone of each other based on the one-buffer-box criterion [7]
that is frequently used in MLFMA implementations. Hence,
critical computational errors contaminate the accuracy. Fur-
thermore, this error becomes more significant as the multiscale
factor, which is defined as the ratio of the largest edge length
to the smallest one over the entire meshed surface, increases.

In this paper, we propose a novel broadband incomplete-
leaf (IL) MLFMA for multiscale electromagnetic problems by
invoking a concept of novel IL tree structures, where only
overcrowded boxes (OCBs) are divided into the smaller ones.
Furthermore, we provide a complete implementation strategy
of the proposed IL-MLFMA by introducing some ground rules
to redefine near-box (i.e., classifying near-field interactions)
and far-box (i.e., classifying far-field interactions) concepts to
ensure efficiency and accuracy.

Therefore, for multiscale problems, in addition to using
variable mesh sizes, variable box sizes are used so that both
O(N2) complexity coming from the near-field calculations of
OCBs and the computational errors arising from the protrusion
of basis/testing functions are eliminated. In comparison with
the conventional MLFMA, the efficiency and accuracy of the
proposed IL-MLFMA are revealed better as the multiscale
factor increases. An approximate method for the diagonal-
ization of Green’s function proposed in [8], which is simple
and demonstrated to be stable at arbitrary low-frequencies,
is implemented to handle the well-known low-frequency
problems of the MLFMA. However, other methods that are
proposed to treat this problem [9]–[14] can also be used in
conjunction with the proposed IL-MLFMA. Furthermore, the
novel IL tree structures reduce to traditional ones and the
proposed IL-MLFMA reduces to the conventional MLFMA
if desired for uniform meshes. Consequently, the proposed
IL-MLFMA can also be combined with the available domain
decomposition algorithms, such as the equivalence principle
algorithm (EPA) [15], which are usually used together with
the conventional MLFMA to attack multiscale electromagnetic
problems with very large multiscale factors.

Apart from the EPA, some other methods based on the hier-
archical MLFMA [16], multiresolution basis functions [17],
and accelerated Cartesian expansion [18] have also been used
to attack multiscale problems. In various advanced comput-
ing [19], chemistry [20], biology [21], and physics [22] appli-
cations, especially in N-body problems, a modified version
of the FMM, namely, the adaptive FMM, has been used.
This method employs an adaptive tree strategy, which visually
resembles our proposed IL tree structures using variable-sized
boxes. However, these problems deal with N discrete entities
(particles, molecules, masses, etc.) with static (and mostly
analytical) kernels. Hence, they use the original FMM with
variable-sized boxes with a single level only. Extension of

Fig. 1. Simple demonstration of computational errors due to multiscale
meshes. (a) Recursive clustering of a multiscale mesh. (b) Some problematic
interactions between touching edge-based functions that are interpreted as far
field in the given clustering scheme.

the adaptive FMM to dynamic problems and construction
of its multilevel version (for the desired complexity) have
not been attempted to the best of the authors’ knowledge.
In fact, a direct extension of the adaptive FMM would be
less accurate compared with the proposed IL-MLFMA and it
would yield problems when parallelization is concerned, as
briefly explained in Section III. We note that the concept of
using a simple hybrid tree structure for a multiscale problem
was proposed in [23] with only two different box sizes at the
leaf level.

The outline of this paper is as follows. Section II presents
a brief analysis of the MLFMA tree structure followed by an
exposition regarding the new IL tree structure. In Section III,
we introduce new concepts of pseudonear interactions and the
implementation details of the proposed IL-MLFMA. The sim-
ulation results demonstrating the numerical stability, accuracy,
and efficiency are given in Section IV based on some canonical
problems, followed by our concluding remarks in Section V.

II. NEW TREE STRUCTURE FOR MULTISCALE MESHES

A. Multiscale Mesh as a Source of Error

To have a clear vision about the imposed errors and the
necessity of introducing the new incomplete-leaf concept to
overcome them, we consider a flat 2-D mesh with a mul-
tiscale factor of 4 in Fig. 1(a). The size of the largest box
shown in Fig. 1 is assumed to be λ/4. Hence, after two
consecutive clusterings (i.e., recursively bisecting the boxes
in both directions), one reaches to the minimum box size
of λ/16. To demonstrate the borders of some typical boxes in
three consecutive MLFMA levels, different colors are used in
Fig. 1, where the largest box casts as the top level, four boxes
numbered from 2 to 5 as the next lower level, and finally,
16 small boxes numbered from 6 to 21 as the second lower
level. Midpoints of all edges are labeled with small circles to
track edge-based functions, such as the Rao–Wilton–Glisson
(RWG) [24] functions that are used in this work. Based on
the three levels and the boxes involved, one can observe two
important issues that are interfering with each other.

1) Considering Box Sizes:
1) The largest box with a size of λ/4 contains 40 edges

(RWGs). It costs 402 = 1600 near-field interactions by
itself and some others with possible nearby boxes.
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2) The lower level boxes contain 5 to 19 RWGs. They
involve 25 to 361 near-field interactions by themselves
and some others with nearby boxes. However, those
boxes involve large errors in far-field interactions either
due to their small size (λ/8) or due to those triangles
sticking out of the boxes.

3) The lowest level boxes contain one to six RWGs. They
involve 1 to 36 near-field interactions by themselves
and some others with nearby boxes. Considerable errors
regarding far-field interactions occur, mainly due to very
small box sizes (λ/16) and severe protrusions.

Fortunately, deploying broadband solvers [8], [10], [13], [18]
can effectively eliminate or at least alleviate box-size-related
inaccuracies to some limited extent. This limit is governed by
the size of the RWG functions in such a way that after some
critical point, one may not have a complete RWG function
embedded inside the box of interest. Hence, this limit has a
close relation with the multiscale factor and distributions of
box populations in each and every level.

2) Considering Box Populations:
1) The largest box contains almost 40 RWG functions, but

only 17 (42%) of them are completely inside the box.
2) The lower level boxes contain 5–19 RWGs, but

only the fourth box contains six (30%) complete
functions.

3) The lowest level boxes contain 1–6 RWGs, and none of
them contains a complete RWG function.

Thus, by increasing the number of levels over multiscale
meshes possessing high multiscale factor, a new error source
is introduced regarding the far-field computations. To have an
intuition about this effect, consider two boxes, i.e., 18 and 10,
that are independently depicted in Fig. 1(b). These two boxes
are supposed to be far-field boxes based on the one-buffer-
box criterion. Hence, we attempt to use the addition theorem
to test the radiated field of an RWG function located inside the
18th box over any RWG function located inside the 10th box.
However, both RWG functions have a common node inside the
9th box and even a common edge partially inside the 12th box
(the buffer box), which means that they are in fact practically
near to each other.

At this stage, we note that if we consider only the edge
centers as the source and test points, they completely satisfy
the necessary condition for the far-field assumption and thus
the addition theorem. However, considering these midpoints
as representatives of their corresponding basis and testing
functions, this assumption is not valid anymore and their inter-
actions are prone to a considerable error. The same argument
holds for the other RWG functions that are protruded out of
their corresponding boxes. Increasing the box size effectively
diminishes the error, but on the other side, it dramatically
increases the computation time due to the increased number
of RWGs inside the boxes leading to O(N2) complexity in
self- and near-field interactions of boxes. Obviously, for real-
life large multiscale problems with millions of unknowns, we
have no other choice than increasing the number of levels to
run away from quadratically increasing the number of near-
field interactions. It should be mentioned that this problem
becomes worse for 3-D structures.

B. Variable Boxes for Multiscale Meshes

The aforementioned deficiencies arising from large RWG
functions inside relatively small boxes can effectively be
eliminated by totally modifying the whole clustering strategy:
there is no need to divide all the boxes across a given level
to create the next level, and therefore, some boxes with a
lower RWG population may stay at an upper level, while
those with a higher population can be further divided into
smaller boxes. While such a clustering strategy seems trivial,
its implementation needs a detailed investigation of box–box
interactions and their careful organizations for an efficient and
accurate solver.

In this paper, we present an implementation, where the
boxes with RWG populations exceeding some predetermined
threshold (that may be a function of the corresponding level)
are split into smaller boxes. This is achieved by letting the
program start from an arbitrary level, which is mainly the
second level (i.e., the MoM level), and continue the clustering
process as far as it takes such that none of the leaf boxes are
overpopulated. Note that because the boxes are variable sized,
large boxes usually contain large RWG functions, thereby
minimizing possible protrusions of them. On the other hand,
the novel IL tree structure can be reduced to a traditional one
by simply assigning unity population threshold for all higher
levels except the leaf level. Then the program starts from
the second level and continues the division process equally
everywhere up to a maximum allowed level (though some
of the last level boxes may be overcrowded), and hence, the
conventional MLFMA is recovered.

III. IMPLEMENTATION

The following concepts and issues must be considered
during the implementation of the proposed IL-MLFMA, where
MATLAB is used.

A. Box Population

To determine how deep the program has to continue the
clustering process, we have to recursively slice the object in
three dimensions and record the population statistics across all
the levels for two important reasons: 1) to decide whether a
box is an overcrowded one or not and 2) to have an educated
guess about the proper value of the population threshold
specific for that level.

B. Incomplete-Leaf Tree and Near- and Pseudonear
Box Concepts

Fig. 2(a) illustrates a six-level nonuniform clustering for
an object that might be electrically large and possesses very
fine local features. Its 2-D cross sectional view is shown in
Fig. 2(b) to provide the readers an intuition about the density
of the given mesh all over the surface and the relative sizes
of the RWG functions at different levels. Obviously, large
boxes on top (i.e., first couple of) levels contain relatively large
RWG functions and small boxes at deep levels may contain
extremely small RWG functions. To handle such a nonuni-
form clustering with the MLFMA, we propose the novel IL
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Fig. 2. (a) 3-D structure of a typical flat object after six levels of nonuniform
clustering. (b) Proper cross section as a representative of the corresponding
3-D structure shown in (a).

Fig. 3. Typical IL tree structure for a thin object (as a 2-D example, heights
are not in scale). TBs and OCBs are shown in light gray (cyan) and dark gray
(red), respectively. The white boxes are considered as pruned boxes.

tree structure. In such a tree structure, for a predetermined
threshold, which may be fixed or a function of level, two
different types of boxes are defined. The first one is an OCB
that contains more (or equal) number of RWG functions than
the given threshold. An OCB cannot be located at the last level.
The second one is a truncated box (TB) that has a less number
of RWG functions than the threshold. A TB may exist at any
level and no other boxes branches from a TB. Note that TBs
are actually new leaves but with distributed positions across
different levels. In such a tree, some or many of the branches
are incomplete, leading us to a novel IL tree structure.

Fig. 3 illustrates a typical four-level IL tree structure for a
thin object (without taking into account the correct height of
the boxes), where OCBs and TBs can be seen clearly. Since
an IL tree structure is different from a traditional one used
by the conventional MLFMA, near-box and far-box concepts
are required to be redefined. In addition, some ground rules
must be constructed to determine near and far boxes from the
accuracy and efficiency point of views. Hence, possible two
different 2-D scenarios to determine the near and far boxes in
an IL tree structure are illustrated in Fig. 4, where the small
shaded box in the middle is the testing box and the surrounding
dark gray (red) and light gray (green) boxes denote near and
far basis boxes, respectively. The borders for the third to
fifth levels are shown in the legend.

The scenario shown in Fig. 4(a) is very similar to an
adaptive tree, which is employed in an adaptive FMM
(assuming that an adaptive FMM is extended to a dynamic

Fig. 4. Two different scenarios to define near and far boxes, shown by dark
gray (red) and light gray (green) boxes, respectively. (a) Near boxes based on
touching boxes. (b) Near boxes based on either touching boxes or larger near
boxes at higher levels. Far boxes are defined as the rest of the boxes inside a
proper cuboid of size 6 × 6 × 6 at the corresponding level.

electromagnetic problem and its multilevel version is con-
structed). Based on this scenario, only touching boxes with
equal or larger sizes are labeled as near boxes. However,
when the second scenario shown in Fig. 4(b) is considered,
unclustered near boxes of all the upper level parents, if exist,
are added to those boxes found in the first scenario. For
example, additional two level-3 large (i.e., unclustered) boxes
should also be considered as near boxes for the parent of
the shaded box. Then, in both scenarios, far boxes are deter-
mined by the rest of the boxes that reside inside a proper
6×6×6 cuboid of the same size (of the shaded box). A detailed
comparison between these two scenarios reveals that although
the second scenario is more complicated to implement, it is
more superior than the first one due to the following two
reasons.

1) For the scenario shown in Fig. 4(a), consecutive inter-
polation and anterpolation operations are needed for
both aggregation and disaggregation processes within
MVM routines. The reason is that there are a few
larger, some equal, and some other smaller far boxes
for which the far-field interactions should be calculated
using the FMM. Consequently, for these boxes at the
very same level (i.e., level 4, referring to Fig. 4), one
needs an anterpolation, a direct calculation, and an
interpolation, respectively, each followed by a proper
translation to carry out the far-field interactions correctly.
These extra computations based on the FMM (and not
MoM) bring in undesired additional errors. On the other
hand, using different-sized boxes and the one-buffer-box
scheme pushes the limits of the addition theorem if the
buffer box is smaller than any of them. It should be
emphasized that an interpolation/anterpolation operation
brings additional challenges in parallelization.

2) For the scenario shown in Fig. 4(b), larger boxes are
treated via MoM computations leading to higher accu-
racy without any of the above-mentioned issues.

Two important issues should also be noted at this point.
1) Although the scenario shown in Fig. 4(b) has more

near-field interactions than the scenario in Fig. 4(a)
(so that it improves the accuracy but leads to a higher
computational cost), the total number of near-field
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Fig. 5. Applying IL tree clustering on the multiscale mesh of Fig. 1.
The numbers given next to the curly braces show RWG populations of the
corresponding boxes. Only the largest box and the fourth box are divided into
four smaller boxes. All pruned boxes are designated by light gray numbers.

interactions are controllable [and in fact O(N)] as there
is no practical limit regarding the needed levels. This
will be addressed in the numerical results (Section IV),
where we discuss the complexity of the proposed
algorithm.

2) The total number of interacting boxes is always less
than the conventional MLFMA due to the pruned boxes
that were supposed to branch from TBs across the
levels.

Finally, in many multiscale problems that have to be meshed
nonuniformly with large multiscale factors, one can see some
special boxes that belong to upper level parents and are located
farther than some of the far boxes at the same level, based
on the scenario shown in Fig. 4(b). These boxes, hereafter
to be called pseudonear boxes, are defined as nontouching
TBs located at any upper level that have the following three
properties.

1) They are larger than the box of interest (the gray box).
2) They can be classified as touching near boxes for

the parent or any of the grandparents of the box of
interest.

3) They cannot be smaller than the size of the parent or
the grandparent to be compared in step 2).

Such a definition justifies its appellation and helps us to
distinguish these boxes from the real near boxes that touch
each other. Note that touching boxes may be smaller, equal,
or larger than the testing box, but pseudonear boxes are always
larger, because they usually contain larger basis functions.
The importance of this pseudonear concept can be displayed
best by once again considering Fig. 1(a). By clustering the
same mesh using the proposed IL tree structure for a given
population threshold, Fig. 5 is obtained, where the numbers
near the curly braces show the RWG populations. Only the
largest box and the 4th box are divided into four smaller boxes,
namely, 2–5 and 14–17, respectively, since their populations
are larger than or equal to the given threshold. Considering
the small box labeled 17 and applying the aforementioned
ground rules used to determine the near and far boxes, apart
from the trivial near boxes 14, 15, 16, and 5, there are two
larger pseudonear boxes labeled 2 and 3. When the large RWG
functions extended into the 2nd and 3rd boxes are considered,
most of the RWG functions inside the 17th box are connected

Algorithm 1 Construction of IL Near List
Input: given level, traditional near list
Output: IL.NearList

1 TB.List := List of TBs within the given level
2 foreach TestingBox ∈ TB.List do
3 Trad.NearList := traditional near list for TestingBox
4 foreach BasisBox ∈ Trad.NearList do
5 if BasisBox ∈ TBs then
6 put −BasisBox into IL.NearList of TestingBox
7 else if BasisBox ∈ OCBs then
8 put +BasisBox into IL.NearList of TestingBox
9 Trunc.SubBoxes := ContentBoxes (BasisBox)

10 foreach SubBox ∈ Trunc.SubBoxes do
11 put −TestingBox into IL.NearList of SubBox
12 end

to them justifying our rule that all RWG functions inside a
pseudonear box of a testing box should indeed have near-field
interactions with the RWG functions inside the testing box
regardless of the distance between the testing box and the
pseudonear box.

It should be emphasized that such a treatment, i.e., dealing
with some of the far boxes as if they are near boxes and, hence,
computing MoM-based interactions instead of FMM-based
interactions do not imperil the philosophy behind deploying
the one-buffer-box scheme in the proposed structure. As a
corollary fact, we can strongly claim that the robustness and
reliability of the proposed method are inherited from those of
the conventional MLFMA.

C. Construction of a List of Near and Pseudonear Boxes

Construction of a list of near-field interactions containing
all of the near and pseudonear boxes of a given testing box
is an important aspect of the proposed method and only the
TBs must be considered. OCBs are not considered because
if an OCB is near or pseudonear to any given TB, then all
the smaller sub-boxes inside that OCB are also considered as
the pseudonear boxes with respect to the given TB. From the
programming point of view, this means that the very same TB
should be added to the so-called near list of all the smaller
sub-boxes, which reside inside the OCB, and this operation
must be repeated across all the levels from top to bottom.

The pseudocode shown in Algorithm 1 is used to construct
the near list for each level. The script used in the given
algorithm, namely, ContentBoxes, is responsible for traversing
the traditional tree structure to find all the TBs (leaf boxes)
inside a given OCB. Note that a positive box number is used
for an OCB and a negative box number is used for a TB.
Hence, the − sign used in lines 6 and 11 and the + sign used
in the line 8 are important, since they facilitate discriminating
OCBs from TBs within the list. It is worth mentioning that
the resulting near list is actually a matrix with a high degree
of sparsity, which heavily depends on the population statistics
and the geometrical details of the object.
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Fig. 6. Step-by-step pictorial approach to determine both near and far boxes for a given testing box inside a typical IL tree structure. (a) Box of interest in
gray. (b) First near box. (c) Group of next level near boxes. (d) All near boxes together regardless of size or level. (e) Far boxes at the same level. (f) All far
(and near) boxes regardless of size or level. Higher level boundaries always coincide with the lower level boundaries and consequently cover their designated
color or thickness in (a)–(f). Note that near and far boxes are shown in dark gray (red) and light gray (green), respectively.

Algorithm 2 Construction of IL Far List
Input: given level, traditional far list
Output: IL.FarList

1 Joint.List := List of TBs ∪ OCBs within the given level
2 foreach TestingBox ∈ Joint.List do
3 Trad.FarList := traditional far list for TestingBox
4 foreach BasisBox ∈ Trad.FarList do
5 if BasisBox ∈ TBs then
6 put −BasisBox into IL.FarList of TestingBox
7 else if BasisBox ∈ OCBs then
8 put +BasisBox into IL.FarList of TestingBox

D. Construction of a List of Far Boxes

Another important aspect of the proposed method is to
construct a list of far-field interactions of a given testing
box, where the same rules used in the conventional MLFMA
to determine the boundaries of the far boxes are deployed.
Briefly, we move at least two and at most three boxes in all
three directions and stop at the boundaries of either the object
itself or one of the parent boxes, whichever comes first. Using
this approach, there will be no chance for any larger box in the
vicinity to act as a far box, in order to carry out the far-field
interactions. By invoking the same policy regarding negative
and positive box numbers, we can reuse the proposed near
list algorithm by eliminating the lines between 9 and 12 and
considering two important facts.

1) Unlike the near list, the OCBs have to be processed
accordingly, because one needs to aggregate the radia-
tion of the smaller sub-boxes inside those OCBs.

2) One has to start from the third level, where the far field
interactions make sense.

Algorithm 2 shows the pseudocode to construct the far list.

E. Pictorial Examples
Some interesting 2-D geometries are considered to illustrate

the near, pseudonear, and far boxes of a given testing box. The
near list algorithm works based on a hierarchy implied by the
line 9 of Algorithm 1, which means one has to first process
the larger boxes at the upper levels, and then process the next
level smaller boxes and so on. Note that this is not necessary
for the far list algorithm. To start with, we consider a simple
case shown in Fig. 6(a), where the given testing box is in gray.

1) The only TB in level 2 is shown in dark gray (red)
in Fig. 6(b). All three near boxes of this TB in this
level, which are OCBs, are labeled with the letter N.
However, the gray box (i.e., the testing box) is the sub-
box of only one of them. Hence, the remaining OCBs
are not our interest and the TB is the first member of our
near list.

2) Considering level 3, Fig. 6(a) also shows that there are
only two TBs in this level, which are near to each other.
One of them is the testing box and the other one is the
second member of the near list. However, referring to
Fig. 6(c), boxes labeled with N are also the members of
the near list at this level. Fig. 6(d) illustrates all the near
boxes including level-wise details.

3) For the far boxes, we must move at least two and at most
three boxes from the given test box. However, we also
need to stop at the object boundaries. Fig. 6(e) and (f)
show all the far boxes labeled with the letter F and the
final structure including all details, respectively.

A more complicated and peculiar structure, as shown in
Fig. 7(a), is considered next, where the same strategy is
followed.

1) Starting from level 2, only the TB is shown in
dark gray (red) in Fig. 7(b). As before, all three near
boxes to this TB of this level are labeled with N, where
the test box is inside one of them. Similar to the first
example, the other boxes labeled with N are OCBs and
are not considered at this level. Hence, the large dark
gray box is the first member for the near list as a
pseudonear box.

2) Referring back to Fig. 7(a), we can see three level-3 TBs
labeled 1–3 in Fig. 7(c). Neither box 1 nor box 2, with
opposite cross-hatched shaded regions, may have near-
field interactions with the small gray box. Proceeding
to Fig. 7(d), the box labeled 3 is the only level-3 box
having near-field interaction with the given test box, and
thus it will be the member of the near list again as a
pseudonear box.

3) There is only one level-4 TB near to the test box, as
shown in Fig. 7(e). In a fashion similar to the previous
cases, this TB is also a member of the near list as a near
box. Considering the level of the test box, the touching
seven boxes are the members of the near list. Fig. 7(f)
shows all near and pseudonear boxes.
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Fig. 7. Another pictorial example to determine the near, pseudonear, and far boxes inside a symmetric IL tree structure. (a) Box of interest in gray. (b) First
pseudonear box. (c) None of the two boxes labeled 1 and 2 can cover the gray box. (d) Only the third box is pseudonear to the gray box. (e) Same procedure
but with the next level smaller boxes. (f) All the near, pseudonear, and far boxes in one shot.

Fig. 8. For a nonuniform clustering, six examples illustrating the near, pseudonear, and far basis boxes regarding a given testing box. A different testing box
is considered in (a)–(f). (f) There is no far box due to some large and very large nearby-basis boxes.

4) To find far boxes, if we move down or right, object
boundary comes first; however, if we move up or left,
the level-4 box boundaries come first. Hence, after
excluding all near boxes, we end up with the indicated
far boxes, as also illustrated in Fig. 7(f).

More complicated examples are shown in Fig. 8 without
step-by-step details about how we apply the ground rules and
the related strategies. Note that in Fig. 8(f), there is no far box
mainly because of large and very large nearby-basis boxes.

F. Near-Field Interactions

To compute the near-field interactions based on the afore-
mentioned near list (which is actually a matrix with a high
degree of sparsity as mentioned before), one has to consider
two important facts.

1) The testing/basis functions exist only inside TBs.
2) Within the near list of a given testing box, there may be

a combination of TBs together with some other OCBs.
Each one of the OCBs may also contain some other
OCBs in a recursive manner and this may extend to the
very last level.

Using pseudocodes, Algorithm 3 briefly describes the steps to
perform this task.

G. Far-Field Interactions

The calculation of far-field interactions is one of the most
challenging parts of the proposed IL-MLFMA. Apart from the
implementation difficulties due to variable box sizes inside a
level and/or across multiple levels, special care is required
at low frequencies, where the box sizes become electrically
small (i.e., the low frequency problem). Hence, an approximate
method for the diagonalization of Green’s function, developed
in [8], which is simple and demonstrated to be stable at arbi-
trary low frequencies, is used in conjunction with the proposed

Algorithm 3 Near-Field Sparse Matrix
Input: IL.NearList
Output: Near-Field Sparse Matrix
foreach TestingBox ∈ All of the TBs do

Mixed.List := List of near and pseudo-near boxes
regarding TestingBox using IL.NearList
Final.NearList := Negative elements of Mixed.List
Overcrowded.List := Positive elements of Mixed.List
foreach TmpBox ∈ Overcrowded.List do

Content.List := List of all TBs inside TmpBox
Final.NearList := Final.NearList ∪ Content.List

TestingBox�s := List of �s inside TestingBox
foreach BasisBox ∈ Final.NearList do

BasisBox�s := List of �s inside BasisBox
foreach testing� ∈ TestingBox�s do

Compute integration points over testing�
foreach basis� ∈ BasisBox�s do

Compute integration points over basis�
forall the valid testing functions do

forall the valid basis functions do
Invoke singularity extraction routines
to compute formulation dependent
integrals (e.g. MFIE)
Update Near-Field Sparse Matrix

IL-MLFMA when the box size is smaller than λ/4 to treat
the low-frequency problem. Consequently, a smooth transition
from the low-frequency regime to the high-frequency regime
is obtained with an overall complexity of O(N logα N), where
(1 ≤ α ≤ 2) (α = 2 for the low-frequency regime).
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TABLE I

TIMING AND ERROR OF THE IL-MLFMA APPLIED TO A PEC SPHERE OF R = 5 cm AT f = 3.0 GHz CONSISTING OF 11 343 RWG
FUNCTIONS WITH A MULTISCALE FACTOR OF 110, AS A FUNCTION OF MBP

Algorithm 4 Aggregation in the Low-Frequency Regime
Input: TBs, OCBs
Output: Aggregation Sparse Matrix
foreach level ∈ low frequency levels do

Joint.List := List of TBs ∪ OCBs within the level
Compute Nθ , Nφ as the numbers of needed samples
θi := θ locations over unit sphere
φ j := φ locations over unit sphere
foreach BasisBox ∈ Joint.List do

foreach basis function inside BasisBox do
foreach (θi , φ j ), i =1 : Nθ ; j =1 : Nφ do

Compute radiation functions (regarding
needed formulation)
Update Aggregation Sparse Matrix

Important features of the aggregation, translation, and disag-
gregation operations regarding the far-field interactions are as
follows.

1) Aggregation: Aggregation for the low-frequency regime
and aggregation for the high-frequency regime slightly differ
from each other.

a) Aggregation in the low-frequency regime: During the
construction of the IL tree structure, the box size in each level
must be compared with the box sizes in different upper and
lower limits to assign a proper scale factor. These optimized
scale factors are based on experimentally tabulated values
(Table I) [8]. A scale being less than one implies a level
that requires low-frequency treatments. In the low-frequency
regime, there is no need to perform any interpolation between
the successive layers [8]. Hence, Algorithm 4 is applied across
the designated levels, where only the TBs and the OCBs are
processed.

b) Aggregation in the high-frequency regime: The main
difference with respect to the aggregation in the low-frequency
regime comes from the fact that OCBs need to be processed
using interpolation operations. Hence, Algorithm 4 can be used
twice: one for the TBs without interpolation and another one
for the OCBs with proper interpolation from the lower levels.

2) Translation: This operation is the same as that of
the conventional MLFMA, where both OCBs and TBs
are processed at each and every level. Besides, in the

Fig. 9. PEC sphere of radius R = 5 cm possessing a dense discretization
around the north pole with a multiscale factor of 110.

low-frequency regime, [8, eq. (8)] reveals that a scale factor
(i.e., st , where t is the summation index) less than one is used
inside the summation and s becomes one as we move to the
high-frequency regime.

3) Disaggregation: Similar to the aggregation part, two
slightly different disaggregation operations are required for the
low-frequency and high-frequency regimes.

a) Disaggregation in the low-frequency regime: Because
the levels are independent of each other, there is no need
for anterpolation operations between the successive levels.
Consequently, both TBs and OCBs are processed the same
way. An algorithm similar to Algorithm 4 can be used.

b) Disaggregation in the high-frequency regime: It is
similar to its counterpart aggregation process, except the need
for anterpolation operation. Hence, for OCBs, the translated
values collected from the far-field boxes (listed in the far list)
are first anterpolated, and then the updated values are tested
either in the lower levels or, maybe, at the last level of the
tree structure designated for high-frequency regime. On the
other hand, for TBs, the anterpolation operation is not required
and the procedure used in the conventional MLFMA can be
applied.

IV. NUMERICAL RESULTS AND DISCUSSION

A perfect electric conductor (PEC) sphere of radius
R = 5 cm (λ/2) at f = 3.0 GHz with a nonuniform mesh, as
illustrated in Fig. 9, is used to investigate the accuracy and the
run time of the IL-MLFMA. The edge size for the triangles
varies from 0.135 mm (λ/740) at the north pole up to 15 mm
(λ/7) at the south pole resulting a nonuniform mesh that
has a multiscale factor of approximately 110 and consisting
of 11343 RWG functions. In all simulations, the magnetic
field integral equation (MFIE) formulation is used due to its
stability at low frequencies. Besides, in all simulations, the
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second-order Gaussian quadrature is used in the integrations
over the surfaces of triangles to capture rapid field variations
in near-field computations. With regard to the far-field com-
putations, since the order of quadrature does not affect the
accuracy significantly, the first-order Gaussian quadrature is
used to carry out the far-field interactions from the efficiency
point of view. Furthermore, the solutions are obtained without
any preconditioning using the generalized minimal residual
iterative solver with an error tolerance of 10−3 and a restart
value of 100, while the maximum number of iterations is fixed
at 1000.

The results obtained from the IL-MLFMA are compared
with those of the Mie-series approach, which is an analytic
method for scattering from PEC sphere problems. To assess
the accuracy of the IL-MLFMA, the relative root-mean-
square (RMS) error is used, given by

Relative RMS Error =
√
√
√
√

∑N
i=1

∣
∣ESim

θi
− EMie

θi

∣
∣
2

∑N
i=1

∣
∣EMie

θi

∣
∣
2 (1)

where ESim
θi

and EMie
θi

are the dominant θ component of the
far-zone electric field obtained from the IL-MLFMA and the
Mie-series solution, respectively.

Table I shows the run times and the relative RMS errors
of the IL-MLFMA for the geometry depicted in Fig. 9 as a
function of maximum box population (MBP, i.e., population
threshold). Note that MBP is the key parameter, which deter-
mines the number of levels in the IL-MLFMA.

Regarding the run time, we may arrive at the following
conclusions.

1) The construction of the IL tree, though it is more
complicated, takes at most 1% of the total run time.

2) The processing time required to fill the near-field matrix
decreases as the value of MBP decreases. On the other
hand, due to the growing tree structure, the solution
time increases. Therefore, there is an optimal value of
MBP for the best efficiency in terms of the total time.
This optimal value is between 50 and 250 for different
problems.

3) Based on a wide range of simulations, it has been
observed that the IL-MLFMA always converges regard-
less of the value of MBP.

On the other hand, regarding the accuracy, we may arrive
at the following conclusions based on Table I.

1) When using optimal MBPs in terms of efficiency, we
observe that the majority of the triangles do no stick out
of the boxes. Hence, the accuracy is almost independent
of the number of levels. This is important because it
provides us the opportunity to only optimize the total
run time rather than accuracy as a function of MBP.

2) The relative RMS error observed in the IL-MLFMA
results is comparable with that of MoM.

Next, the same PEC sphere, depicted in Fig. 9, is
used to compare the efficiency and accuracy of the IL-
MLFMA with (a) the conventional MLFMA, where no
treatment is done for the low-frequency problem, and with
(b) the scaled MLFMA, where the low-frequency problem,
is treated exactly the same way as in the IL-MLFMA

Fig. 10. Total run times and relative RMS errors versus the number of
levels for three versions of the MLFMA. The geometry in Fig. 9 is used at
f = 3.0 GHz. The square, circle, and triangle markers are used to separate
three MLFMA versions. The black (blue) lines and gray (orange) lines along
with corresponding vertical axis on the left and right show the total run times
and the relative RMS errors, respectively.

(i.e., using the method presented in [8]), but the IL concept is
not used.

Fig. 10 (left and right) illustrates the total run
time [black (blue) lines are used] and the relative RMS
error [gray (orange) lines are used] versus the number
of levels for the three versions of MLFMA, respectively.
Considering the accuracy, all three versions are comparable
with each other up to level 4. However, due to a high
multiscale factor, the results obtained from the conventional
and scaled MLFMAs start to become inaccurate after level 4
and both versions fail to converge for a large number of
levels (no data are available for levels higher than 6 for both
versions, which is shown by the dashed lines in Fig. 10).
On the other hand, the efficiency of the IL-MLFMA is
much better than those of the both versions for the optimal
MBPs that correspond to the eighth and ninth levels for
IL-MLFMA, where the accuracy remains almost stable.
This is more evident regarding larger problems involving
larger numbers of unknowns, where more levels are required.
Therefore, to demonstrate the superiority of the IL-MLFMA,
we investigate three larger problems. Table II summarizes the
solutions of scattering problems involving four discretizations
of the PEC sphere shown in Fig. 9 (R = 5 cm at 300 MHz)
formulated with the MFIE. The first model is the same as
before, involving 11 343 RWG functions with a multiscale
factor of 110. The other models are obtained by mesh
refinement, leading to 45 372, 181 488, and 725 952 RWG
functions, respectively, retaining the same multiscale factor.
Note that the conventional MLFMA results are not included
either due to very large errors or due to convergence problems.
According to these results: 1) the IL-MLFMA is two to
six times more efficient than the scaled MLFMA and 2) the
accuracy is also more than six times better than the scaled
version, for a large problem.

To find out the performance of the IL-MLFMA in near-
zone fields, we use the third sphere example given in Table II
consisting of 181 488 RWG functions. Fig. 11(a) and (b)
illustrate the magnitudes of the total electric field on the xy
plane, inside the PEC sphere as well as in the vicinity of
it, assuming that the center of the sphere is at the origin.
The sphere is illuminated by a unit plane wave at 300 MHz,
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TABLE II

PERFORMANCE COMPARISON BETWEEN THE IL-MLFMA AND THE SCALED-MLFMA APPLIED TO FOUR DENSELY MESHED SPHERES
OF R = 5 cm AT f = 300 MHz WITH A MULTISCALE FACTOR OF 110

Fig. 11. Near-field total electric field values on the xy plane for a
PEC sphere of radius R = 50 mm illuminated by a unit plane wave at
300 MHz, propagating in the z direction with the electric field polarized
in the x direction. The sphere is chosen to be the third example given in
Table II with 181 488 RWG functions. (a) Solution using the IL-MLFMA with
7.71% RMS error, by expecting zero fields inside the sphere. (b) Solution
using the scaled MLFMA with 19.06% RMS error, by expecting zero fields
inside the sphere.

propagating in the z direction with the electric field polarized
in the x direction. Fig. 11(a) shows the IL-MLFMA solution
(possessing a far-field relative RMS error of 1.37%), while
Fig. 11(b) shows the only available scaled-MLFMA solution
(possessing a far-field relative RMS error of 9.04%). High
level of error can be distinguished in the latter especially
inside the sphere, where a zero electric field is expected. The
RMS error values for these solutions are 7.71% and 19.06%,
respectively.

To demonstrate how the IL-MLFMA performs for elec-
trically larger problems, we use a sphere similar to the one
shown in Fig. 9 with D = 2R = 1 m (4λ) at f = 1.2 GHz.
The sphere is discretized with 722 529 unknowns, leading to
a multiscale factor of 375. The solution is based on 12 levels
of the IL-MLFMA with a population threshold of 100. The
Mie-series solution is also depicted in Fig. 12 for comparison.
Both solutions match very well with each other despite of a
small discrepancy originating from the approximate method
used for low-frequency treatments.

Finally, we consider a PEC sphere with a more com-
plicated discretization including multiple overmeshed areas,

Fig. 12. Solution of a scattering problem using the IL-MLFMA, involving a
large PEC sphere of radius R = 0.5 m (2λ) illuminated by a unit plane wave
at f = 1.2 GHz. The discretized surface consists of 722 529 basis functions
possessing a multiscale factor of 375.

Fig. 13. Far-zone electric field scattered from a PEC sphere of radius
R = 5 cm with a more complicated discretization as shown in the inset,
illuminated by a unit plane wave at 300 MHz. The sphere contains six dense
mesh regions aligned with the positive and negative directions of x , y,
and z axes, where only three of them are visible in the figure. The multiscale
factor is about 100, leading to 557 184 RWG functions.

as illustrated in the inset of Fig. 13. In Fig. 13, three among six
highly overmeshed areas, which are aligned with the positive
and negative directions of the x-, y-, and z-axis over the
sphere, can be seen. A refined version of this mesh with a
multiscale factor of 100 is used at f = 300 MHz, containing
557 184 RWG functions. Fig. 13 depicts the far-zone electric
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Fig. 14. Three important processing times, i.e., the near-field time, the
solution time, and the total run time for four scattering problems given
in Table II.

field as a function of the bistatic angle, along with the
Mie-series solution, where 0° and 180° correspond to the
forward-scattering and backscattering directions, respectively.
It is seen that there is a very good agreement between the
Mie-series results and the values obtained with the
IL-MLFMA. A small amount of discrepancy is originated
from the approximate method in the low-frequency regime
and it is not related to the proposed IL structure. Note that,
for the same reason, the relative RMS error of 1.37% given
in Table II does not change for very fine meshes, i.e., when
the discretization error is minimized and the low-frequency
inaccuracies dominate the total error.

The proposed broadband solver shows O(N logα N) com-
putational complexity, where α (1 ≤ α ≤ 2) depends on
how deep we are getting into low-frequency regime after
recursively clustering the object based on the given population
threshold. The number of levels follows an O(logN) com-
plexity, where the base of the logarithm mainly depends on
the population statistics. By reusing the information given in
Table II, all three important processing times, i.e., the near-
field time, the solution time, and the total run time of the pro-
posed method, are plotted in Fig. 14. For comparison purposes,
both O(N log2 N) and O(N) lines are also plotted (in dashed
black and gray lines, respectively), where the former passes
through the first point of the total run time line and the latter
passes through the first point of the near-field line. As it can
be seen from Fig. 14, the efficiency of the proposed method
manifests itself for larger and more complicated geometries
with a higher number of unknowns. This is more evident
comparing the number of near-field interactions (the blue line)
and the O(N) line. Even though the solution and near-field
computation times show a bit higher and lower complexities
with respect to their dedicated reference dashed lines, the total
run time closely follows the claimed linearithmic complexity.

V. CONCLUSION

An efficient and versatile broadband MLFMA, referred to
as the IL MLFMA, is presented to solve multiscale electro-
magnetic problems for PEC objects. The concept of IL tree
structures is introduced, where only the OCBs are divided into
smaller ones for a given population threshold, leading to a

nonuniform clustering. Thus, protrusions of RWG functions
from the boxes are minimized, which improves the accuracy,
and the total number of interacting boxes is reduced, which
improves the efficiency. The error of the proposed structure
is almost independent of the levels. Consequently, for the
geometries that can be discretized with nonuniform meshes
with a large multiscale factor, the IL-MLFMA is always more
efficient than the conventional one for the same accuracy,
and it is more accurate if the efficiency is comparable, as
demonstrated with some canonical examples. Furthermore, the
IL-MLFMA recovers the conventional MLFMA for uniform
meshes, if desired. As a result, all other computational meth-
ods that can be combined with the conventional MLFMA can
also be used in conjunction with the proposed IL-MLFMA.
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