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Online Classification via Self-Organizing
Space Partitioning
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Abstract—The authors study online supervised learning under
the empirical zero-one loss and introduce a novel classification al-
gorithm with strong theoretical guarantees. The proposed method
is a highly dynamical self-organizing decision tree structure, which
adaptively partitions the feature space into small regions and com-
bines (takes the union of) the local simple classification models
specialized in those regions. The authors’ approach sequentially
and directly minimizes the cumulative loss by jointly learning the
optimal feature space partitioning and the corresponding individ-
ual partition-region classifiers. They mitigate overtraining issues
by using basic linear classifiers at each region while providing a
superior modeling power through hierarchical and data adaptive
models. The computational complexity of the introduced algorithm
scales linearly with the dimensionality of the feature space and the
depth of the tree. Their algorithm can be applied to any streaming
data without requiring a training phase or a priori information,
hence processing data on-the-fly and then discarding it. Therefore,
the introduced algorithm is especially suitable for the applications
requiring sequential data processing at large scales/high rates. The
authors present a comprehensive experimental study in station-
ary and nonstationary environments. In these experiments, their
algorithm is compared with the state-of-the-art methods over the
well-known benchmark datasets and shown to be computationally
highly superior. The proposed algorithm significantly outperforms
the competing methods in the stationary settings and demonstrates
remarkable adaptation capabilities to nonstationarity in the pres-
ence of drifting concepts and abrupt/sudden concept changes.

Index Terms—Online learning, sequential, classification, self-
organizing, adaptive, tree, randomized algorithms.

I. INTRODUCTION

IN the contemporary machine learning applications [1]–[4],
algorithms are required to process data at an extremely fast

rate, yet to learn complex models often in a non-stationary en-
vironment. In addressing this ambitious goal, one generally
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aims at maximally exploiting the information per instance—
with only a single access—in the online setting and update
the most recently learned hypothesis. To this end, we tar-
get such applications requiring sequential data processing at
large scales/high rates and propose an online algorithm to learn
arbitrarily complex and non-stationary structures with strong
performance guarantees. In particular, we propose a novel,
highly efficient and effective online classification algorithm,
which can operate continuously—without an interrupt—on an
infinite stream of possibly correlated (labeled) observations
from a possibly non-stationary process. We study the problem
under this wide generality without any statistical assumptions
since we desire to draw conclusions about the worst case sit-
uations in the most realistic manner to effectively address the
unknown environments, which might be non-stationary, chaotic
and generate data even adversely [5]–[8].

To learn complex relations while exploiting local regulari-
ties, we consider completely adaptive piecewise linear models
by partitioning the observation domain, i.e., the feature space,
into different regions. Specifically, we use a binary partitioning
tree, where a separator (e.g., a hyperplane split or partitioner)
and an online linear classifier (a “simple model” such as the per-
ceptron) are assigned to each node/region. The sequential losses
of the regional classifiers (i.e., the simple models) are combined
into a global loss that is parameterized over separator/split as
well as the node/region classifier parameters. We minimize this
global loss using the stochastic gradient descent method and ob-
tain the updates for the complete set of tree parameters, i.e., the
separators and the region classifiers, at each newly observed in-
stance. The result is a highly dynamical self-organizing decision
tree structure that jointly (and in a truly online manner) learns
the region classifiers and the optimal feature space partition-
ing. In this respect, our strategy is highly novel and remarkably
robust to drifting source statistics, i.e., non-stationarity. Since
our approach is essentially based on a finite combination of
linear models, it generalizes well and does not overfit or lim-
itedly overfits [9] (as rigorously shown by our extensive set of
experiments).

The introduced partitioning tree effectively defines a class of
hierarchical partitions (of the feature space) and a correspond-
ing class of a doubly exponential number (∼1.52D

, where D
is the depth) of piecewise linear and online base classifiers,
cf. Figs. 2 and 3. The proposed online classifier combines the
outputs of these online base classifiers at each instance and
generates its classification output. We prove that without any
statistical assumptions, the proposed algorithm asymptotically,
i.e., as t → ∞, performs as well as the best base classifier (at
time infinity or practically after processing sufficiently many
data instances) that can only be chosen in hindsight. Here, the
best base classifier is itself time varying and defined at time
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Fig. 1. An illustration of the complete tree structure. ft,n (·) and pt,n (·)
represent the classifier and the separator function of node n, respectively.

Fig. 2. The partitioning of a 2-dimensional feature space using a depth-2
tree. The whole feature space is first bisected by pt,n =λ and split into two
regions n = 0 and n = 1: if an instance φT

t ,n =λxt ≥ 0 (or if pt,n =λ (xt ) ≥
0.5 in (3)), then it follows the 1-branch; otherwise, it follows the 0-branch.
The corresponding regions are similarly bisected by pt,0 and pt,1 , respectively.
The active region at a node resulting from the previous splits is illustrated
colored, where the dashed line represents the separating hyperplane (whose
normal vector is φt ,n ) at that node and the two differently colored subregions
are the corresponding local classification by ft,n .

Fig. 3. The competition class of base classifiers defined by the depth-2 tree in
Fig. 2. Each base classifier corresponds to a complete subtree in Fig. 2.

t as the base classifier, which achieves the smallest empirical
loss, i.e., accumulated number of classification errors, at time
t. For instance, in the case of a depth-2 tree partitioning, the
best base classifier switches (in time from one classifier to an-
other) in the class of base classifiers that is illustrated in Fig. 3.
We point out that our algorithm also optimizes the structure of
this partitioning, cf. Figs. 1 and 2; and each base classifier is
a specific union of hierarchically arranged regional linear clas-
sifiers. All such possible unions generate the class of the base
classifiers and the final combined classifier is in fact an optimal
union classifier. Our results hold for every possible input stream
regardless of the underlying data generation process. The com-
putational complexity of the proposed algorithm is controllable
over the depth of the tree and it linearly grows with the depth,
the data dimensionality and the number of streamed instances.
We perform an extensive set of experiments over both station-
ary and non-stationary real and synthetic data. In our stationary
data experiments, our algorithm significantly outperforms the
state-of-the-art as well as the most recently proposed techniques
[10]–[14]. In our non-stationary data experiments, we experi-
mentally analyze the proposed approach under the continuous
concept drifts and abrupt concept changes [9], [15], [16], where
we follow the comparison framework of [15]. We demonstrate
that our algorithm also achieves a superior adaptation to non-
stationarity, especially when it is not known what type expert is
the best to combine with the competing ensemble methods or
when the class separation is strongly non-linear. Furthermore,
our algorithms (two versions) are computationally significantly
more efficient compared to the proposals [9]–[12], [14]–[16].

A. Related Work

In the literature of classification and regression trees [17],
[18], the split criteria are typically chosen a priori and fixed
such as the dyadic partitioning [19]; and a specific loss, e.g.,
the gini index [20], is minimized separately for each node. For
instance, multivariate trees are extended to allow the simultane-
ous use of functional inner and leaf nodes to draw a decision in
[21]. Similarly, the node specific individual decisions are com-
bined in [13] via the context tree weighting method [7] and a
piecewise linear model for sequential classification is obtained.
Since the tree structures in both of these methods are fixed and
chosen even before the processing starts, the resulting modeling
power is very limited and significantly deteriorates in case of
high dimensionality [22]. In contrast, our algorithm provides a
theoretically analyzed and computationally efficient fully adap-
tive tree for online classification, which learns the split criteria
without any limitation or restriction. This generates a dynam-
ical self-organizing tree that is sequentially tuned to the data
and adaptive to high dimensionality. Moreover, we do not use
any statistical assumptions regarding the data source unlike [23]
and our analyses hold in a strong mathematical sense [24]. Self-
organizing trees have been successfully applied to regression
problems in a recent study [25]. However, the computational
complexity of the algorithm [25] is exponential in the depth
of the tree, whereas our approach operates with significantly
smaller computational costs (i.e., linear in the depth of the tree).
We also emphasize that both the problem as well as the algo-
rithm in our study are completely different than [25]. Another
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successful application of the self-organizing trees is presented
in [9] in the context of classification. The problem in [9] is
formulated in the batch setting, thus it does not address our
sequential requirements. Unlike [9], [26], where the final clas-
sifier is described by a single pruning of the tree (i.e., one of the
partitions of the feature space defined by the decision tree), we
consider the complete set of base classifiers constructed by all
possible prunings.

Our approach combines simple models to obtain a strong on-
line classifier, hence it is directly related to “boosting” [27], [28]
and “predicting with expert advice” [5] methods of the online
setting. We emphasize that the corresponding online algorithms
[6], [10]–[12], [14]–[16], [24], [29]–[46] essentially consider a
weighted linear combination of weak learners/experts that run
independently in parallel with no structure. On the contrary, we
consider the union of hierarchically structured simple models
that yields a superior classification performance with minimal
computational complexity. Several online boosting methods are
proposed such as the Oza’s online algorithm [10] and [29] that
are asymptotically convergent to the batch solution of Adaboost
[27]. The corresponding variants [30]–[33] are heuristically de-
veloped with no convergence results. These studies are collected
in a single theoretical framework via the stochastic gradient de-
scent in [34]; and their robustness is investigated under noisy
labels in [11]. Further analytical justifications can be found in
[12] (an online extension to [47]). Unlike these stochastic gradi-
ent descent methods, another ensemble method uses a Bayesian
framework [14]. However, all these methods are appropriate
only for stationary environments and based on weighted linear
combinations of weak learners. In contrast, we consider unions
of simple linear models that are adaptively and optimally (to
minimize the final loss) located in the feature space with respect
to the possible changes in the source statistics.

Our theoretical analyses are inline with the “predicting with
expert advice” framework [5]. The weighted majority algorithm
and similar aggregation strategies are presented in [24], [35],
which are generalized in [36], [37], [39] to allow switching
experts at a fixed and specified rate and modified for drifting
concepts in [38]. The switching rate [36] is also incorporated
into the learning algorithm in [6]. Generally, the algorithms pro-
posed in this framework, such as [6], [24], [35]–[39], consider
a fixed ensemble of expert algorithms and obtain an optimal
weighted linear combination in terms of the regret bounds. Ac-
cordingly, we prove that the proposed algorithm asymptotically
achieves the performance of the best union of the regional lin-
ear classifiers that can only be selected in hindsight. However,
we do not restrict our algorithm to a fixed set of models since
the non-stationarity has an unpredictable nature and cannot be
confined to a fixed set of experts as in these studies [6], [24],
[35]–[39]. A dynamically weighted majority algorithm that can
enhance the ensemble by addition or removal of the experts to
further adapt to non-stationarity, named as “concept drift” [40],
is presented in [15]. Similar ensemble pruning/enhancing tech-
niques are also considered in [16], [41]–[45] to avoid rigidity
of the fixed set of experts/weak learners approach. In contrast,
we follow a different approach: our algorithm learns the region
classifiers and collectively organizes them at every instance.
Neither the union structure (partitioning) nor the simple models
in our approach are fixed; yet, the proposed algorithm achieves

the performance of the optimal union classifier selected in hind-
sight. In [16], [41]–[46], concept changes are generally tracked
in sliding windows of the stream, which results in incremental
(not sequential since batch data is used) learning. In addition, a
change detector in the windowed parts is used in [44], [46] to
obtain increased adaptivity. On the other hand, the adaptation to
concept changes in our work is due to the inherent joint learning
process of the split criteria and the region classifiers in our tree.
This brings the online processing capability that does not require
windowed batch data. The algorithms in the literature of drifting
concepts are generally heuristically developed. In this respect,
in addition to the introduced error bounds in [15], the presented
theoretical analysis in this study provides furthers insight into
the non-stationary setting.

B. Summary of Contributions

1) We propose two novel online classification algorithms that
are based on a highly dynamical self organizing decision
tree, which sequentially learn both the optimal feature
space partitioning and the optimal combination (union
of) of the local linear models of the regions of the fea-
ture space partition. Our online algorithms are mathe-
matically guaranteed—without any assumptions about the
data source—to asymptotically perform as well the best
classifier (obtained from the best combination of the local
models) that can only be chosen in hindsight.

2) The proposed online algorithms generate a piece-wise lin-
ear model to learn complex relations while exploiting the
local regularities in a completely data driven manner. Our
approach generalizes well and (does not or) limitedly over-
fits with strong sequential adaptation to non-linearity even
in the case of non-stationary data.

3) The computational complexity of our algorithms grow
linearly with the data size, dimensionality and the depth
of the partitioning tree. Hence, the proposed algorithms
are computationally highly efficient and appropriate for
sequential data processing at large scales/high rates.

4) The proposed algorithms significantly outperform the
state-of-the-art competing techniques in our extensive sta-
tionary and non-stationary real data experiments.

After we provide the problem description in Section II, we
introduce our sequential classifier and present the theoretical
guarantees in Section III. We demonstrate the performance
of our algorithms (two versions) via extensive experiments in
Section IV and conclude with final remarks in Section V.

II. PROBLEM DESCRIPTION

We study online binary classification, where we observe fea-
ture vectors {xt}t≥1 and determine their labels {yt}t≥1 in an
online manner.1 In particular, the aim is to learn a classification
function ft (xt) with xt ∈ Rp and yt ∈ {−1, 1} such that when
applied in an online manner to any streaming data, the empirical

1All vectors are column vectors and denoted by boldface lower case letters.
Matrices are represented by boldface uppercase letters. For a vector u, uT is the
ordinary transpose. Throughout the paper, the time index appears as a subscript.



3898 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 15, AUGUST 1, 2016

loss of the classifier ft(·), i.e.,

LT (ft) �
T∑

t=1

1{ft (xt ) �=yt }, (1)

is asymptotically as small as (after averaging over T ) the em-
pirical loss of the best classifier C (φ) from a competition class
S (φ) of base classifiers for any sequence length T (where T
is not a design parameter, i.e., our algorithms (two versions)
are truly sequential). The set of classifiers S (φ) is a parameter
dependent class that can be optimized over φ, where φ is not a
specific algorithm dependent parameter such as the separation
hyperplane of a linear classifier, but instead it determines the
“shape” of the competition class.2 Unlike the relevant works in
the literature of “predicting with expert advice” [5], the goal,
in this paper, is not only to achieve the performance of the best
expert, i.e., the best base classifier, but also to optimize the com-
petition class S (φ) over the “shape” φ to further and directly
minimize the final error.

To be more precise, we measure the relative performance of
ft with respect to the performance of a base classifier3 f

(C (φ))
t ,

where C (φ) ∈ S (φ), using the following regret

RT

(
ft ; f

(C (φ))
t

)
�

LT (ft) − LT

(
f

(C (φ))
t

)

T
, (2)

for any arbitrary length T . Our aim is then i) to construct an on-
line algorithm with guaranteed upper bounds on this regret for
any base classifier and ii) to optimize over φ in order to minimize
the classification error. In this sense, the proposed algorithm ft

competes against the best base classifier that itself constantly
improves. We emphasize that a classifier C (φ) in the competi-
tion class, i.e., C (φ) ∈ S (φ), can be implemented in various
ways. In this paper, we consider the union classifier, which can
approximate any arbitrarily nonlinear class separation by piece-
wise linear curves with limited (or without) overfitting, cf. the
finite VC dimension discussion in [9]. To efficiently construct
this set of base classifiers that is dynamically adaptive to the
data through the shape φ, we next introduce a self-organizing
partitioning tree.

A. Adaptive Space Partitioning With Self-Organizing Trees

A tree—in our work—defines a nested partitioning of the fea-
ture space at each node of which, we have a simple region/local
classifier (e.g., a linear and online classifier such as the percep-
tron) and a separator/partitioner (or a split) of the corresponding
region. A generalized view of a depth-2 tree is given in Fig. 1,
where ft,n represents the region classifier and pt,n represents
the separator function of node n at time t. In Fig. 1, a depth-2
tree is used to partition the feature space as follows. The root
node (or node λ) represents the entire feature space, where the
separator function pt,λ bisects this region and creates node 0
and node 1. Similarly, each of these nodes are also split via pt,0
and pt,1 creating children nodes 00, 01 and 10, 11, respectively.
The selection of the node classifiers and separator functions are

2The precise meaning of the parameter φ will become clear shortly.
3We use the notation f

(C (φ))
t to precisely denote the actual operational and

online base classifier C (φ) ∈ S (φ).

completely up to preference and can be arbitrary. However, we
use perceptrons as our node classifiers and hyperplanes as our
node separators. The separator pt,n is a function of φt,n such as
the sigmoid

pt,n (xt) =
1

1 + eφT
t , n xt

, (3)

where φt,n is the angle of the normal line to the separating
hyperplane for each node n. We consider these differentiable
separator functions as randomized decisions such that pt,n (xt)
is the probability of assigning xt to the right child node of n.

As an example, the 2-dimensional feature space is partitioned
using a depth-2 tree in Fig. 2. Operationally, each instance xt

is propagated from the root node to a leaf node through a cer-
tain branch such that if φT

t,nxt ≥ 0 (cf. (3)) at node n, then xt

follows the 1-branch; otherwise, it follows the 0-branch. Mean-
while, at each visited node, it is classified by the local node
(region) classifier. In Fig. 2, the dashed lines represent the par-
titioning of the feature space corresponding to each inner node
and the two different colored regions represent the node classi-
fier outputs at the respective regions. Each complete subtree (or
pruning) generates a certain partition with a certain piecewise
linear classification structure and hence, yields a complete base
classifier. According to the partitioning in Fig. 2, 5 different
base classifiers producing the competition class can be defined
and these classifiers are presented in Fig. 3. Note that for a
base classifier C (φ) ∈ S (φ), the output f

(C (φ))
t (xt) makes

its decision according to the decision of the region classifier
ft,n (xt), where n is the leaf node (containing xt) of the subtree
that generates C (φ).

Based on this tree partitioning, for a depth-D tree, there exist
approximately 1.52D

different base classifiers [48]. The pro-
posed classifier ft combines the outputs of all these base classi-
fiers at each time and generates its final output with the desired
competitive classification performance. Namely, we achieve a
diminishing regret in (2) for any base classifier such that the
performance of the best base classifier is matched. Note that
each base classifier is an online union classifier as it operates
on a union of the regions spanning the entire feature space with
simple and online linear region classifiers at each region. In
addition to the goal of obtaining the competitive performance,
we also aim to constantly improve this competitive performance
by directly improving the performances of the base classifiers
(i.e., competitors) over time through jointly learning the optimal
region classifiers as well as the optimal partitioning structure.
Hence, the proposed algorithm ft is competitive against a com-
petition class that itself is designed to constantly improve over
time. To this end, we parameterize the introduced tree over the
collection of the separator function parameters φ =

{
φt,n

}
,

which also defines the aforementioned “shape” of our com-
petition class S (φ). Then, we directly minimize the resulting
final classification loss of ft in (1) over the complete set of tree
parameters. We refer this structure as self-organizing tree.

In this framework, we emphasize two points. First, there is a
1 − 1 mapping between the partitions and the base classifiers,
and we use these phrases interchangeably: C (φ) is referred as
a partition or a base classifier conveniently for clarity. However,
we use the notation f

(C (φ))
t to precisely denote the actual oper-

ational and online base classifier. Second, these partitions, the
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simple region classifiers and hence the resulting base classifiers
are all time varying due to our online setting. In this setting, our
goal is to find a computationally efficient sequential algorithm
that achieves the performance of the optimal base classifier
(cf. (2)) and also simultaneously improves that optimal base
classifier.

III. ADAPTIVE TREE-BASED NON-LINEAR CLASSIFIER

In this section, we propose two variants of our online classifier
ft . 1) ATNC.Rnd: ft randomly chooses a base classifier using
a specific weighting scheme over the class S (φ) and matches
the output of the chosen base classifier; and 2) ATNC.Avg: ft

outputs the weighted average of the base classifier decisions.
Here, ATNC stands for “Adaptive Tree-based Non-linear Clas-
sifier”, where the non-linear classification capability is due to
the introduced union structure.

In our theoretical analysis, we concentrate on the algorithm
ATNC.Rnd; however, our results hold for ATNC.Avg as well
in a straightforward manner. We prove that the performance of
the proposed algorithm ft , i.e., ATNC.Rnd, is asymptotically
as well as the best base classifier, where the adaptation of φ
results significant performance gains as it directly improves
the competitors, i.e., the best base classifier. In particular, we
provide an upper bound on the regret RT (ft ; f

(C (φ))
t ) such that

as T → ∞, RT (ft ; f
(C (φ))
t ) → 0 for this highly dynamical self-

organizing tree. We provide the construction of the algorithm
(and also the detailed construction of the base classifiers) in
the proof of the following theorem, where we also present our
theoretical results.

Theorem 1: Let {xt}t≥1 and {yt}t≥1 be arbitrary and real-
valued sequence of feature vectors and their labels, respectively.
The universal randomized union classifier presented in Alg. 1,
i.e., ATNC.Rnd, when applied to these data sequences, sequen-
tially yields

max
C (φ)∈S(φ)

E
[
RT

(
ft ; f

(C (φ))
t

)]
≤ O

(√
2D

T

)
, (4)

for all T with a computational complexity O (Dp), where p
represents the dimensionality of the feature vectors and the ex-
pectation is with respect to the randomization parameters.

Proof of Theorem 1 and Construction of Algorithm ATNC.
Rnd: Note that by this theorem, we present performance guar-
antees for finite or infinite data since our results hold for all T
without any limitation on the amount of the data that might be as
small as one single data instance or even infinite, where T is not
a design parameter (the horizon is thus unknown in this work as
an important algorithmic capability), i.e., our algorithms (two
versions) are truly sequential. However, we observe that the in-
troduced upper bound (which is rate optimal [5], i.e., it cannot
be improved in terms of its rate of convergence with respect to
T ) on the regret is convergent to 0 as T → ∞ and therefore
our algorithm asymptotically performs as well as the best base
classifier. On the other hand, for finite T , our results hold and
provide performance guarantees (again with respect to the best
base classifier) in a rate-optimal manner. Secondly, note that the
proposed algorithm ATNC.Rnd randomly chooses one of the
base classifiers at each time t with respect to a certain set of

weights and matches its output to declare the classification de-
cision. The precise definition of this randomization will become
clear shortly in the development. Therefore, the expectation in
our theorem is with respect to this internal algorithmic random-
ization, i.e., weights over the base classifiers; and it is not in
any way related to the data statistics. In fact, our results hold for
every possible input stream regardless of its stationary or non-
stationary unknown statistics. We start the proof by constructing
the base classifiers. We next introduce a low complexity method
to achieve the best classifier among doubly exponential number
of different base classifiers. Then, we incorporate an adaptive
method optimizing φ to minimize the classification of the final
algorithm.

A. Preliminaries and the Competition Class S (φ)

Before proceeding, we first introduce the following notation.
For ease of exposition in specifying the nodes, each node of
the tree is labeled with a binary string n = m1 . . . md , where
mi = {0, 1} is a binary letter and d represents the depth of the
node. For any inner node n, we label its left and right children
as n0 and n1, respectively. We denote the empty string by λ.
Moreover, we call a node n′ = m′

1 . . . m′
d ′ as the prefix of node

n = m1 . . . md if d′ ≤ d and m′
i = mi for all i = 1, . . . , d′.

Using this definition, we denote ni as the depth-i prefix to
node n, where i = {0, . . . , d}. This labeling operation can be
observed for a depth-2 tree in Fig. 1.

According to the partitioning method described in
Section II-A, the output of a base classifier C (φ) ∈ S (φ)
is softly constructed using the partitioning functions pt,n as
follows. Without loss of generality, suppose that the instance xt

has fallen into the region represented by the leaf node n. Then,
xt is contained in the nodes n0 , . . . , nD , where nD = n and
n0 = λ. For example, if node nd is a leaf node of the subtree
generating the base classifier C (φ), then one can simply set
f

(C (φ))
t (xt) = ft,nd

(xt). Instead of making a hard selection,
we allow an error margin for the classification output ft,nd

(xt)
in order to be able to update the region boundaries later in the
proof. To achieve this, for each leaf node of C (φ), we define a
parameter called “path probability” to measure the contribution
of each leaf node to the classification task at time t. This param-
eter is equal to the multiplication of the partitioning functions of
the nodes from the respective leaf node to the root node, which
represents the probability that xt should be classified using the
region classifier of node nd . This path probability is defined as

Pt,nd
(xt) �

d−1∏

i=0

pt,ni ,m i + 1 (xt) , (5)

where pt,ni ,m i + 1 (·) represents the value of the partitioning
function corresponding to node ni towards the mi+1 direction:
pt,ni ,m i + 1 (xt) � pt,ni

(xt), if mi+1 = 0 and pt,ni ,m i + 1 (xt) �
1 − pt,ni

(xt), if mi+1 = 1 with pt,ni
(x) = [1 + exp(φT

t,ni

x)]−1 as in (3). We consider that the classification output of
node nd can be trusted with a probability of Pt,nd

(xt). This
and the other probabilities in our development are indepen-
dently defined for ease of exposition and gaining intuition,
i.e., these probabilities are not related to the unknown data
statistics in any way and they definitely cannot be regarded as
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certain assumptions on the data. Indeed, we do not take any
assumptions about the data source in this study.

Intuitively, the path probability is low when the feature vec-
tor is close to the region boundaries, hence we may consider
to classify that feature vector by another node classifier (e.g.,
the classifier of the sibling node). Using this path probabilities,
we aim to update the region boundaries by learning whether an
efficient node classifier is used to classify xt , instead of directly
assigning xt to node nd and lose a significant degree of free-
dom. To this end, we define the final output of each node clas-
sifier according to a Bernoulli random variable with outcomes
{−ft,nd

(xt), ft,nd
(xt)} where the probability of the latter out-

come is Pt,nd
(xt). Although the final classification output of

node nd is generated according to this Bernoulli random vari-
able, we continue to call ft,nd

(xt) the final classification output
of node nd , with an abuse of notation. Then, the classification
output of the base classifier is set to f

(C (φ))
t (xt) = ft,nd

(xt).
After constructing all base classifiers, we use a mixture-of-

experts approach to achieve the performance of the best base
classifier that minimizes the accumulated classification error.
Before presenting this method, we first introduce certain defini-
tions. Let the instantaneous empirical loss of the proposed clas-
sifier ft at time t be denoted by �t (ft) � 1{ft (xt ) �=yt }. Then,
the expected empirical loss of this classifier over a sequence of
length T can be found by

LT (ft) = E

[
T∑

t=1

�t (ft)

]
, (6)

with the expectation taken with respect to the randomization
parameters of the classifier ft . We also define the effective region
of each node nd at time t as follows Rt,nd

� {x : Pt,nd
(x) ≥

(0.5)d}. Note that according to the aforementioned structure
of base classifiers, node nd classifies an instance xt only if
xt ∈ Rt,nd

. Therefore, the time accumulated empirical loss of
any node n during the data stream is given by

LT ,n �
∑

t≤T :{xt }t≥1 ∈Rt , n

�t (ft,n ) . (7)

Similarly, the time accumulated empirical loss of a base classi-
fier C (φ) is L

(C (φ))
T �

∑
n∈L(C (φ)) LT ,n , where L (C (φ)) is

the set of the leaf nodes of the subtree generating C (φ).
Remark 1: For example, if one prunes our binary partition-

ing tree such that the deepest level is excluded, i.e., such that
the resulting subtree includes only Node-λ, Node-0 and Node-
1 (Fig. 1), then this subtree corresponds to the base classifier
C2 (φ), cf. Figs. 2 and 3 (where the argument φ is dropped
for simplicity), and is said to generate C2 (φ) (as mentioned
before). In this case, since L (C2 (φ)) is the set of the leaf
nodes of the subtree generating C2 (φ), we have L (C2 (φ)) =
{Node − 0,Node − 1}. On the other hand, J (C2 (φ)) mea-
sures the “complexity” of the base classifier C2 (φ) based on
the “number of bits required to represent the subtree generating
the classifier C2 (φ)” (this can also be seen as the size of a prun-
ing [49]), for which we have J (C2 (φ)) ≤ 2L (C2 (φ)) − 1;
and

∑
C (φ)∈S(φ) J (C (φ)) = 1 in general [7], [50]. Note that

this is a popular prior in the coding literature cf. [7], [49], [50]
and the references therein.

B. Definition of the Proposed Algorithm That Achieves the
Performance Guarantees of Theorem 1:

Using these preliminaries, we define the proposed algorithm
and first introduce a direct and inefficient implementation of
our mixture-of-experts approach. We set the final classification
output of our algorithm as ft(xt) = f

(C (φ))
t with probability

w
(C (φ))
t , where w

(C (φ))
t = 2−J (C (φ)) exp(−bL

(C (φ))
t−1 )/Zt−1 ,

and prove that we can achieve the upper bound in (4) with
these weights. Here, b ≥ 0 is a constant controlling the learn-
ing rate of the algorithm, J(C(φ)) ≤ 2|L(C(φ))| − 1 rep-
resents the number of bits required to code the classifier
C(φ) (which satisfies

∑
C (φ)∈S(φ) J(C(φ)) = 1), and Zt =

∑
C (φ)∈S(φ) 2−J (C (φ)) exp(−bL

(C (φ))
t ) is the normalization

factor. Since Zt is—by definition—a summation of terms that
are all positive, we have Zt ≥ 2−J (C (φ)) exp(−bL

(C (φ))
t ) and,

after taking the logarithm of both sides and arranging the terms,

−1
b

log ZT ≤ L
(C (φ))
T +

J (C (φ)) log 2
b

(8)

∀C (φ) ∈ S (φ) at the (last) iteration at time T . We then make
the following observation ZT =

∏T
t=1

Zt

Zt−1
and

rZT =
T∏

t=1

⎧
⎨

⎩
∑

C (φ)∈S(φ)

2−J (C (φ)) exp
(
−bL

(C (φ))
t−1

)

Zt−1

× exp
(
−b �t

(
f

(C (φ))
t

))
⎫
⎬

⎭

≤ exp
(
−bLT (ft) +

Tb2

8

)
, (9)

where the second line follows from the definition of Zt and
the last line follows from the Hoeffding’s inequality [51] by
treating the w

(C (φ))
t � 2−J (C (φ)) exp(−bL

(C (φ))
t−1 )/Zt−1 terms

as the randomization probabilities. Note that LT (ft) represents
the expected loss of the final algorithm, cf. (6). Combining (8)
and (9), we obtain

LT (ft)
T

≤ L
(C (φ))
T

T
+

J (C (φ)) log 2
Tb

+
b

8
,

and choosing b =
√

2D /T , we find the desired upper bound in
(4) since J (C (φ)) ≤ 2D+1 − 1,∀C (φ) ∈ S (φ).

C. Efficient Implementation of the Proposed Algorithm and
the Adaptive Feature Space Partitioning

Although we achieve the desired upper bound in (4) with this
randomization method, the final algorithm ft—in its current
form—requires a computational complexity O(1.52D

p) since
the randomization w

(C (φ))
t is performed over the set S (φ) and

|S (φ) | ≈ 1.52D
. However, the set of all possible classification

decisions has a cardinality as small as D + 1 since xt ∈ Rt,nD

for the corresponding leaf node nD (in which xt is included)
and f

(C (φ))
t = ft,nd

for some d = 0, . . . , D,∀C (φ) ∈ S (φ).
Hence, evaluating all the base classifiers in S (φ) at the
instance xt to produce ft(xt) is unnecessary. In fact, the
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computational complexity for producing ft (xt) can be reduced
from O(1.52D

p) to O(Dp) by performing the exact same ran-
domization over ft,nd

’s using the new set of weights wt,nd
,

which can be straightforwardly derived as

wt,nd
=

∑

C (φ)∈S(φ) : f (C (φ) )
t (xt )=ft , n d

(xt )

w
(C (φ))
t . (10)

To efficiently calculate (10) with complexity O (Dp), we
consider the universal coding scheme and let

Mt,n �

⎧
⎨

⎩

exp (−bLt,n ) , if n has depth D

1
2

[Mt,n0Mt,n1 + exp (−bLt,n )] , otherwise
(11)

for any node n and observe that we have Mt,λ = Zt [50]. There-
fore, we can use the recursion (11) to obtain the denominator
of the randomization probabilities w

(C (φ))
t . To efficiently cal-

culate the nominator of (10), we introduce another intermediate
parameter as follows. Letting n′

d denote the sibling of node nd ,
we recursively define

κt,nd
�

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
2
, if d = 0

1
2
Mt−1,n ′

d
κt,nd −1 , if 0 < d < D

Mt−1,n ′
d
κt,nd −1 , if d = D

, (12)

∀d ∈ {0, . . . , D}, where xt ∈ Rt,nD
. Using the intermediate

parameters in (11) and (12), it can be shown that we have

wt,nd
=

κt,nd
exp (−bLt,nd

)
Mt,λ

. (13)

Hence, we can obtain the final output of the algorithm as
ft (xt) = ft,nd

(xt) with probability wt,nd
, where d ∈ {0,

. . . , D} (i.e., with a computational complexity O (D)).
We then use the final output of the introduced algorithm

and update the region boundaries of the tree (i.e., orga-
nize the tree) to minimize the final classification error. To
this end, we minimize the loss E[�t(ft)] = E[1{ft (xt ) �=yt }] =
1
4 E[(yt − ft(xt))

2 ] with respect to the region boundary param-
eters, i.e., we use the stochastic gradient descent method, as
follows

φt+1 ,n d
= φt ,n d

− η ∇E [�t (ft )]

= φt ,n d
− (−1)m d + 1 η (yt − ft (xt )) pt,n d ,m ′

d + 1
(xt )

×
[

D∑

i= d+1

ft,n i
(xt )

]
xt , (14)

∀d ∈ {0, . . . , D − 1}, where η denotes the learning rate of the
algorithm and m′

d+1 represents the complementary letter to
md+1 from the binary alphabet {0, 1}. Defining a new inter-
mediate variable πt,nd

� ft,nd
(xt), if d = D − 1 and πt,nd

�
πt,nd + 1 + ft,nd

(xt), if d < D − 1; one can perform the update
in (14) with a computational complexity O (p) for each node
nd, d = 0, . . . , D − 1, resulting in an overall computational

Algorithm 1: ATNC.Rnd.
1: for t = 1 to T do
2: Propagate {xt}t≥1 from the root to the leaf and

obtain the visited nodes n0 , . . . , nD .
3: Calculate Pt,nd

(xt) for all d ∈ 0, . . . , D using (5).
4: Calculate wt,nd

(xt) for all d ∈ 0, . . . , D using (13).
5: Draw a node among n0 , . . . , nD with probabilities

wt,n0 , . . . , wt,nD
, respectively; suppose that nd is

drawn.
6: Draw a classification output {1,−1} with

probabilities Pt,nd
(xt) and 1 − Pt,nd

(xt),
respectively; ft (xt) is equated to the selected output.

7: Update the region classifiers (perceptron) at the
visited nodes [52].

8: �t (ft) ← 1{ft (xt ) �=yt }
9: Update Lt,nd

for all d ∈ 0, . . . , D using (7).
10: Apply the recursion in (11) to update Mt+1,nd

for all
d ∈ 0, . . . , D.

11: Update the separator parameters φ using (15).
12: end for

complexity of O (Dp) as follows

φt+1,nd
= φt,nd

− (−1)md + 1 η (yt − ft (xt)) πt,nd

× pt,nd ,m ′
d + 1

(xt) xt . (15)

Note that in (15), both pt,nd
(xt) and 1 − pt,nd

(xt) terms ap-
pear in the product, which can disturb the learning rate of the
algorithm if pt,nd

(xt) is close to 0 or 1. Therefore, in order to
avoid such a scenario, using a small positive constant plim > 0,
the partitioning function can be restricted to [plim , 1 − plim ],
i.e., 0 < plim ≤ pt,nd

(xt) ≤ 1 − plim , by the following

pt (xt) = plim + (1 − 2plim )
1

1 + eφT
t xt

.

This concludes the proof of Theorem 1 and the pseudocode
of the ATNC.Rnd can be found in Algorithm 1. �

Remark 2: Instead of randomly selecting a base classifier
and repeating its output to generate the final decision, the same
randomization probabilities can be used as weighting factors.
In this case, the outputs of all base classifiers are combined and
our results hold in a similar expectation sense. We denote this
classifier ATNC.Avg, cf. Section IV.

IV. EXPERIMENTS

In this section, we demonstrate the performance of the pro-
posed algorithms (two versions: ATNC.Rnd and ATNC.Avg)
through several experiments in three separate parts. In the first
part, we concentrate on stationary cases, where the source statis-
tics are stationary over time. We show that in this case, our algo-
rithm successfully combines simple classification models and
significantly outperforms the most recent ensemble techniques
[10]–[14]. We then study non-stationary cases and illustrate the
adaptation power of our algorithm to concept changes/drifts
with respect to the state-of-the-art approaches [9], [15], [16]. In
the final part, we present the computational running times of the
compared methods.
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A. Stationary Data

In this part, we study our algorithms in the stationary envi-
ronments when the data source statistics do not change over
time; and in particular, we follow the comparison framework of
[12] for this purpose. We compare our algorithms (ATNC.Rnd
and ATNC.Avg) with the following state-of-the-art as well as
the most recently proposed techniques: Online AdaBoost—
“OZAB” [10]; Online GradientBoost—“OGB” [11]; Online
SmoothBoost—“OSB” [12]; Online SmoothBoost with On-
line Convex Programming—“OSB.Ocp” [12]; and Online Tree
based Non-adaptive Competitive Classification—“TNC.Rnd”
[13]. The parameters for all of these compared methods are
set as in their original proposals. For the method Online
GradientBoost—“OGB” [11] which uses K weak learner per
M selectors essentially resulting in MK weak learners in total,
we use K = 1, as in [12], for a fair comparison along with the
logit loss that has been shown to consistently outperform other
choices in [11]. The method Online Tree based Non-adaptive
Competitive Classification—“TNC.Rnd” [13] is non-adaptive,
i.e., not self organizing, in terms of the space partitioning, which
we use in our comparisons to illustrate the gain due the self or-
ganizing structure proposed in this paper (the depth of the tree
is set to 4 for this method uniformly in all of our experiments).

We use the perceptron algorithm [52] as the weak learners
in these compared methods and as the simple local models in
our algorithms (ATNC.Rnd and ATNC.Avg) and in TNC.Rnd.
We set η = 0.05 (learning rate) and D = 4 (tree depth) in our
algorithms uniformly in all of our stationary as well as non-
stationary data experiments. We use N = 100 weak learners
for all other methods. Note that a depth-4 tree corresponds to
31 = 25 − 1 local models. The proposed algorithms have linear
complexity in the depth, whereas the compared methods have
linear complexity in the number of weak learners.

In addition to the datasets of the processed format4 as in [12],
we also study the well-known “Banana” dataset and a binarized
multi-class data “BMC” consisting of 6 identical Gaussian com-
ponents that are located in two dimensions such that the sep-
aration between the two classes is highly nonlinear, cf. Fig. 4.
Each method is sequentially presented with the same data se-
quence and we calculate the error rate for the complete stream.
This process is repeated for 100 random permutations (10 for
the datasets of length longer than 10000) and the average error
rates (along with the standard deviations) are reported in Table I.
For a fair comparison, we truncate each data instance to unitary
norm, i.e., xt ← xt

max(‖xt ‖,1) , as in [12] and our corresponding
results are in the second row of Table I. In the first row, we
present the results for the data normalized to the range [−1, 1]
without the norm truncation.

Our algorithms (including TNC.Rnd [13]) consistently out-
perform the other methods with only one exception in case
of the “Mushrooms” dataset5. In particular, the compared

4http://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/
5For instance, ATNC.Avg yields an average error rate of 4.65, whereas OSB

yields 5.36 on the “Breast Cancer” dataset, both with a standard deviation of
0.5. Therefore, in this case, we say that the proposed technique ATNC.Avg
outperforms OSB with 76% confidence, since P r(ErATNC .Avg ≤ τ ) � 0.76
and P r(ErO S B ≥ τ ) � 0.76, where we assume Gaussian distribution and
τ = 5 .36+4 .65

2 . In other cases except the “Mushrooms” dataset, our algorithms
are observed to be superior with highly stronger confidence.

Fig. 4. Piecewise linear separation in the “BMC” dataset after one and two
passes (first row: first pass, second row: second pass; first column: TNC.Rnd,
second column: ATNC:Rnd, third column: ATNC:Avg). The randomized
algorithms are unsure in the black dotted regions near the boundaries.

methods essentially fail at the “Banana” and “BMC” datasets,
which indicates that other methods are not able to extend to
complex nonlinear separations starting from linear weak learn-
ers. On the contrary, our method successfully models those
complex nonlinear separations with piecewise linear curves (cf.
Fig. 4) and therefore, provides a highly superior performance
especially on the “Banana” and “BMC” datasets (cf. Table I).
On these datasets, the gain due to the self adaptation capabilities
(which are devised in this paper) is also clearly demonstrated,
cf. ATNC.Rnd and ATNC.Avg vs TNC.Rnd on “Banana” and
“BMC”. We also observe that averaging incorporates better with
our self organizing strategy as ATNC.Avg almost always out-
performs ATNC.Rnd. We emphasize that ATNC.Avg has su-
perior performance compared to ATNC.Rnd in the transient
state, however, both of them are asymptotically convergent to
the same performance level, cf. the comparable performance in
the last three datasets of relatively long sequences in Table I.
In general, the proposed methods ATNC.Avg and ATNC.Rnd
generalize and asymptotically cover the solution of the method
TNC.Rnd [13]. However, ATNC.Avg has a significantly better
transient characteristics and TNC.Rnd occasionally performs
poorly (such as “BMC”, “Banana” and “Adult”) depending on
the complexity of the intrinsic optimal separation in the data.
To validate this, we present the long term behavior of these
three algorithms on concatenated datasets in Fig. 5, where the
performances improve in favor of ATNC.Rnd and ATNC.Avg
compared to TNC.Rnd with sufficiently many observations. For
instance, ATNC.Rnd significantly outperforms TNC.Rnd on the
“Heart” dataset in the long run, although initially performed
comparable in Table I (on relatively short sequences). Note that
ATNC.Rnd and ATNC.Avg converge to the same performance
level but ATNC.Avg has better transient performance.

Remark 3: i) The proposed algorithms (ATNC.Rnd and
ATNC.Avg) perform better with data normalized to the range
[−1, 1] given in the first row of Table I; however, we
continue with the norm truncated data to be aligned with the
results in the corresponding studies [12], [14]. ii) The small
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TABLE I
AVERAGE ERROR RATES AS WELL AS THEIR STANDARD DEVIATIONS (THE DEVIATION IS WITHIN PARENTHESES NEXT TO THE ERROR RATE) ARE PRESENTED ON

SEVERAL REAL DATASETS (“BMC” AND “BANANA” ARE THE ONLY SYNTHETIC ONES). THE PROPOSED ALGORITHMS SIGNIFICANTLY OUTPERFORM THE

STATE-OF-THE-ART TECHNIQUES. NOTE ALSO THAT IN THE STARRED CASES (8/10 OF APPLICABLE CASES, I.E., “BMC” AND “BANANA” DO NOT APPLY),
ATNC.AVG WITH PERCEPTRON OUTPERFORMS THE COMPARED METHODS USED WITH THE NAIVE BAYES ACCORDING TO THE RESULTS REPORTED IN [12].

ALL VALUES ARE PRESENTED IN PERCENTAGE, I.E., ERROR (STD) ×10−2

Data Sets (Size/Dimension) Perceptron OZAB OGB OSB OSB.Ocp TNC.Rnd ATNC.Rnd ATNC.Avg

First Row in each set: Our Results with Normalized Data, i.e., each attribute is linearly mapped to [−1, 1]

Second Row in each set: Our Results with Truncated Data, i.e., �xt ← �xt

max(‖�xt ‖, 1)

Heart 24.66 (1.75) 23.96 (1.74) 23.28 (1.46) 23.63 (1.62) 24.37 (1.59) 21.75 (1.85) 21.86 (1.82) 20.09∗ (1.51)
(270/13) 24.52 (1.81) 24.00 (2.01) 23.14 (1.83) 23.17 (1.74) 23.43 (1.85) 23.95 (2.11) 23.72 (2.16) 20.83 (1.70)
Breast Cancer 5.77 (0.47) 5.44 (0.53) 5.71 (0.68) 5.23 (0.51) 5.36 (0.51) 4.84 (0.57) 4.86 (0.55) 4.65∗ (0.50)
(683/10) 5.90 (0.50) 5.38 (0.56) 5.33 (0.57) 4.90 (0.50) 5.04 (0.53) 4.99 (0.54) 4.75 (0.61) 4.58∗ (0.53)
Australian 20.82 (1.04) 20.26 (1.10) 19.70 (1.00) 20.01 (1.00) 20.55 (1.10) 15.92 (1.06) 15.77 (0.87) 14.86∗ (0.82)
(693/14) 20.73 (1.04) 20.10 (1.14) 19.31 (0.99) 19.00 (1.05) 19.43 (1.03) 16.95 (0.98) 17.13 (1.22) 15.39∗ (0.81)
Diabetes 32.25 (1.22) 32.43 (1.35) 33.49 (1.44) 31.33 (1.24) 31.55 (1.27) 26.89 (1.07) 27.72 (1.31) 25.75∗ (1.15)
(768/8) 32.40 (1.25) 32.58 (1.15) 33.35 (1.31) 31.17 (1.12) 31.30 (1.17) 28.75 (1.46) 29.33 (1.50) 27.28 (1.41)
German 32.45 (1.13) 31.86 (1.05) 32.72 (1.07) 31.86 (1.08) 32.21 (1.01) 28.13 (0.98) 27.90 (1.11) 26.74∗ (0.92)
(1000/24) 32.40 (1.29) 32.12 (1.25) 32.41 (1.16) 31.37 (1.15) 31.53 (1.12) 28.61 (0.93) 28.37 (1.13) 27.15∗ (0.84)
BMC 47.09 (1.53) 45.72 (1.54) 46.92 (1.62) 46.37 (1.44) 46.58 (1.54) 25.37 (1.43) 18.33 (1.80) 17.03 (1.54)
(1200/2) 48.08 (1.40) 48.08 (1.53) 48.69 (1.48) 48.02 (1.41) 48.19 (1.45) 34.51 (1.62) 26.83 (4.57) 25.07 (5.57)
Splice 33.42 (0.60) 32.59 (0.59) 32.79 (0.66) 32.81 (0.62) 32.93 (0.67) 18.88 (0.60) 18.86 (0.58) 18.56 (0.53)
(3175/60) 27.28 (0.56) 26.86 (0.63) 26.43 (0.59) 25.67 (0.54) 25.65 (0.55) 21.98 (1.60) 21.11 (1.12) 20.81 (1.06)
Banana 48.91 (0.63) 47.96 (0.64) 48.00 (0.69) 48.84 (0.70) 48.82 (0.70) 27.98 (0.93) 18.23 (1.80) 17.60 (1.32)
(5300/2) 49.00 (0.74) 48.07 (0.63) 48.27 (0.66) 48.97 (0.67) 48.93 (0.66) 27.84 (0.90) 19.04 (2.50) 18.31 (1.43)
Mushrooms 1.74 (0.12) 0.89 (0.07) 1.80 (0.18) 1.60 (0.25) 1.40 (0.28) 1.04 (0.12) 1.08 (0.15) 1.01 (0.13)
(8124/112) 1.36 (0.08) 0.64 (0.06) 0.75 (0.06) 0.63 (0.06) 0.65 (0.06) 1.78 (0.30) 1.38 (0.18) 1.29 (0.16)
Adult 20.98 (0.09) 20.79 (0.13) 20.61 (0.17) 20.62 (0.14) 20.56 (0.13) 15.35 (0.06) 15.40 (0.07) 15.36∗ (0.07)
(48842/122) 20.89 (0.14) 20.49 (0.14) 20.79 (0.13) 19.86 (0.13) 19.88 (0.13) 22.34 (0.24) 15.60 (0.19) 15.66∗ (0.17)
Cod-Rna 35.27 (0.05) 36.41 (0.04) 36.76 (0.05) 34.68 (0.05) 34.58 (0.05) 4.82 (0.03) 4.81 (0.03) 4.83∗ (0.03)
(488565/8) 18.99 (0.03) 21.93 (0.05) 18.62 (0.04) 18.26 (0.03) 18.31 (0.03) 12.63 (0.02) 12.65 (0.04) 12.65 (0.05)
Cover-Type 34.25 (0.08) 34.99 (0.05) 34.96 (0.05) 33.61 (0.05) 33.61 (0.04) 24.47 (0.03) 24.51 (0.03) 24.50∗ (0.03)
(581012/54) 34.36 (0.07) 34.54 (0.05) 34.72 (0.05) 33.26 (0.07) 33.27 (0.07) 24.55 (0.05) 24.55 (0.06) 24.55∗ (0.05)

Fig. 5. Long term behavior over 100 trials based on concatenation of random
permutations of datasets: norm-truncated “BMC”, “Heart” and “Diabetes”.

mismatches between our findings over 100 trials and origi-
nally reported error rates in [12] over 5 trials are due to the
relatively larger standard deviations in the results of [12] and
the randomization (random permutations) of the trials.

Remark 4: In our preliminary experiments, a depth-4 tree has
been found to be appropriate for all of our stationary as well as
non-stationary performance evaluations. Note that with deeper

trees, the proposed algorithms (ATNC.Rnd and ATNC.Avg)
gain stronger adaptation to non-linearity, however, at the cost
of an increased parameter complexity and an increased de-
mand for more data. We provide here two explanatory exam-
ples from our preliminary experiments. We run our algorithm
ATNC.Avg on the highly non-linear dataset “BMC” and on the
most (among our 14 datasets that we use in our experiments)
sparse dataset “Adult” for various depths D ∈ {1, 2, 4, 8} and
obtain the averaged accumulated error rates (over 100 trials
obtained by random permutations with normalized data) as
{37.73, 17.37, 17.03, 16.50} × 10−2 for “BMC”, respectively;
and {15.42, 15.40, 15.36, 15.36} × 10−2 for “Adult”, respec-
tively. The improvement from 17.37 (D = 2) to 16.50 (D = 8)
in the case of “BMC” and the improvement from 15.42 (D = 1)
to 15.36 (D = 8) in the case of “Adult” are significant since the
standard deviations of these average errors are approximately
∼1.5 × 10−2 for “BMC”, and ∼0.07 × 10−2 for “Adult”. Also
note that the linear perceptron classifier (when run solely on
the complete space) yields an error rate 47.09 for “BMC”
and 20.98 for “Adult”, which corresponds to our algorithm
run with a depth-0, i.e., D = 0, tree (single node). In addi-
tion, the effect of sparsity in the case of “Adult” is remark-
able: the error rate improves (to 15.06 × 10−2) by the amount
(15.36 − 15.06) /0.07 = 4.28× standard deviation in the case
of D = 8, when we lift the sequence length from 48842 to
∼500 × 103 by the concatenations of random permutations.
Therefore, based on our preliminary experiments, the choice
of a depth-4 tree is sufficient for these as well as the other
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datasets (after similarly analyzing 14 datasets in total that we
use in our performance evaluations) to successfully adapt to
their classification complexity. However, the proposed algo-
rithms are certainly capable of straightforwardly adapting to
higher degree of non-linearities as well—when a more complex
dataset is presented—by further increasing the depth (note that
the computational complexity of the proposed algorithm scales
linearly with the depth, hence it can be easily used with deeper
trees). Such a dataset with higher degree of non-linearity with
the binary classification task is readily found in the multi-class
classification problems, where, for instance, one usually applies
the one-vs-all binary classification successively to converge to
a multi-class solution [53]. In fact, our “BMC” dataset is actu-
ally a multi-class problem (with 6 separate classes), where our
presented binary classification problem on “BMC” is a three-
vs-three instance.

B. Non-Stationary Data: Concept Change/Drift

In this part, we study the proposed algorithms (ATNC.Rnd
and ATNC.Avg) with non-stationary data, where there might
be continuous or sudden/abrupt changes in the source statis-
tics, i.e., concept change. Since our algorithms process only
one instance at a time without storing it, we choose the Dy-
namically Weighted Majority Algorithm—“DWM” [15] with
perceptron or naive bayes experts for the comparison, which is
also a truly online algorithm without storage or batch process-
ing requirements. Hence, we obtain two algorithms: “DWM-
P” and “DWM-N”. Most of the other algorithms [16], [29],
[41]–[44] specialized on concept drift have sliding window ap-
proaches. In these approaches, the window size must be cho-
sen large enough to fully capture the statistics of the active
concept; and if it is too large, then the desired adaptation to
the concept change quickly degrades at the risk of wasting
the computational resources spent on the window processing.
Clearly, there is no optimal window size, which introduces an-
other parameter that has to be tuned for each experiment, i.e.,
window size = ws ∈ {100, 200, 500, . . . , 2000} in [16]. We
also emphasize that such sliding window approaches are essen-
tially batch algorithms, i.e., not truly online, and—in general—
ws times slower than the truly online counterparts such as DWM
or ATNC.Avg. Therefore, such approaches do not truly fit into
our framework. Nevertheless, we devise an online version of the
batch classifier [9] using the sliding window approach (which
also learns the space partitioning and the classifier using the co-
ordinate ascent approach) and name it as Sliding Window based
Local Space Partitioning—“WLSP”. For the method Dynami-
cally Weighted Majority Algorithm—“DWM” which allows the
addition and removal of experts during the stream, we set the
initial number of experts to 1, where the maximum number
of experts is bounded by 100. For the method Sliding Window
based Local Space Partitioning—“WLSP” [9], we provide the
algorithm with the most recent ws = 100 instances at each time.
The parameters for these compared methods are set as in their
original proposals.

We run these methods on the “BMC” dataset (1200 instances,
Fig. 4), where a sudden/abrupt concept change is obtained such
that the instances are rotated (clock-wise around the origin) 180◦

after the 600th instance. This effectively means a label flip and
the resulting dataset is denoted as “BMC-F”. For a continuous

Fig. 6. Performance of the compared methods in case of the abrupt concept
change in the “BMC-F” dataset. At the 600th instance, there is a 180◦ clock-wise
rotation around the origin (derived from the “BMC dataset”) that is effectively
a label flip. In the first 100 instances, the sliding window based approach WLSP
does not produce results.

concept drift, we rotate each instance 180◦/1200 starting from
the beginning; and the resulting dataset is denoted as “BMC-C”.
In Fig. 6, we present the error plots for the compared methods
over 1000 trials. At each 10th instance, we test the algorithms
with 1200 instances drawn from the active set of statistics (active
concept).

Note that since the “BMC” data is strongly Non-Gaussian
with strongly non-linear class separations, the method DWM
with perceptron or naive bayes do not perform well on “BMC-
F”. For instance, DWM-P operates with an error rate fluctuating
around 0.48–0.49 (random guess). This results since the per-
formance of the method DWM is directly dependent on the
expert success and observe that, both base learners (perceptron
or the naive bayes) fail due to the high separation complexity
in “BMC-F”. On the other hand, the method WLSP quickly
converges to its steady state, however, it is also asymptotically
outperformed by our methods at both concepts with sufficient
number of observations. Increasing the window size is clearly
expected to boost the performance of WLSP, though, at the
cost of increased computational complexity. It is already sig-
nificantly slower than our techniques with even ws = 100, cf.
Section IV-C. When the method WLSP is run on the “BMC-
C” dataset in case of the continuous concept drift, cf. Fig. 7,
its performance significantly degrades (compared to the one on
“BMC-F”) since, in this case, WLSP is trained with the batch
data of a continuous mixture of concepts in the sliding windows.
Under this continuous concept drift, ATNC always—not only
asymptotically as in the case of “BMC-F”—performs better than
WLSP. Hence, the sliding window approach is sensitive to the
continuous drift. Our discussion about the DWM method on
the concept change data “BMC-F” remains valid in the case of
the concept drift of “BMC-C”. In these experiments, the power
of the proposed self-organizing strategy is obvious as ATNC
(both .Rnd and .Avg) almost always outperforms TNC.Rnd [13].
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Fig. 7. Performance of the compared methods in case of the continuous con-
cept change in the “BMC-C” dataset. At each instance, there is a 180◦/1200
clock-wise rotation around the origin (derived from the “BMC dataset”). In the
first 100 instances, the sliding window based approach WLSP does not produce
results.

Fig. 8. Performance of the compared methods in case of the stagger concepts.

In the rest of the experiments involving concept changes, we
follow the comparison framework of [15]. We conduct tests
on the stagger concepts [15], where the data {1, 2, 3}120 in-
cludes 2 concept switches among three concepts 1 → 2 → 3
at the 41th and 81th instances. The concept definitions are as
follows. Concept 1: y = 1, if x (1) = 3 ∧ x (3) = 1, Concept
2: y = 1, if x (1) = 1 ∨ x (2) = 2 and Concept 3: y = 1, if
x (3) = 2 ∨ x (3) = 3 (otherwise, y = −1). In this case, we use
the window length ws = 10 for the method WLSP. In Fig. 8, we
present the error curves for the compared methods. Although
the method DWM-P and DWM-N do not perform well on the
“BMC-F” and “BMC-C” datasets, DWM-N and our method
ATNC.Avg perform comparably on the second and third con-
cepts, whereas DWM-N performs better on the first one. The
method WLSP is outperformed by all other techniques. We ob-

Fig. 9. Long term performance in case of the stagger concepts.

serve that DWM-P is not able to adapt to the second concept
(nonlinear class separation), whereas it outperforms DWM-N
on the third concept (linear class separation): it is difficult to
choose the right expert to be used with DWM. Note that the
naive bayes expert can (limitedly) adapt to nonlinear separa-
tions at the cost of a slower convergence in the case of linear
separations (compared to the percetpron), whereas the percep-
tron cannot adapt these nonlinear separations. On the other hand,
the proposed methods ATNC.Avg and ATNC.Rnd can adapt to
arbitrarily nonlinear separations (cf. Figs. 6 and 7) without sac-
rificing much from the transient state accuracy. In particular, the
proposed methods either outperform (on the second concept) all
the compared algorithms or perform comparably with the best
competitor (on the first and third concept) in the steady state, cf.
the long term results presented in Fig. 9.

We finally run all algorithms on a larger concept change
problem, where we use the drifting hyperplane (DH) dataset
[15], which consists of 2000 instances of dimension 10, i.e.,
x ∈ [0, 1]10 . The dataset includes 3 concept changes among
4 concepts: 1 → 2 → 3 → 4, where the concept change from
i to i + 1 happens at the (500i + 1)th instance during the
stream. Concept definitions are as follows: If the concept i is
active, then y = 1, if x (j) + x (j + 1) + x (j + 2) > 0.5 for
(i, j) ∈ {(1, 1) , (2, 2) , (3, 4) , (4, 7)} (y = −1, otherwise). On
this dataset, the proposed algorithms perform as the second best
with comparable performance to the best performing algorithm
(DWM-N) on the second concept, Fig. 10.

We conclude that the DWM algorithm is significantly sensi-
tive to the expert choice and its performance is upper-bounded by
the chosen expert success. When the—within concept—target
separations are relatively simple and linear, DWM-P demon-
strates a quick concept adaptation; when the target separations
are strongly non-linear, both the methods DWM-P and DWM-N
do not perform well, e.g., BMC-F or BMC-C. Choosing more
sophisticated experts is always a good option, though, at the
cost of increased computational load, cf. IV-C. On the contrary,
the proposed algorithms ATNC.Avg and ATNC.Rnd are able
to learn the arbitrarily complex separations both in the station-
ary and non-stationary settings without mandating to choose
the right local simple model/expert (as opposed to the method
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Fig. 10. Performance of the compared methods on the drifting hyper plane.

TABLE II
COMPUTATIONAL RUNNING TIMES (IN SECONDS) OF THE COMPARED METHODS

WHEN PROCESSING THE “BMC” DATASET OF 1200 INSTANCES

Perceptron OSB OSB.Ocp OGB OZAB DWM-P
0.06 3.91 8.01 3.57 12.90 2.06

DWM-N WLSP ATNC.Rnd TNC.Rnd ATNC.Avg
6.91 68.40 0.70 0.43 0.62

DWM) while outperforming the state-of-the-art techniques in
the stationary setting with strong adaptation capabilities under
the concept change/drift.

C. Computational Complexity and Running Times

We present the running times of the compared methods on
the dataset “BMC” (processing 1200 instances over 1 trial) for
the optimized MATLAB implementations run on a daily-use
machine (Intel(R) Core(TM) i5-3317U CPU @ 1.70 GHz with 4
GB memory) in Table II. The presented times for our algorithms
should roughly scale with T

1200 for any other dataset (in our
experiments) of size T since we uniformly use a depth-4 tree
in our experiments and the contribution of the dimensionality
to the computational complexity of our algorithms is negligible
(in these data sets, where the largest dimensionality is 122)
compared to our tree operations. Hence, these running times
can only realize in favor of the proposed algorithms when the
dimension increases in case of the other datasets. The proposed
methods are computationally the most efficient (except the base
learner perceptron) among the competitors, e.g., ATNC.Avg
∼3.32× faster than DWM-P. In particular, the method DWM
becomes significantly computationally demanding when used
with a more sophisticated expert, e.g., DWM-N is ∼3.35×
slower than DWM-P.

We emphasize that our online algorithms require O(DpT +
DcT ) computational complexity (O (Dp + Dc) per instance)
and O

(
2D p

)
storage complexity for processing T data

instances, where D is the tree depth and c is a constant ac-
counting for the tree operations (p is negligible compared to c in
our experiments). For this reason, we compare our algorithms
only with the truly online methods of similar type in terms of the

computational and storage complexity. In particular, we follow
the comparison framework of [12] in the stationary part, and the
comparison framework of [15] in the non-stationary part, i.e., we
compare our algorithms with the compared techniques in those
frameworks based on the datasets used in those frameworks.

On the other hand, the kernel machines such as [54]–[57]
are extensively studied powerful techniques providing impres-
sive performance results in modeling the complex non-linear
data structures, however, they are not comparable to the pro-
posed algorithms in this paper due to their heavy computational
and storage demands. For instance, Support Vector Machines
(SVM) have—as a batch algorithm—in general O

(
T 3

)
(com-

putational) complexity in the training and O (T ) in the test [54],
which definitely cannot be used in our online large scale data
processing framework. The solution of SVM is asymptotically
obtained by an online algorithm “LASVM” in [55], which is
relatively more efficient (since early stopping is possible due
to sequential processing), however, with computational com-
plexity at least O

(
T 2

)
in the best scenario, and still O

(
T 3

)

in general [55]. The online kernel method in [56] (which is
not an SVM) requires one to save at least a window (of size
ws) of the past stream in order to exploit the “reproducing”
property, which is therefore not truly online and requires in
general O

(
T 2

)
or at least O (wsT ) (where the choice of the

optimal window length ws is another issue) computations. We
note that the kernel machines generally require (at each time)
the pair-wise kernel evaluations with respect to the past data to
fully exploit the “reproducing property” resulting O

(
T 2

)
com-

putational complexity; and this complexity further increases to
O

(
T 3

)
if one desires to preserve the SVM optimality. Remark-

ably, the study [57] does not enforce a strict SVM optimality
but approximates it in a controllable manner to finitely bound
the number of support vectors (which unboundedly increases in
other studies such as [55]) and achieves a complexity O

(
T 2

)

in an online manner with an approximate SVM optimality. De-
spite these efficient implementations, the state-of-the-art kernel
machines do not fairly fit into our truly online framework since
even the best achieved complexity O

(
T 2

)
(in this line of kernel

research) is computationally prohibitive in our consideration.
In this study, we mainly target at processing large scale data at
fast rates continuously without an interrupt up to infinity while
achieving strong modeling capabilities for highly non-linear
complex data structures even under strong non-stationarity.

To validate this discussion, we also and finally compare the
proposed algorithm ATNC.Avg with the method OISVM6 in
[57] in terms of the classification error rate and computational
running time and present our results (averaged over Monte Carlo
trials) on certain explanatory examples in Table III. We observe
that the proposed algorithm ATNC.Avg and OISVM perform
similarly on the datasets “Australian” and “German”, whereas
OISVM is superior on the highly non-linear datasets “BMC”
and “Splice”. This is due to the (approximate) SVM optimality
of OISVM, whereas the proposed algorithm ATNC.Avg opti-
mizes (minimizes) its accumulated zero-one loss locally, i.e.,

6We use the MATLAB implementation [58] for Online Independent Support
Vector Machines (OISVM) provided by the authors of [57], where we use the
RBF kernel and optimize the parameters, i.e., the bandwidth g of the kernel and
the cost C of the SVM, for each dataset separately. Other parameters are set as
in [57].
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TABLE III
COMPARISON OF ATNC.AVG AND OISVM [57] BASED ON NORMALIZED DATA.

WE REPORT THE AVERAGE ERROR RATES AS WELL AS THEIR STANDARD

DEVIATIONS (THE DEVIATION IS WITHIN PARENTHESES NEXT TO THE ERROR

RATE) IN THE FIRST ROW FOR EACH ALGORITHM; AND THE COMPUTATIONAL

RUNNING TIMES IN THE SECOND ROW. ERROR RATES AND STANDARD

DEVIATIONS ARE PRESENTED IN PERCENTAGE, I.E., ERROR (STD) ×10−2 ;
THE RUNNING TIMES ARE PRESENTED IN SECONDS

Datasets BMC Austrailan German Splice
T /p 1200/2 693/14 1000/24 3175/60

ATNC.Avg 17.03 (1.54) 14.86 (0.82) 26.74 (0.92) 18.56 (0.53)
0.62 s 0.36 s 0.60 s 2.43 s

OISVM 10.88 (0.37) 14.68 (0.43) 25.97 (0.72) 12.05 (0.23)
1.25 s 0.95 s 15.47 s 788 s

not globally unlike OISVM, due its stochastic gradient based
updates. However, this local optimality allows the proposed al-
gorithm to operate computationally highly efficiently at a rate
O (T ) (within a few seconds in these data sets), whereas OISVM
rapidly becomes impractical at a rate O

(
TsvT

2
)

as the data size
and dimensionality increases (where Tsv is the number of sup-
port vectors which is asymptotically finite), cf. running times of
OISVM for the data sets “German” or “Splice”. Our conclusion
is that OISVM and in general kernel machines are appropriate
only in the case of humble datasets that are small in size and di-
mension. On the contrary, in the case of large scale and complex
(such as the high non-linearity) data applications under possibly
non-stationary source statistics, which is the main topic in this
paper, the proposed algorithm is superior due its computation-
ally efficient, adaptive and high performance design.

V. CONCLUSION

We propose a highly efficient (in terms of the computational
complexity) online algorithm for supervised learning that is
appropriate for the applications requiring sequential data pro-
cessing at large scales/high rates. The introduced approach com-
bines simple linear classifiers specialized in local regions of the
feature space to generate a decision such that both the feature
space partitioning and the corresponding local linear models
are jointly optimized. The result is a highly dynamical decision
tree structure that adaptively organizes itself to minimize the
accumulated loss over time for any given data stream regard-
less of the underlying stationary or non-stationary statistics. We
provide strong theoretical performance guarantees without any
statistical assumptions on the underlying data. We present a
comprehensive experimental comparison of our algorithm with
respect to the state-of-the-art techniques from the literature of
ensemble methods and classification trees on the commonly
used benchmark datasets. We experimentally show that our al-
gorithm significantly outperforms the state-of-the-art techniques
with remarkable adaptation capabilities to non-stationarity, i.e.,
concept change/drift.

We point out that since we employ stochastic gradient
based updates, the learning of the feature space partitioning is
convergent to a locally optimal solution and therefore, this cre-
ates sensitivity to the initial conditions in our framework. Al-
though we draw conclusions about the worst case scenarios in
this paper, i.e., our performance results hold for every possible

input stream without any statistical assumptions about the data
source, we consider finding a globally optimal, i.e., not only lo-
cally, feature space partitioning by reasonably assuming certain
statistical conditions about the data source and convexly defin-
ing/relaxing loss functions as a future research direction. Sec-
ondly, the proposed algorithms can straightforwardly adapt to
arbitrarily high degree of non-linearities with a sufficiently deep
partitioning tree. This makes the proposed technique appealing
especially for multi-class problems since, in such problems, one
usually applies the one-vs-all binary classification successively
to converge to a multi-class solution, where the one-vs-all (or
one-vs-one) problem is in general highly non-linear. We also
consider obtaining this extension to multi-class while maintain-
ing computational efficiency as a future study.
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