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Joint Detection and Decoding in the Presence of Prior
Information With Uncertainty

Suat Bayram, Member, IEEE, Berkan Dulek, Member, IEEE, and Sinan Gezici, Senior Member, IEEE

Abstract—An optimal decision framework is proposed for joint
detection and decoding when the prior information is available
with some uncertainty. The proposed framework provides trade-
offs between the average inclusive error probability (computed
using estimated prior probabilities) and the worst case inclusive
error probability according to the amount of uncertainty while
satisfying constraints on the probability of false alarm and the
maximum probability of miss-detection. Theoretical results that
characterize the structure of the optimal decision rule according
to the proposed criterion are obtained. The proposed decision
rule reduces to some well-known detectors in the case of perfect
prior information or when the constraints on the probabilities of
miss-detection and false alarm are relaxed. Numerical examples
are provided to illustrate the theoretical results.

Index Terms—Bayes, decoding, detection, Neyman–Pearson.

I. INTRODUCTION

IN MOST problems pertaining to hypothesis testing, one
needs to perform a specific task depending on the chosen

hypothesis. For example, in a sparse communication scenario,
where an asynchronous receiver frequently observes pure
noise due to a silent transmitter or the communication is
jeopardized by the presence of a jammer, it is required that the
receiver should reliably detect the presence of a message signal
before attempting to decode it. In a wireless communications
scenario, the channel characteristics may change abruptly
due to blockage by a large obstacle or interference from
other users, which in turn necessitates the detection of such
changes before performing decoding. While the traditional
approach has been to separately optimize for different tasks,
joint optimization often provides improved performance as
demonstrated for various frameworks such as joint detection
and estimation [1]–[3], joint detection and source coding [4],
and most recently, for joint detection and decoding [5], [6].

In this letter, we build upon the work conducted in [5] for
the problem of joint detection and decoding over sparse com-
munication channels. In that framework, the task was to detect
whether a signal is emitted by the transmitter, and if so, to de-
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code the message. The authors considered three figures of merit
to measure performance:

1) the probability of false alarm (FA)—that is, the probability
of deciding that some symbol was transmitted when in
fact, the transmitter was silent meaning that pure noise
was received;

2) the probability of miss-detection (MD)—that is, the prob-
ability of deciding that no transmission occurred when
actually, the transmitter sent some message; and

3) the probability of inclusive error (IE)—that is, the proba-
bility of not correctly deciding on the actually transmitted
symbol given that some message is transmitted, which
includes both events of erroneous decoding and MD.

The optimum decision rule that minimizes the IE probability
subject to constraints on the FA and the MD probabilities was
derived.

Within the context of communication theory, the prior prob-
abilities that are employed in the calculation of the IE and MD
probabilities are usually assumed to be equally likely. However,
in a more general decision theoretic setting, distinct signals that
need to be decoded may assume unequal prior probabilities de-
pending on the relative frequency of the events they symbolize.
For example, in many practical image and speech compression
applications, it is more realistic to model the output bit stream
from the source encoder as an independent and identically dis-
tributed nonuniform Bernoulli process due to the suboptimality
of the compression scheme [7]. Furthermore, the prior probabil-
ities may not even be known precisely. In such circumstances, a
sensible choice is to estimate the prior probabilities with some
uncertainty. This estimate can then be employed in order to
specify the average IE and MD probabilities but the uncertainty
also needs to be controlled by restricting the worst case values
for the corresponding probabilities in an analogous manner to
the restricted Bayesian framework [8], [9]. To address these is-
sues for the problem of joint detection and decoding, an optimal
decision framework that takes into account the uncertainty in the
prior information is proposed for the first time in this letter. An-
other advantage of the proposed framework is that it facilitates
tradeoffs among three well-known decision criteria: Bayesian,
minimax, and Neyman–Pearson since all three can be obtained
as special cases.

II. PROBLEM FORMULATION AND THEORETICAL RESULTS

Following [5] and [6], we consider a hypothesis testing prob-
lem in which the probability law for the observed random vari-
able Y belongs to one of the two disjoint sets. Only messages
that belong to one of the sets are decoded whereas no decoding
takes place if a decision is declared in favor of the other set.
Such a scenario may arise in, for example, block coded com-
munications, where in each block, the transmitter is either silent
or transmits a codeword from a given codebook. The task of
the detector is then to decide whether a codeword is transmitted
(or pure noise is observed at the receiver), and if so, to decode
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it (see [6] for various motivations). In this framework, the null
and alternative hypotheses can be represented, respectively, as

H0 : Y ∼ p0(y) , Hi : Y ∼ pi(y) for i = 1, . . . , M (1)

where pi(y) denotes the probability density function (pdf) of
observation Y under hypothesis Hi for i ∈ {0, 1, . . . ,M}.1 It
is assumed that there exists some prior information, albeit un-
certain, related to the alternative hypotheses. In particular, given
that the null hypothesis is false (e.g., a codeword is transmit-
ted), the probability that the alternative hypothesis Hi is true
(e.g., the ith codeword is transmitted) is denoted as πi such that
∑M

i=1 πi = 1 and πi ≥ 0 ∀i ∈ {1, . . . , M}. For example, in the
case of block coded communications [5], all codewords are
equiprobable a priori, i.e., πi = 1/M ∀i ∈ {1, . . . , M}, where
M denotes the number of distinct codewords in the codebook.
Let π = (π1 , π2 , . . . , πM ). The observation set is denoted with
Γ and the decision rule φ is a partition of Γ into M + 1 regions,
denoted by {Γi}M

i=0 . If y ∈ Γi for some 1 ≤ i ≤ M , then the ith
message represented by Hi is decoded. If y ∈ Γ0 (i.e., the rejec-
tion region), then hypothesis H0 is identified and no decoding
takes place.

The probability of selecting Hi when Hj is true is denoted by
Pj (Γi) and calculated as Pj (Γi) =

∫
Γ i

pj (y) dy. Consequently,
the IE probability can be written as [5]

PIE(φ,π) =
M∑

i=1

πi Pi(Γi) (2)

where Γi denotes the complement of the set Γi , i.e., Γi = Γ \ Γi ,
and the probability of correct decision (CD) is given by

PCD(φ,π) =
M∑

i=1

πi Pi(Γi) (3)

which satisfy PIE(φ,π) + PCD(φ,π) = 1. In addition, the prob-
abilities of MD and FA are expressed, respectively, as

PMD(φ,π) =
M∑

i=1

πi Pi(Γ0). (4)

PFA(φ) = P0(Γ0) . (5)

In practice, the conditional prior probabilities (i.e., the ele-
ments of π) are known with some uncertainty (e.g., estimated).
Let πest denote an estimate for the conditional prior probabili-
ties. The proposed hypothesis testing framework is as follows:

minimize
φ

λ PIE(φ,πest) + (1 − λ) max
π

PIE(φ,π) (6a)

subject to max
π

PMD(φ,π) ≤ β, (6b)

PFA(φ) ≤ α (6c)

where λ ∈ [0, 1] is a design parameter that is set according to
the degree of uncertainty in the knowledge of πest . In particular,
a larger value of λ is associated with less uncertainty in the con-
ditional prior probabilities. According to this formulation, the
objective function is a combination of the average IE probabil-
ity (obtained based on πest) and the worst case IE probability,
and the worst case (i.e., maximum) MD probability and the
FA probability are not allowed to exceed predefined thresholds

1In an analogy with the block coded communications scenario, H0 represents
pure noise reception while Hi indicates that a noise corrupted version of the ith
codeword is received.

(α and β, respectively).2 The formulation proposed in (6) gener-
alizes that given in [5, eq. (10)] in the sense that the uncertainty
in the conditional prior probabilities is also taken into account
via (6a) and (6b).

To characterize the optimal detector corresponding to (6), a
two-step approach is taken in the following: (i) The optimal
decision regions for the alternative hypotheses are obtained for
a given decision region for the null hypothesis in Lemma 1.
(ii) The form of the optimal detector is specified completely in
Proposition 1 based on the result in Lemma 1.

Lemma 1: Consider the optimization problem in (6) when
the decision region Γ0 for the null hypothesis is fixed (given)
and suppose that the MD and FA constraints in (6) are satisfied
for the given set Γ0 . Then, the optimal decision regions {Γi}M

i=1
corresponding to the solution of (6) are obtained as

Γi =
{
y ∈ Γ0 : πls

i pi(y) ≥ πls
k pk (y) ∀k �= i, k �= 0

}
(7)

for all i ∈ {1, . . . , M} with πls = (πls
1 , . . . , πls

M ) denoting the
least favorable conditional prior distribution given by

πls = λ πest + (1 − λ)πμ (8)

where πμ = (πμ
1 , . . . , πμ

M ) satisfies the following relation3:

M∑

i=1

πμ
i Pi(Γi) = max

{
P1(Γ1), . . . , PM (ΓM )

}
. (9)

Proof: From (4)–(6), the FA probability and the maximum
MD probability are expressed as PFA(φ) = 1 −

∫
Γ0

p0(y)dy

and maxπ PMD(φ,π) = maxπ

∑M
i=1 πi

∫
Γ0

pi(y)dy = max
{
∫

Γ0
p1(y)dy, . . . ,

∫
Γ0

pM (y)dy}. Hence, when the decision
region Γ0 for the null hypothesis is given, the FA probability
and the maximum MD probability are fixed since they only
depend on Γ0 and the pdfs under different hypotheses, namely
{pi(y)}M

i=0 . Since the maximum MD and the FA constraints in
(6) are assumed to be satisfied for given Γ0 , the problem in (6)
reduces to

minimize
{Γ i }M

i = 1

λ PIE(φ,πest) + (1 − λ) max
π

PIE(φ,π). (10)

Using (2), the optimization in (10) can be written as

minimize
{Γ i }M

i = 1

λ

M∑

i=1

πest
i Pi(Γi)

+ (1 − λ)max
{
P1(Γ1), . . . , PM (ΓM )

}
. (11)

The formulation in (11) is known as the restricted(-risk)
Bayesian problem [8], [10], which aims at finding the decision
regions {Γi}M

i=1 that minimize the Bayes risk (computed using
the estimated/uncertain conditional prior probabilities) subject
to a constraint, induced by λ, on the worst case conditional
risk (see [10, eq. 2.2]). The solution of the restricted Bayesian
problem is given by the Bayes rule corresponding to the least
favorable distribution, which is specified by a mixture of the es-
timated conditional prior distribution with another conditional
prior distribution as in (8) [8], [10]. In particular, the Bayes
rule corresponding to πls in (8) yields a solution of (11) if the

2For a given α, the minimum value of β is set by the solution of the max–min
Neyman–Pearson problem [12]. Hence, for a given α, the value of β must be
selected to be greater than that minimum value.

3The relation in (9) expresses the intrinsic equalizer nature of minimax prob-
lems (see [8], [10]).
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condition in (9) holds [10, Th. 1]. Finally, since the solution of
(11) [equivalently, (10)] is the Bayes rule corresponding to πls ,
it is given by the maximum a posteriori probability decision
rule (under uniform cost assignment [11]), that is, a decision
is declared in favor of the ith hypothesis if πls

i pi(y) is larger
than or equal to πls

j pj (y) for all j ∈ {1, . . . , M} \ {i}, where
i ∈ {1, . . . , M}. Hence, the optimal decision regions are ob-
tained as in (7).

Lemma 1 states that once Γ0 is determined, the remaining
decision regions {Γi}M

i=1 are optimally specified via (7) in con-
junction with (8) and (9). Therefore, we focus on obtaining the
optimal decision rule for the rejection region Γ0 in the remainder
of the manuscript. The following proposition characterizes the
optimal rejection region corresponding to the null hypothesis,
which in turn yields the form of the solution to the optimization
problem proposed in (6).

Proposition 1: Consider a decision rule φ∗ specified by a
partition of the observation space Γ into M + 1 regions denoted
as {Γ∗

i }M
i=0 such that

Γ∗
0 =

{

y ∈ Γ : a
M∑

i=1

πmd
i pi(y) + max

k �=0
π̃ls

k pk (y) ≤ b p0(y)
}

(12)
for some nonnegative thresholds a and b that are adjusted to
satisfy the constraints in (6b) and (6c) (see [5, discussions af-
ter the proof of Lemma 1]), {Γ∗

i }M
i=1 are obtained from Γ∗

0 as
described in Lemma 1, π̃ls is the corresponding least favorable
distribution as specified in (8) and (9), and πmd satisfies4

PMD(φ∗,πmd) = max
i∈{1,...,M }

Pi(Γ∗
0) . (13)

Then, for any other decision rule φ represented by {Γi}M
i=0 that

satisfies maxπ PMD(φ,π) ≤ maxπ PMD(φ∗,π) and PFA(φ) ≤
PFA(φ∗), the following inequality holds:

λ PIE(φ∗,πest) + (1 − λ) max
π

PIE(φ∗,π)

≤ λ PIE(φ,πest) + (1 − λ) max
π

PIE(φ,π) . (14)

That is, the optimal solution to (6) is characterized by the rule
φ∗ with decision regions {Γ∗

i }M
i=0 .

Proof: From (12), it is seen that the following inequality
holds for all y ∈ Γ:

(I{y ∈ Γ∗
0} − I{y ∈ Γ0})

×
(

b p0(y) − a
M∑

i=1

πmd
i pi(y) − max

k �=0
π̃ls

k pk (y)
)

≥ 0 (15)

where I{·} denotes the indicator function.5 Since the ex-
pression in (15) is nonnegative ∀y ∈ Γ, its integral over the
observation set Γ is also nonnegative, which leads to the
following inequality:

b (PFA(φ) − PFA(φ∗)) + a
(
PMD(φ,πmd) − PMD(φ∗,πmd)

)

≥
∫

Γ∗
0

max
k∈{1,...,M }

π̃ls
k pk (y) dy −

∫

Γ0

max
k∈{1,...,M }

π̃ls
k pk (y) dy

(16)

4The relation in (13) is due to the intrinsic equalizer nature of the max–min
Neyman–Pearson problem (see [12] and references therein).

5This proof approach is similar to that of the Neyman–Pearson lemma [11,
p. 24] and that in [5, Lemma 1].

where PFA(φ) = P0(Γ0) = 1 − P0(Γ0) and PMD(φ,πmd) =
∑M

i=1 πmd
i Pi(Γ0) are substituted. Then, we get

PMD(φ,πmd) ≤ max
π

PMD(φ,π) ≤ max
π

PMD(φ∗,π)

= PMD(φ∗,πmd) (17)

where the first inequality is by definition, the second
inequality maxπ PMD(φ,π) ≤ maxπ PMD(φ∗,π) is as-
sumed in the proposition, and the equality is due to (13).
Using PFA(φ) ≤ PFA(φ∗) in conjunction with (17), the
left-hand side of (16) is seen to be nonpositive, from
which it follows that

∫
Γ∗

0
maxk∈{1,...,M }, π̃ls

k pk (y) dy ≤
∫

Γ0
maxk∈{1,...,M } π̃ls

k pk (y) dy. This relation implies that
∫

Γ
∗
0

max
k∈{1,...,M }

π̃ls
k pk (y) dy ≥

∫

Γ0

max
k∈{1,...,M }

π̃ls
k pk (y) dy. (18)

The integral on the right-hand side of (18) can be bounded as
follows:

∫

Γ0

max
k∈{1,...,M }

π̃ls
k pk (y) dy =

M∑

i=1

∫

Γ i

max
k∈{1,...,M }

π̃ls
k pk (y) dy

≥
M∑

i=1

∫

Γ i

π̃ls
i pi(y) dy =

M∑

i=1

π̃ls
i Pi(Γi). (19)

On the other hand, based on (7) in Lemma 1, the integral on
the left-hand side of (18) is recognized as the CD probabil-
ity corresponding to observation set Γ

∗
0 ; i.e.,

∑M
i=1 π̃ls

i Pi(Γ∗
i ).

Hence, from (18) and (19), the following relation is obtained:
∑M

i=1 π̃ls
i Pi(Γ∗

i ) ≥
∑M

i=1 π̃ls
i Pi(Γi). This inequality can also

be stated as
∑M

i=1 π̃ls
i (1 − Pi(Γ

∗
i )) ≥

∑M
i=1 π̃ls

i (1 − Pi(Γi)),
which leads to the following expression after substituting (8):

λ

M∑

i=1

πest
i Pi(Γ

∗
i ) + (1 − λ)

M∑

i=1

π̃μ
i Pi(Γ

∗
i )

≤ λ

M∑

i=1

πest
i Pi(Γi) + (1 − λ)

M∑

i=1

π̃μ
i Pi(Γi) . (20)

Since
∑M

i=1 π̃μ
i Pi(Γ

∗
i ) = maxπ PIE(φ∗,π) due to (9) and

∑M
i=1 π̃μ

i Pi(Γi) = PIE(φ, π̃μ) ≤ maxπ PIE(φ,π) by definition
[see (2)], the relation in (20) implies (14). Overall, it is proved
that any decision rule with FA and maximum MD probabilities
not exceeding those of the proposed decision rule φ∗, respec-
tively, cannot achieve a lower value for objective function than
the proposed one. Hence, the optimal solution to (6) is charac-
terized by the rule φ∗ with decision regions {Γ∗

i }M
i=0 as specified

in the proposition.
Proposition 1 states that the optimal decision rule correspond-

ing to (6) has a rejection region specified by (12) and the de-
coding regions are obtained from (7). In order to solve (6), the
decision regions specified in (7) and (12) are used in place of
the decision rule φ, and (9) and (13) are incorporated into (6)
as the additional constraints. As a result, we have an optimiza-
tion problem with a finite number of unknowns (which are a,
b, πμ , and πmd ). In the simulations, we have used a global
optimization tool in MATLAB (namely, the particle swarm op-
timization algorithm) to solve this problem. It is worth men-
tioning that while the threshold a is mainly related to satisfying
the maximum MD constraint (see footnote 6), the threshold
b is primarily selected to satisfy the FA constraint. It should
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Fig. 1. Objective function in (6), PIE(φ∗, πest ), and maxπ PIE(φ∗, π) ver-
sus λ for various values of the estimated conditional prior probabilities. A
Gaussian mixture with Nm = 4 components is assumed, where the means are
{−1.5,−0.5, 0.5, 1.5}with corresponding weights {0.4, 0.1, 0.1, 0.4} and the
standard deviations of all the mixture components are σ = 0.2. The remaining
parameters are set to α = 0.1, β = 0.22, and A = 1.3.

be noted that for large values of a, the problem under con-
sideration is essentially a Neyman–Pearson test between p0(y)
and

∑M
i=1 πmd

i pi(y), known as the max–min Neyman–Pearson
problem, where the aim is to minimize the worst case (i.e.,
maximum) MD probability under the FA constraint [12]. On
the other hand, for small values of a, the problem converges to
the restricted Bayesian problem, which covers both Bayesian
and minimax frameworks as special cases, after proper nor-
malization of the conditional prior probabilities along with a
proper selection of b (i.e., b = π̃ls

0 ) [10]. More explicitly, the
decision rule treats the null hypothesis as another message and
decoding is performed among all hypotheses in the presence
of prior uncertainty according to arg maxk∈{0,1,...,M } π̃ls

k pk (y).
Furthermore, in the case of perfect prior information, the for-
mulation proposed in (6) reduces to that introduced in [5] when
equal priors are assumed and the maximum MD constraint is
replaced with the average MD constraint. As a result, our for-
mulation can be considered as a generalization of Bayesian and
Neyman–Pearson frameworks in the presence of uncertainty.

III. NUMERICAL RESULTS

In this section, the theoretical results in Section II are
investigated via simulations. Consider a sensor that inter-
mittently reports to a remote node about the temperature.
There are idle periods during which no transmission occurs,
indicating that the temperature is within acceptable limits.
The sensor employs binary phase shift keying to signal when
the temperature gets too hot or too cold. Consequently, at the
receiver side, the following hypothesis testing problem arises:
H0 : Y = N, H1 : Y = A + N, H2 : Y = −A + N , where
N represents additive noise and A > 0 is a known signal level.
Namely, when the transmitter is silent, the receiver observes
pure noise. Otherwise, a constant signal level corrupted by addi-
tive noise is acquired. A symmetric Gaussian mixture noise with
the following pdf is assumed [9]: pN (n) =

∑Nm

l=1 ξl ϕl(n − μl),
where Nm denotes the number of components in the mixture,
μl is the mean value of the lth component,

∑Nm

l=1 ξl = 1, ξl > 0,
and ϕl(n) = (

√
2π σl)−1exp{−n2/(2σ2

l )} with σl represent-
ing the standard deviation of the lth mixture component for
l ∈ {1, . . . , Nm}. The mixture parameters {ξl , μl , σl}Nm

l=1 are
selected to make the resulting pdf symmetric. It is assumed that
the conditional prior probabilities of the hypotheses H1 and
H2 corresponding to hot and cold states, respectively, are not

Fig. 2. Expected IE probability PIE(φ∗, πest ) versus worst case IE probability
maxπPIE(φ∗, π) for the scenario in Fig. 1.

necessarily equal (see [7] for other examples of unequal priors),
and they are estimated based on the past measurements. Due
to suboptimality of the estimation procedure, there exists some
degree of uncertainty in the conditional prior probabilities.
Hence, employing the detection criterion introduced in (6)
can be beneficial to compensate for the undesired effects of
uncertainty on the system performance, as investigated below.

In Fig. 1, the objective function in (6) together with the ex-
pected and the worst case IE probabilities (PIE(φ∗,πest) and
maxπ PIE(φ∗,π), respectively) are plotted against the change in
λ for various values of the estimated conditional prior probabili-
ties, where α = 0.1, β = 0.22, and A = 1.3. When λ is less than
or equal to a specific value (which is λ0 = 0.55 for π1 = 0.9,
λ0 = 0.625 for π1 = 0.8, and λ0 = 0.714 for π1 = 0.7), the
least favorable conditional prior distribution is realized as
π̃ls = (0.5, 0.5) along with πmd = (0.5, 0.5), resulting in equal
conditional IE probabilities (i.e., P1(Γ1) = P2(Γ2)) and equal
conditional MD probabilities (i.e., P1(Γ0) = P2(Γ0)). This, in
turn, results in equal expected and the worst case IE probabili-
ties (that is, PIE(φ∗,πest) = maxπ PIE(φ∗,π)), as observed in
Fig. 1. Such behaviour can partly be attributed to the fact that
small values of λ place more emphasis on the minimization
of the worst case IE probability, which is realized with equal
conditional priors for all λ ≤ λ0 . The emphasis can be shifted
towards the expected IE probability by considering higher val-
ues of λ (i.e., decreasing the amount of uncertainty in the prior
information), which in turn renders lower scores for the ob-
jective function possible. For λ > λ0 , it is seen in Fig. 1 that
the gap between the expected and the worst case IE probabil-
ities widens as λ increases. In summary, the minimum value
for maxπ PIE(φ,π) is achieved when λ ≤ λ0 , whereas the min-
imum value for PIE(φ,πest) is obtained for λ = 1. Therefore,
the proposed formulation in (6) provides the optimal tradeoff
between the expected and the worst case IE probabilities (that
is, PIE(φ,πest) and maxπ PIE(φ,π), respectively) subject to the
constraints on the FA and the maximum MD probabilities by ad-
justing λ within the interval [λ0 , 1] according to the uncertainty
level. This is illustrated in Fig. 2.

IV. CONCLUDING REMARKS

For the joint detection and decoding problem, an optimal
decision framework that takes into account the uncertainty in the
prior information has been proposed. The proposed framework
facilitates tradeoffs between the average IE probability and the
worst case IE probability according to the amount of uncertainty
while satisfying constraints on the probability of FA and the
maximum probability of MD.
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