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Abstract We propose computationally highly efficient
Neyman-Pearson (NP) tests for anomaly detection over
birth-death type discrete time Markov chains. Instead of
relying on extensive Monte Carlo simulations (as in the
case of the baseline NP), we directly approximate the log-
likelihood density to match the desired false alarm rate;
and therefore obtain our efficient implementations. The pro-
posed algorithms are appropriate for processing large scale
data in online applications with real time false alarm rate
controllability. Since we do not require parameter tuning,
our algorithms are also adaptive to non-stationarity in the
data source. In our experiments, the proposed tests demon-
strate superior detection power compared to the baseline
NP while nearly achieving the desired rates with negligible
computational resources.
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1 Introduction

The irregular data that is significantly different from the vast
majority often deserves special attention especially in the
security applications [2, 3, 5, 15]. For instance, an atypical
or suspicious network activity can be due to a hacked com-
puter and should raise concerns [17]. Similarly, the failure
(of a machine) can produce irregular power consumption
in a factory, where the failure can be detected by a careful
inspection of the data and then fixed [7]. For this reason,
detection of the irregularity has been widely studied in the
signal processing [4, 8, 19, 21] and machine learning [2] lit-
eratures, where the problem is referred to by various names
such as anomaly detection, outlier detection and intrusion
detection [2]. Since the output of the anomaly detection is
in general an alarm requiring immediate action, an intolera-
ble number of false alarms is certainly (and relatively more)
frustrating (compared to the other type of detections) [20,
25]. To be more precise, the false alarm rate controllability
in the anomaly detection applications is a crucial capabil-
ity in addition to achieving the highest possible detection
power. Therefore, a natural formulation of the anomaly
detection problem is obtained through the Neyman-Pearson
(NP) characterization [20, 25] since the NP test maximizes
the detection power at a specified bearable false alarm rate
[16]. Moreover, a correct detection, i.e., a true alarm, should
also be produced promptly in a timely manner since, other-
wise, it might be late to take the required action. To this end,
we consider the temporal data produced by a birth-death
type discrete time Markov chain (birth-death type DTMC)
and propose two computationally efficient and highly scal-
able NP tests, which are appropriate for processing large
scale data in real time. This study generalizes the online
anomaly detection method of [14] with almost the same
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computational resources. Thus, our technique proposed in
this paper is also directly applicable to online applications
via the sequential framework of [14].

The birth-death type DTMC is frequently used in many
applications [6, 11, 12, 19, 26] for various purposes such
as the learning of the statistical behavior [6, 19] and the
background image [26] in video observations. Birth-death
type chains are also used in [11, 12] for level-crossing based
sampling. Other popular examples are in the literature of
counting processes and their queuing applications, cf. [6] as
well as the references therein. Hence, we emphasize that the
proposed computationally highly efficient anomaly detec-
tion methods can be used to process the large scale data
from a wide variety of applications in various domains. On
the other hand, several impressive anomaly detection tech-
niques have been already proposed for the data generated
by the Markov chains [1–3, 5, 9, 10, 13, 19, 23], which are
closely related to our study. However, these techniques do
not directly and explicitly consider false alarm controllabil-
ity, which is -in contrast- the main focus in this paper. For
example, a test instance is declared anomalous in [23] if its
probability under the constructed first order Markov model
is below a certain threshold, where Monte Carlo simulations
are required to relate this probability threshold to a desired
false alarm rate. Such a requirement makes the method
[23] impractical for large scale applications, whereas our
technique maximizes the detection power at the desired
false alarm rate with almost negligible computational costs
through simple function evaluations without extensive sim-
ulations. Hence, one can directly apply our methods to fast
streaming data in the, for example, online systems by using
the online framework of [14]. The hidden Markov model is
extended in [13] to cover the partially observed but erro-
neous, i.e., anomalous, state observations, which -however-
does not explicitly detect anomalies but instead implicitly
handle them for state recognition purposes. In the video
anomaly identification method of [19], a 2-state (hence a
birth death-type) Markov chain is applied to model the
foreground and background labels at each pixel, where sta-
tistically significant deviations are declared as anomalous
labels. The result is a statistical background being capa-
ble of anomaly detection. Similar to [23], this method [19]
also heavily relies on Monte Carlo simulations. It is com-
putationally intractable to perform [19] at each pixel in real
time under varying source statistics; on the contrary, one can
readily use our technique for video anomaly identification
in the framework of [19] under non stationarity.

Neyman-Pearson (NP) tests for anomaly detection pur-
poses have been successfully applied to data in several
domains in machine learning [18, 20, 24, 25]. In these
methods, the core approach is to declare a test instance
anomalous, if the distance from the test instance to a nom-
inal set of data is sufficiently large [24], for which an

efficient implementation can be found in [18]. The general-
ization from this core approach to the NP characterization
is through ranking the distances from a validation set of
instances to the training set [25]. When the anomalies are
uniformly distributed, the NP test is equivalent to simply
deciding whether a test instance is in the minimum vol-
ume (MV) set of the nominal distribution [20]. Since these
methods [18, 20, 24, 25] are non-parametric, the MV mem-
bership decision requires pair-wise distance calculations
and ranking, which makes them computationally prohibitive
for large scale applications. In this paper, we also use the
NP approach by assuming that the anomalies are uniformly
distributed, i.e., we also use the MV approach, to control
the number of false alarms while maximizing the detec-
tion power. However, unlike non-parametric methods in [18,
20, 24, 25], our technique relies on a parametric model,
i.e., birth-death type DTMC, which allows computationally
highly scalable and efficient implementations through the
introduced log-likelihood density approximations. More-
over, our technique does not require to relate algorithmic
parameters to the desired false alarm rate, i.e., it is parameter
tuning free in terms of false alarm rate controllability, with
strong adaptation capabilities to non-stationarity, cf. [14] for
the details of this adaptation.

We provide the problem description in Section 2. After
our log-likelihood density approximation is described in
Section 3, we present our efficient anomaly detection tests
in Section 4. We demonstrate the performance of our algo-
rithms in Section 5 through several numerical examples
and simulations. The paper concludes with final remarks in
Section 6.

2 Problem Description

Suppose that Xn (with Xn ∈ S, ∀n) is a stochastic pro-
cess from a birth-death type Discrete Time Markov Chain
(DTMC), where one observes transitions only between the
neighboring states. In this model, S = {1, 2, · · · , N} is the
state space of cardinality N (N is the number of states); and
the states i and j are neighbors, if |i − j | ≤ 1. We denote
the state transition probabilities by λij and the initial state
probabilities by πi . To be more precise, Xn starts a realiza-
tion wn from a state j ∈ S with probability πj ; preserves
-once a realization is started- its state i ∈ S with probabil-
ity λii and make a transition from the state i to the state j

with probability λij at any time n. However, since this is a
birth-death type DTMC, only up/down or right/left transi-
tions are possible, i.e., λij = 0, if |i − j | > 1. Note that for
a given realization wn, one can straightforwardly calculate
the probability p(wn) under this model. A correspond-
ing 4-state (N = 4) birth-death type DTMC is illustrated
in Fig. 1.
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Figure 1 A 4-state (N = 4) birth-death type Discrete Time Markov
Chain (DTMC) model is illustrated. A corresponding realization wn

(from the underlying process Xn) is processed to extract the sufficient
statistics for our anomaly detection purposes such as θj , k

+
j , k−

j . Here,

k+
i (k−

i ) is the total number of right/up (left/down) transitions in the
window sequencewn; and θi is the total number of state i observations.
These statistics (i.e. θj , k

+
j , k−

j ) are sufficient to obtain the probability
p(wn) of the sequence wn under the introduced DTMC model.

In this paper, our aim is to process big amounts of
data from an infinite stream xn of the underlying stochas-
tic process Xn (window-by-window via a sliding window
approach) and decide whether a window wn of length L

extracted from xn is statistically consistent with the under-
lying process Xn, i.e., whether it is “anomalous”, at a
specified false alarm rate τ ∈ [0, 1] in a computationally
highly efficient manner.

To this end, we design a test, which declares an anomaly
when

p(wn) ≤ δ(τ, L) such that
∑

∀wn of length L

p(wn)1{p(wn)≤δ(τ,L)} ≤ τ , (1)

where the second inequality is for the required false alarm
rate constraint. Note that δ(τ, L) is the detection thresh-
old as a function of the test window length L and the user
specified desired false alarm rate τ ; and 1{·} is the indicator
function returning 1 if its argument is TRUE; and returning
0, otherwise.

We emphasize that the test presented in Eq. 1 is pre-
cisely the Neyman-Pearson (NP) test, i.e., the most powerful
test at the specified false alarm rate τ , when the anomalies
are uniformly distributed and the threshold δ(τ, L) is set
correctly.

To obtain this most powerful NP test (under the assump-
tion of uniformly distributed anomalies), we first re-write
the same anomaly detection test in Eq. 1 through the
log-likelihood transformation z = logp(wn) such that an
anomaly is declared when

z ≤ δ(τ, L). (2)

Here, we use the same notation for the detection thresh-
olds before and after the log-likelihood transformation,
which are actually different, for the presentational clarity.
Also, recall that the false alarm rate due to the log-likelihood
thresholding with any given threshold ν is given by

�(ν) =
∑

∀z

p(z)1{z≤ν}.

Then, we find the threshold δ(τ, L) in Eq. 2 by maximiz-
ing the anomaly detection power, i.e., minimize the miss
probability, at the specified false alarm rate τ . Since the
most powerful test is simply a likelihood ratio test (which
becomes a simple thresholding on the log-likelihood when
the anomalies are uniformly distributed), maximizing over ν
maximizes the detection rate due to the NP characterization
of anomalies. Therefore, the desired threshold is obtained
via

δ(τ, L) = max{ν : �(ν) ≤ τ }. (3)

Based on this problem description, our goal is to develop
the NP test, i.e., the anomaly detection rule in Eq. 2 per-
formed with the threshold in Eq. 3 which yields the highest
detection at the desired false alarm rate, in a computa-
tionally highly efficient manner under the introduced birth-
death type DTMC model. Therefore, the proposed anomaly
detection tests are appropriate for processing data at large
scales in online applications and can be directly used in the
sequential framework of [14].
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3 Log-Likelihood Under DTMC

We formulate the anomaly detection problem (in Section 2)
in the Neyman-Pearson (NP) framework to achieve the real
time false alarm rate controllability. The presented test in
Eq. 2 requires one to calculate the test statistic z, i.e., the
log-likelihood z = logp(wn) under the introduced N-state
birth-death type Discrete Time Markov Chain (DTMC),
as well as the corresponding test threshold δ(τ, L). Both
of these calculations must be performed computationally
efficiently in order to obtain the anomaly detection at the
specified false alarm rate, which is intended to be appro-
priate for processing data at large scales in online applica-
tions. Although the calculation of the log-likelihood z =
logp(wn) (or p(wn)) is straightforward and simple, i.e.,
not computationally demanding, the calculation of the test
threshold δ(τ, L) is cumbersome since it requires to find the
complicated log-likelihood density p(z).

We note that since the window wn of length L is from a
domain of cardinality NL, i.e., since wn is a discrete ran-
dom variable with finite sample space, the log-likelihood
distribution p(z) (as well as the actual distribution p(wn))
is actually a probability mass function, which can be calcu-
lated as

p(z) =
∑

∀wn:z=logp(wn)

p(wn)

once p(wn) can be calculated. However, this indirect defini-
tion or calculation of p(z) yields a complicated false alarm
rate definition as

�(ν) =
∑

∀z

∑

∀wn:z=logp(wn)

p(wn)1{z≤ν},

which in turn complicates the calculation of the correct
threshold in Eq. 3 and therefore hinders the efficient imple-
mentations of the described anomaly detection.

To overcome this difficulty, we propose to approximate
the log-likelihood density p(z) as a mixture of Gaussian
densities and directly obtain, based on this approximation,
the test threshold δ(τ, L) as the corresponding Gaussian
quantiles via simple function evaluations. We explain the
details of our approach in the following.

3.1 Log-Likelihood Density Approximation

Under the introduced birth-death type DTMC model, the
probability of a window sequence wn of length L (extracted
from a mother sequence xn during a window-by-window
processing) can be calculated as

p(wn) = πw1

L−1∏

i=1

λwiwi+1 ,

where the multipliers, λwiwi+1 ’s, can attain only 3N − 2
unique values with N being the number of states (since this
is a birth death type chain; it would be N2 in the general
case of Markov chains), i.e., 3N − 2 = |{λij : 1 ≤ i ≤
N, 1 ≤ j ≤ N, |i − j | ≤ 1, }|.1 Based on this observation,
one can re-write the probability p(wn) as

p(wn) = πw1

N∏

i=1

λ
ko
i

ii λ
k+
i

i(i+1)λ
k−
i

i(i−1), (4)

where ko
i is the total number of the state preservations at

the state i and k+
i (k−

i ) is the total number of right/up
(left/down) transitions in the window sequence wn, i.e.,

k+
i =

L−1∑

j=1

1{wj+1>wj =i}, k−
i =

L−1∑

j=1

1{wj+1<wj =i} and

ko
i =

L−1∑

j=1

1{wj+1=wj =i}

with the convention k+
N = λN(N+1) = k−

1 = λ10 = 0.
Noting that

ko
i + k+

i + k−
i + 1{wL=i} = θi

is the total number of state i observations in the window
sequence wn, i.e., total waiting time in the state i, one can
reach

p(wn) = πw1

λwLwL

N∏

i=1

λ
θi

ii

(
λi(i+1)

λii

)k+
i

(
λi(i−1)

λii

)k−
i

, (5)

where
πw1

λwLwL
is necessary for handling the boundary condi-

tions. Thus, taking the logarithm of the both sides, we obtain
the log-likelihood expression as

logp(wn) =
N∑

i=1

θi log λii+k+
i log

λi(i+1)

λii

+k−
i log

λi(i−1)

λii

,

(6)

where we omit the term (due to the initial conditions)
log

πw1
λwLwL

since its contribution to the log-likelihood is

negligible for relatively large sequence length L.

Remark 1 We emphasize that the log-likelihood logp(wn)

is a function of the three quantities, i.e., the total number θi

of state i observations as well as the total number of right/up
and left/down transitions. Thus, these are essentially the
signal features that are necessary and sufficient for statis-
tical inferences regarding the window sequence under the
introduced birth-death type DTMC. Accordingly, in the pro-
posed anomaly detection method, these are the only quanti-
ties to be extracted and processed, which actually allows our

1| · | is either the cardinality of a set or the absolute value of a scalar or
the determinant of a matrix, which is understood from the argument.
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computationally efficient tests that are appropriate for large
scale applications, cf. Fig. 1.

After we obtain the log-likelihood expression z =
logp(wn) in Eq. 6, we next model the log-likelihood den-
sity p(z) (note that since wn is random, z = logp(wn)

is also random) in order to obtain the threshold δ(τ, L) of
the desired NP test in Eq. 2 in a computationally efficient
manner such that -for example- an online implementation is
possible. For this purpose, we consider the Bernoulli param-
eter estimation for the described sufficient statistics of the
log-likelihood in Eq. 6. Note that

k+
i

θi
= λi(i+1) + ε+

i ,

where ε+
i is the error term, which is zero mean Gaussian

distributed (conditioned on sufficiently large θi) with a vari-
ance approaching to 0 as θi increases. In the general case,

the random vector [ε+
i , ε−

i ]|θi = εi |θi ∼ N
(
0, 1

θi
	i

)
,

where

�i =
(

λi(i+1)(1 − λi(i+1)) −λi(i+1)λi(i−1)

−λi(i+1)λi(i−1) λi(i−1)(1 − λi(i−1))

)
.

Based on these Bernoulli estimators
k+
i

θi
= λi(i+1)+ε+

i as

well as
k−
i

θi
= λi(i−1) + ε−

i , we define another scalar random
variable hε

i as

hε
i = ε+

i log
λi(i+1)

λii

+ ε−
i log

λi(i−1)

λii

,

which is -conditioned on θi- Gaussian distributed with mean

0 and variance 1
θi

vi , i.e., hε
i |θi ∼ N

(
0, 1

θi
vi

)
, where

vi =
[
log

λi(i+1)

λii

, log
λi(i−1)

λii

]
�i

[
log

λi(i+1)

λii

, log
λi(i−1)

λii

]T

.

Then, one can obtain

logp(wn) = z =
N∑

i=1

θihi +
N∑

i=1

θih
ε
i ,

where hi is a constant with

hi = λi(i+1) log
λi(i+1)

λii

+ λi(i−1) log
λi(i−1)

λii

+ log λii .

Then, for the log-likelihood density conditioned on the
knowledge of θ = [θ1, θ2, · · · , θN ]T (composing of suffi-
ciently large θi’s), we have

f (z|� = θ) = N

(
N∑

i=1

θihi,

N∑

i=1

θivi

)
, (7)

where we naively assume that εi’s are independent.

Remark 2 We approximate the probability mass function
p(z|� = θ) (z|� is discrete) by the probability density
function f (z|� = θ) (z|� becomes artificially continuous
for the approximation), and hence, we switch from notation

“p” to “f ” to make the distinction clear. Therefore, Z|�
is normally distributed with mean

∑N
i=1 θihi and variance∑N

i=1 θivi for sufficiently large window length L, i.e., for
any � consisting of sufficiently large θi’s.

As a result of this, we obtain the (unconditional) log-
likelihood density using the priors over � as

fZ(z) =
∫

∀θ

fZ|�(z|� = θ)f�(θ)dθ , (8)

where the prior f�(θ) is also Gaussian distributed, i.e., the
probability mass function p(θ) can also be approximated
by a Gaussian distribution as in the case of the conditional
log-likelihood density. To obtain this prior f�(θ), we again
consider the Bernoulli estimator θi

L
= πi + γi , where γ ∼

N(0, 1
L
�γ ); and therefore,

� ∼ f� = N(Lπ , L�γ ) for sufficiently large L.

Here, the covariance �γ can be straightforwardly
obtained, cf. [22] for the details, as

�γ = 1

L

{
L−1∑

i=1

(N−i)(DπRi +(RT )iDπ )+LDπ

}
−LππT ,

where R is the matrix of state transition probabilities con-
sisting of the terms λi(i±1), and π = [π1, π2, · · · , πN ]T
with Dπ being the diagonal matrix of π of appropriate size.

4 Anomaly Detection Tests with False Alarm Rate
Controllability

We emphasize that the NP test for anomaly detection pre-
sented in Eq. 1 or equivalently (due to the log-likelihood
transformation) in Eq. 2 can be readily obtained via exten-
sive Monte Carlo simulations which is named as the
“MCNP” (Monte Carlo Neyman Pearson) method in this
paper, cf. Fig. 2. To be more precise, one can easily sam-
ple many window sequences {wi

n}MC
i=1 (of length L) and for

each of these window sequences, the corresponding log-
likelihood values can be calculated as {zi}MC

i=1 under the
introduced birth-death type DTMC, where zi = logp(wi

n).
Here, suppose that these values are sorted in the ascending
order without loss of generality, i.e., zi ≤ zj , if i ≤ j .
Then, the corresponding threshold in Eq. 2 can be found as
δ(τ, L) = z�τ×MC�.2 On the other hand, due to these com-
putationally heavy and extensive Monte Carlo simulations
(the generation of sorted zi’s here) which are necessary to
match the desired false alarm rate τ , MCNP is prohibitively
complex for applications requiring data processing at large
scales and therefore it cannot be used -for instance- in the
online applications.

2�·� is the floor operation.
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Figure 2 We propose two
computationally highly efficient
anomaly detection tests at the
specified false alarm rate τ with
real time data processing
capabilities, which are based on
our log-likelihood density
approximation: i) AMCNP and
ii) TFNP. We compare these tests
with the baseline method MCNP,
please refer to our experiments
for the comparisons.

Nevertheless, the approximate log-likelihood density in
Eq. 8 allows us to propose two other anomaly detection
tests: i) The “AMCNP” (Approximate Monte Carlo Ney-
man Pearson) test, which is an approximate NP test through
significantly more efficient Monte Carlo simulations (com-
pared to the ones in the case of MCNP) ii) The “TFNP”
(Two Fold Neyman Pearson) test which is a two-fold NP test
that matches the desired false alarm rate via simple function
evaluations without Monte Carlo simulations. We illustrate
these tests AMCNP and TFNP in Fig. 2 and present the
details in the following.

4.1 The Test Method AMCNP

This test method AMCNP is based on Monte Carlo simu-
lations, where the execution of these simulations are com-
putationally highly efficient compared to the simulations
in the case of the test method MCNP. Namely, both the
methods AMCNP and MCNP contain sampling. However,
MCNP samples sequences, whereas AMCNP samples cer-
tain variables such as the total counts. The reason for the
sampling efficiency in the case of AMCNP is that sam-
pling the sequences in a generative manner (as in the case
of MCNP) is computationally much more expensive than
directly sampling a few variables such as the total counts (as
in the case of AMCNP). Thus, AMCNP is appropriate for
online applications.

AMCNP uses the approximate log-likelihood density in
Eq. 8 to generate the sorted log-likelihood values {zi}MC

i=1
and set δ(τ, L) = z�τ×MC�. Here, each zi is obtained as
follows: i) First, one samples θi from the distribution f�,
ii) and then samples zi from the distribution fZ|�. Note
that this described process of the generation of zi does not
require the generation of a window sequence (of length
L) wi

n (and therefore it does not require to run a birth-
death type DTMC) and calculate the log-likelihood zi =
p(wi

n). Instead, since this described process only requires
two simple probabilistic look-up’s in addition to the “sort-
ing” (sorting is common to both MCNP and AMCNP), it

is appropriate for real-time processing of large scale data.
An illustration of this test method AMCNP is presented in
Fig. 2.

4.2 The Test Method TFNP

We next propose a two-fold NP test named “TFNP”, which
does not require extensive Monte Carlo simulations or sort-
ing as in the cases of MCNP or AMCNP. Instead, the test
method TFNP directly calculates the corresponding quantile
to match the desired false alarm rate via two separate and
hierarchical tests. Namely, TFNP is a successive application
of two NP tests. The first test is applied against the variable
�, i.e., the total waiting time features extracted from the
window sequence wn, at the false alarm rate τ1. If found an
anomaly, it is declared; otherwise, the second test is applied
against the conditional log-likelihood Z|� = θ at the false
alarm rate τ2 such that a desired rate τ is achieved in the
end. The test method TFNP is illustrated in Fig. 2. To be
more precise, we first apply the Test 1, which is designed as

(Design of Test 1) (9)

log f�(θ) ≤ δ(τ1, L) such that∫

∀θ

f�(θ)1{log f�(θ)≤δ(τ1,L)} ≤ τ1

and if the result is positive, i.e., log f�(θ) ≤ δ(τ1, L) is
TRUE, then we declare an anomaly. Otherwise, we apply
the Test 2, which is designed as

(Design of Test 2) (10)

z ≤ δ(τ2, θ , L) such that∫

∀z

fZ|�=θ (z)1{z≤δ(τ2,θ,L)} ≤ τ1,

and if the result is positive, i.e., log f�(θ) ≤ δ(τ1, L) is
TRUE, then we declare an anomaly. Otherwise, we declare
no anomaly. We also require τ1 + (1 − τ1)τ2 = τ to match
the overall desired false alarm rate τ .

Note that in the successive application of the individ-
ual tests of the method TFNP, the calculation of the signal
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feature θ (necessary for the Test 1) as well as the calcula-
tion of the log-likelihood z (necessary for the Test 2) for a
given sequencewn are both straightforward and can be read-
ily performed efficiently in a truly online manner during
a window-by-window processing (generation of wn’s) of a
mother sequence xn. However, the important step is the cal-
culation of the correct thresholds δ(τ1, L) and δ(τ2, θ , L),
to match the desired false alarm rate τ in the end. In the
following, we explain the details of the calculation of these
thresholds.

Let us first start with δ(τ1, L) and observe that

log f�(θ) = C(L) − 1

2
α ≤ δ(τ1, L)

is equivalent to

α ≥ 2(C(L) − δ(τ1, L)), where

C(L) = −N
2 log 2π − 1

2 log |�γ |, α = (θ − Lπ)T �−1
γ (θ −

Lπ) and α is chi-squared distributed with degree N . Note
that the covariance �γ is actually not full rank, i.e., its rank
is N − 1, since sum of θi’s is known to be L. This condition
can be removed by considering the reduced version to the
rankN−1. We use the reduced version (via skipping the last
element in θ ) in this study to ensure the full rank condition.
In general, one can use any reduction to the rank N − 1 by
choosing any linearly independent set of N − 1 directions
and applying the corresponding transformation, where this
choice of reduction does not affect our derivations as long
as the desired transformation is invertible. Hence, we need
to satisfy

Pr(α ≥ 2(C(L) − δ(τ1, L))) = τ1

to match the desired rate τ1 in the first level of TFNP. Since
the solution to the equation

1 − Pr(α ≤ 2(C(L) − δ(τ1, L))) = τ1

yields

χ(1 − τ1, N) = 2(C(L) − δ(τ1, L)),

we obtain

δ(τ1, L) = C(L) − χ(1 − τ1, N)

2
, (11)

where χ(·, N) is the inverse of the cumulative distribution
function for the chi-squared distribution of degree N . We
emphasize that the evaluations of χ(·, N) do not require
computational resources since it is based on a look-up table
which can be prepared off-line. This completes the design
of Test 1 of the TFNP method.

Our derivations of the other threshold δ(τ2, θ , L) that is
used in the Test 2 of the TFNP method follows similar lines.
Since

Pr(z ≤ δ(τ2, θ , L)) = τ2

yields

τ2 = Q

(
δ(τ2, θ , L) − ∑N

i=1 θihi∑N
i=1 θivi

)
,

we obtain

δ(τ2, θ , L) = Q−1(τ2)

√√√√
N∑

i=1

θivi +
N∑

i=1

θihi, (12)

where Q(·) is the cumulative distribution function of the
normal distribution with zero mean and unit variance. This
completes the design of Test 2 of the TFNP method. We
finally note that the choice of the individual rates τ1 and
τ2 is a design issue and in this study, we share the overall
false alarm rate τ (specified by the user) equally between
individual tests, i.e., τ1 = τ2 = 1 − √

1 − τ , unless stated
otherwise.

We point out the proposed anomaly detection tests
AMCNP and TFNP are appropriate for fast streaming data
applications since they require only limited (in the case of
AMCNP) or even negligible (in the case of TFNP) com-
putational cost. One can sequentially process data at large
scales by using the online implementations of our tests and
detect anomalies with real time false alarm rate control-
lability in a truly online manner. Moreover, no parameter
tuning is required to match the desired false alarm rate even
when the source statistics change; instead, the proposed
tests can actually be implemented adaptive to the possible
non-stationarities. For the details of the online implemen-
tation of -for instance- a reduced version of the test TFNP
as well as the adaptivity to the non-stationarity, please refer
to the study [14]. Nevertheless, we briefly note here that:
i) The signal features θ , k+

i and k−
i can all be computed

online since the computation is based on a simple incremen-
tal counting of the transitions as the data is streamed. ii)
Once these features are computed online, then the unknown
model parameters can be estimated through basic opera-

tions, i.e., λ̂i(i+1) = k+
i

θi
. iii) Once the model parameters

are estimated, then the log-likelihood z can be computed

and updated online, i.e., z(n+1) = z(n) + log
π̂w2
π̂w1

λ̂wL+1

λ̂w1

, if

w1 = w2 and wL = wL+1. Finally, iv) the computation to
obtain the desired threshold of TFNP is again a simple func-
tion evaluation, cf. Eqs. 11 and 12. For the details, please
refer to the sequential data processing framework of [14].

5 Experiments

In this section, we demonstrate the anomaly detection power
and the false alarm rate controllability capabilities of the
proposed tests AMCNP and TFNP in comparison to the
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baseline MCNP. We also present the computational running
times of our techniques.

For this purpose, we design a set of experiments, where
we use aN = 4 state birth-death type DTMCwith a specific
set of model parameters (these parameters are randomly
chosen), i.e.,

R =

⎡

⎢⎢⎣

λ10 λ12 λ11
λ21 λ23 λ22
λ32 λ34 λ33
λ43 λ45 λ44

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

0 0.78 0.22
0.27 0.35 0.38
0.63 0.31 0.06
0.54 0 0.46

⎤

⎥⎥⎦ ,

to generate a nominal set of 105 sequences of length L =
100. Note that λ10 = λ45 = 0 is used for convention.
We also generate 105 examples of anomalous sequences
similarly from a N = 4 state birth-death type DTMC;
however, we randomly change the model parameters for
each of these anomalous sequences. Therefore, the anoma-
lous behavior is simulated in this study as a change in
the model parameters. For every nominal and anomalous
sequence (in total 2 × 105 sequences are tested), we apply
the following tests at various desired false alarm rates τ ∈
{0.01, 0.1, 0.2, · · · , 0.9, 0.99}: i) TFNP with τ1 = τ2 = 1−√
1 − τ , ii) TFNP-A with τ1 = τ and τ2 = 0, iii) TFNP-B

with τ1 = 0 and τ2 = τ , iv) AMCNP and finally v) MCNP.
Here, we perform the tests TFNP-A and TFNP-B in order
to clearly demonstrate the efficacy of the hierarchical com-
bination of TFNP-A and TFNP-B by TFNP. MCNP is used
as the baseline which is the direct application of the NP test
via extensive Monte Carlo simulations. Note that MCNP
is capable of precisely matching the desired false alarm
rate with these simulations. On the other hand, the false
alarm controllability by our methods TFNP and AMCNP is
nearly achieved based on our log-likelihood approximation;
however, in a computationally highly scalable and efficient
manner.

In Fig. 3, we present the Receiver Operating Characteris-
tics (ROC) curves for these compared tests. We observe that
the proposed test TFNP significantly outperforms the base-
line MCNP since the anomalies are simulated in this paper
as a change in the source statistics. If the anomalies were
uniformly distributed, then it is already known that MCNP
would be the optimal, i.e., the most powerful, by defini-
tion without a need for demonstration. On the other hand,
MCNP is well approximated by our method AMCNP as
illustrated in Fig. 3, hence, AMCNPmight be a better option
(compared to TFNP) when the anomalies are uniformly dis-
tributed. Note that the method TFNP first applies the test
TFNP-A at the rate τ1, and then applies the test TFNP-B at
the rate τ2. This combination, i.e., the successive application
in the TFNP, is clearly shown to outperform the individual
tests since TFNP performs significantly better than TFNP-
A and TFNP-B, cf. Fig. 3. In terms of the false alarm rate
controllability, we mention here a couple of examples in
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Figure 3 The ROC curves are presented for the compared tests TFNP,
TFNP-A, TFNP-B, AMCNP and MCNP.

the case of TFNP. When the desired rate is applied from
τ = {0.01, 0.1, 0.2, · · · , 0.9, 0.99}, TFNP impressively
achieves these desired rates as τ̂ = {0.016, 0.109, 0.200,
0.292, 0.389, 0.484, 0.585, 0.686, 0.799, 0.913, 0.997}, cf.
Fig. 3. Finally, the running times of the optimized MAT-
LAB codes on a standard work station for the Monte Carlo
simulations of the tests AMCNP and MCNP are 74.9 and
3.7 seconds, respectively. Namely, AMCNP is ∼ 25× faster
than MCNP. On the other hand, TFNP operates without
such Monte Carlo simulations taking almost negligible time
compared to AMCNP or MCNP. Therefore, the proposed
techniques are computationally highly efficient and scal-
able and can be readily applied, by using the sequential
processing framework of [14], to fast streaming data in the
contemporary online applications.

6 Conclusion

TwoNeyman-Pearson (NP) tests are introduced for anomaly
detection, which are both based on the log-likelihood den-
sity approximation that we derive for observations from the
birth-death type DTMCs. The first test “AMCNP” uses this
approximation to perform a “light” set of Monte Carlo sim-
ulations and “nearly” matches the desired false alarm rate.
The second test “TFNP” applies a two fold NP tests against
certain statistics and only requires simple function evalu-
ations to “nearly” match the desired rate, i.e., to find the
corresponding approximate density quantile, without Monte
Carlo simulations. AMCNP is appropriate for detecting uni-
formly distributed, i.e., arbitrary, anomalies and operates
∼ 25× faster than the baseline NP, which requires “heavy”
Monte Carlo simulations to “precisely” match the desired
rate. TFNP operates incomparably faster than even AMCNP
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without simulations since its computational complexity is
relatively negligible; and it is appropriate for detecting -not
uniformly distributed but- the anomalies that are still drawn
from birth-death type chains with different parameters (not
with the nominal ones). Therefore, the introduced tests can
be used to process data in large scales with real time false
alarm rate controllability. Moreover, our algorithms do not
require parameter tuning even under strong non-stationarity.
Through several numerical examples in our experiments, we
show that the proposed algorithms outperform the baseline
NP in terms of the detection power, while nearly achiev-
ing the desired rate in a computationally highly scalable
manner.

Acknowledgments This work was supported in part by The Scien-
tific and Technological Research Council of Turkey (TUBITAK) under
Contract 113E517 and in part by Turk Telekom Inc.

References

1. Chandola V., Mithal V., & Kumar V. (2008). Comparative eval-
uation of anomaly detection techniques for sequence data. In
International conference on data mining (pp. 743–748).

2. Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detec-
tion: a survey. ACM Computing Surveys (CSUR), 41(3), 15.

3. Chandola, V., Banerjee, A., & Kumar, V. (2012). Anomaly detec-
tion for discrete sequences: a survey. IEEE Transactions on
Knowledge and Data Engineering, 24(5), 823–839.

4. Filippone, M., & Sanguinetti, G. (2011). A perturbative approach
to novelty detection in autoregressive models. IEEE Transactions
on Signal Processing, 59(3), 1027–1036.

5. Gupta, M., Gao, J., Aggarwal, C., & Han, J. (2014). Outlier detec-
tion for temporal data: a survey. IEEE Transactions on Knowledge
and Data Engineering, 26(9), 2250–2267.

6. Karlin, S. (2014). A First Course in Stochastic Processes. Aca-
demic Press.

7. Keogh, E., Lin, J., Lee, S., & Van Herle, H. (2007). Find-
ing the most unusual time series subsequence: algorithms and
applications. Knowledge and Information Systems, 11(1), 1–27.

8. Lehtomaki, J., Vartiainen, J., Juntti, M., & Saarnisaari, H. (2007).
Cfar outlier detection with forward methods. IEEE Transactions
on Signal Processing, 55(9), 4702–4706.

9. Marceau, C. (2001). Characterizing the behavior of a program
using multiple-length n-grams. In Proceedings of the 2000 work-
shop on New security paradigms (pp. 101–110). ACM.

10. Michael C, & Ghosh A (2000). Two state-based approaches
to program-based anomaly detection. In Annual conference on
computer security applications (pp. 21–30).

11. Morgan, D. (2007). On level-crossing excursions of gaussian low-
pass random processes. IEEE Transactions on Signal Processing,
55(7), 3623–3632.

12. Moser, B., & Natschlager, T. (2014). On stability of distance mea-
sures for event sequences induced by level-crossing sampling.
IEEE Transactions on Signal Processing, 62(8), 1987–1999.

13. Ozkan, H., Akman, A., & Kozat, S. (2014). A novel and robust
parameter training approach for hmms under noisy and partial
access to states. Signal Processing, 94, 490–497.

14. Ozkan, H., Ozkan, F., Delibalta, I., & Kozat, S. (2015). Online
anomaly detection with constant false alarm rate. In IEEE 25th
international workshop on machine learning for signal processing
(MLSP) (pp. 1–6).

15. Ozkan, H., Pelvan, O., & Kozat, S. (2015). Data imputation
through the identification of local anomalies. IEEE Transactions
on Neural Networks and Learning Systems, 26(10), 2381–2395.

16. Poor, V. (1994). An introduction to signal detection and estima-
tion. Springer Science & Business Media.

17. Rajasegarar, S., Leckie, C., & Palaniswami, M. (2008). Anomaly
detection in wireless sensor networks. IEEE Wireless Communi-
cations, 15(4), 34–40.

18. Ramaswamy, S., Rastogi, R., & Shim, K. (2000). Efficient algo-
rithms for mining outliers from large data sets. ACM SIGMOD
Record, 29(2), 427–438.

19. Saligrama, V., Konrad, J., & Jodoin, P. (2010). Video anomaly
identification. IEEE Signal Processing Magazine, 27(5), 18–33.

20. Scott, C., & Nowak, R. (2006). Learning minimum volume sets.
The Journal of Machine Learning Research, 7, 665–704.

21. Wang, H., Tang, M., Park, Y., & Priebe, C. (2014). Locality
statistics for anomaly detection in time series of graphs. IEEE
Transactions on Signal Processing, 62(3), 703–717.

22. Xue, M., & Roy, S. (2011). Spectral and graph-theoretic bounds
on steady-state-probability estimation performance for an ergodic
markov chain. In American control conference (pp. 2399–2404).

23. Ye, N., et al. (2000). A markov chain model of temporal behavior
for anomaly detection (Vol. 166, p. 169).

24. Zhang, K., Hutter, M., & Jin, H. (2009). A new local distance-
based outlier detection approach for scattered real-world data. In
Advances in knowledge discovery and data mining (pp. 813–822).
Springer.

25. Zhao, M., & Saligrama, V. (2009). Anomaly detection with score
functions based on nearest neighbor graphs. In Advances in neural
information processing systems (pp. 2250–2258).

26. Zivkovic, Z. (2004). Improved adaptive gaussian mixture model
for background subtraction. IEEE 17th International Conference
on Pattern Recognition (ICPR), 2, 28–31.

Huseyin Ozkan is -as a
postdoctoral scholar- cur-
rently with the Department of
Brain and Cognitive Sciences
at Massachusetts Insti-
tute of Technology (MIT),
Cambridge, MA, USA. He
received his B.Sc. degrees
in Electrical and Electronics
Engineering, and Mathemat-
ics from Bogazici University,
Istanbul, Turkey, in 2007. He
received his M.Sc. degree in
Electrical Engineering from
Boston University, MA, USA,
in 2010; and his Ph.D. degree

in Electrical and Electronics Engineering from Bilkent University,
Ankara, Turkey, in 2015. Before joining CSAIL at MIT, he worked
at Aselsan Inc., Ankara, Turkey, as a research scientist, where he
conducted computer vision research for large area surveillance; and
also focused on anomaly detection and recommendation problems.
He also worked as a research intern at Mitsubishi Electric Research
Laboratories, Cambridge, MA, USA, where he developed efficient
algorithms for vision based road sign detection. He has been awarded
the best paper award by the IEEE conference on Advanced Video and
Signal based Surveillance (2011); and the best student paper award
by the IEEE conference on Signal Processing Applications (2012).
His research interests include statistical learning, pattern recognition,
computer vision and statistical signal processing.

J Sign Process Syst (2018) 90:175–184 183



Fatih Ozkan received his
B.Sc. degree in Computer
Engineering from Cukurova
University, Adana, Turkey, in
2012. He is currently work-
ing towards his M.Sc. degree
in the Department of Infor-
mation Systems at Middle
East Technical University.
His research interests include
computer vision and machine
learning. He is also working
as a full time researcher in
the ILTAREN Institute at
TUBITAK, Ankara, Turkey.

Ibrahim Delibalta received
his B.S. in EE from Bogazici
University, Istanbul in 1993
and M.S. in EE from Univer-
sity of Southern California in
1995. He worked in Silicon
Valley from 1995 to 2010
at Intel, Silicon Graphics
and Cisco Systems, respec-
tively, in the field of high
performance microprocessor
and network processor chip
design. He has been working
in the Turk Telekom Group
since 2011 at various posi-
tions, currently leading the

Emerging Services and R&D team. He is currently pursuing a Ph.D. in
Design, Technology and Society, an interdisciplinary program at Koc
University, Istanbul, involving social sciences and machine learning.

Suleyman S. Kozat received
his B.S. degree in Electrical
and Electronics Engineer-
ing from Bilkent University,
Ankara, Turkey. He received
the M.S. and Ph.D. degrees
in Electrical Engineering
from University of Illinois at
Urbana Champaign, IL, USA,
in 2001 and 2004, respec-
tively. After graduation, Dr.
Kozat joined IBM Research,
T. J. Watson Research Cen-
ter, Yorktown, NY, USA, as
a Research Staff Member in
Pervasive Speech Technolo-

gies Group, where he focused on problems related to statistical signal
processing and machine learning. He also worked as a Research Asso-
ciate at Microsoft Research, Redmond, WA, USA, in Cryptography
and Anti-Piracy Group. Currently, Dr. Kozat is an Assistant Professor
at the Electrical and Electronics Engineering Department, Bilkent
University, Turkey. His research interests include intelligent systems,
adaptive filtering for smart data analytics, online learning and machine
learning algorithms for signal processing. Dr. Kozat has been awarded
IBM Faculty Award by IBM Research in 2011, Outstanding Faculty
Award by Koc University in 2011, Outstanding Young Researcher
Award by the Turkish National Academy of Sciences in 2010, ODTU
Prof. Dr. Mustafa N. Parlar Research Encouragement Award in 2011
and holds Career Award by the Scientific Research Council of Turkey,
2009.

J Sign Process Syst (2018) 90:175–184184


	Efficient NP Tests for Anomaly Detection Over Birth-Death Type DTMCs
	Abstract
	Introduction
	Problem Description
	Log-Likelihood Under DTMC
	Log-Likelihood Density Approximation

	Anomaly Detection Tests with False Alarm Rate Controllability
	The Test Method AMCNP
	The Test Method TFNP

	Experiments
	Conclusion
	Acknowledgments
	References


