
Linear algebraic theory of partial coherence:
continuous fields and measures of partial
coherence
HALDUN M. OZAKTAS,1 TALHA CIHAD GULCU,2,* AND M. ALPER KUTAY3

1Department of Electrical Engineering, Bilkent University, TR-06800 Bilkent, Ankara, Turkey
2Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742, USA
3The Scientific and Technological Research Council of Turkey, Ataturk Bulvari 221, TR-06100 Kavaklidere, Ankara, Turkey
*Corresponding author: tcgulcu@gmail.com

Received 8 July 2016; revised 2 September 2016; accepted 2 September 2016; posted 7 September 2016 (Doc. ID 269808);
published 4 October 2016

This work presents a linear algebraic theory of partial coherence for optical fields of continuous variables. This
approach facilitates use of linear algebraic techniques and makes it possible to precisely define the concepts of
incoherence and coherence in a mathematical way. We have proposed five scalar measures for the degree of partial
coherence. These measures are zero for incoherent fields, unity for fully coherent fields, and between zero and one
for partially coherent fields. © 2016 Optical Society of America

OCIS codes: (030.0030) Coherence and statistical optics; (030.1640) Coherence.

http://dx.doi.org/10.1364/JOSAA.33.002115

1. INTRODUCTION

The theory of partially coherent optical fields is well established
[1–23]. In a previous work, where we concentrated on discrete
fields [24–26], we saw that new perspectives can be gained by
reformulating the theory based on linear algebraic concepts.
This approach brings new understanding, insight, and opera-
tionality and may be useful in applications such as optical signal
processing. Several of the concepts proposed in [24] have been
used or referred to in works published since then [14,27–30].

In this work we considered optical fields of continuous
variables. While the discrete fields considered in [24] led to
a matrix-algebraic formulation, the case of continuous fields
leads to a formulation in continuous function spaces. We as-
sumed quasi-monochromatic conditions and do not deal with
temporal coherence effects. We focused on the degree of spatial
coherence of light fields, as quantified by their autocorrelation,
or mutual intensity functions.

The conventional second-order theory of spatial coherence
associated with paraxial propagation is presented in [4]. In the
case of micro-diffraction, however, paraxial theories are unable
to predict some phenomena, and non-paraxial theories are
more suitable. The tensor theory of [31] is an example of such
a theory.

We first defined several functions that quantify second-
order correlations. Then we used these functions to define full
incoherence and full coherence. Following that, we have pro-
posed five scalar measures for the degree of partial coherence of

a field, which vary from 0 for the fully incoherent case, to 1 for
the fully coherent case. The section before the conclusion
discusses some of the concepts in the Fourier domain.

2. MUTUAL INTENSITY FUNCTION

Let the function f �x� be a random process representing a ran-
dom optical field. We will deal with one-dimensional signals
for simplicity, but extending the results to two dimensions is
not difficult. We can define the mutual intensity function
Jf �x1; x2� of f �x� as

Jf �x1; x2� � hf �x1�f ��x2�i: (1)

Here the angular brackets represent the ensemble average
(expectation value). The raised � represents the complex con-
jugate. We drop the subscript f in Jf �x1; x2� and simply write
J�x1; x2� if there is no possibility of confusion. The intensity is
given by J�x; x� � I�x� and the power is given by

R
I�x�dx.

Unless indicated otherwise, integrals extend over the interval
on which f is defined. The mean-subtracted mutual intensity,
denoted K f , is defined as

K f �x1; x2� � h�f �x1� − μf �x1���f �x2� − μf �x2���i; (2)

where μf �x� � hf �x�i is the mean of f �x�, a function whose
value at each point is the mean of f �x� at that point. We noted
that K �x; x� � σ2�x� is the variance of the field. In the lan-
guage of the theory of random processes or statistics, the mu-
tual intensity J�x1; x2� is an autocorrelation function whereas

Research Article Vol. 33, No. 11 / November 2016 / Journal of the Optical Society of America A 2115

1084-7529/16/112115-10 Journal © 2016 Optical Society of America

mailto:tcgulcu@gmail.com
mailto:tcgulcu@gmail.com
http://dx.doi.org/10.1364/JOSAA.33.002115


its mean-subtracted version K �x1; x2� is an autocovariance
function. The relation between J�x1; x2� and K �x1; x2� is given
by J�x1; x2� � K �x1; x2� � μf �x1�μ�f �x2�.

J�x1; x2� and K �x1; x2� satisfy the following properties
(the proofs are omitted where elementary or well-known [32]):

1. J�x1; x2� and K �x1; x2� are Hermitian symmetric:
J�x1; x2� � J��x2; x1� and K �x1; x2� � K ��x2; x1�. This fol-
lows directly from the definitions of J�x1; x2� and K �x1; x2�.

2. Since they are Hermitian-symmetric functions,
J�x1; x2� and K �x1; x2� have real eigenvalues. The eigenvalue
equation for J�x1; x2� isZ

J�x; x 0�uk�x 0�dx 0 � λkuk�x�; (3)

where λk and uk�x� are the eigenvalue and eigenfunction with
index k.

3. J�x1; x2� and K �x1; x2� are positive semi-definite, and
as a consequence, the eigenvalues are non-negative. Positive
semi-definiteness is expressed asZZ

u��x1�J�x1; x2�u�x2�dx1dx2 ≥ 0 (4)

for any function u�x�. Furthermore, jJ�x1; x2�j2 ≤ jJ�x1; x1�jj
J�x2; x2�j, and likewise for K �x1; x2�.

4. As is the case for all Hermitian-symmetric functions,
eigenfunctions with different eigenvalues must be orthogonal.
Moreover, a set of orthonormal eigenfunctions always exists
even when there are degenerate eigenvalues. We assumed
the set of eigenfunctions is chosen to be orthonormal.
Mathematically, orthonormality is expressed asZ

u�k �x�uk 0 �x�dx � δkk 0 ; (5)

where δkk 0 is the Kronecker delta (i.e., δkk 0 � 1 when k � k 0,
and δkk 0 � 0 otherwise). Provided thatZZ

jJ�x1; x2�j2dx1dx2 < ∞; (6)

it can be shown that [33]

J�x1; x2� �
X
k

λkuk�x1�u�k �x2�; (7)

where λk and uk�x� come from the eigenvalue equation given
by Eq. (3). A similar expression holds for K �x1; x2�. A sufficient
condition for Eq. (6) to hold is that the field is of finite energy;
that is, the integral

R
J�x; x�dx is finite. In the non-paraxial

theory described in [31], this condition is always satisfied.
Eq. (7) is the spectral expansion of J�x1; x2�. It is also re-

ferred to as an outer-product expansion since its terms are outer
products. In optics it is referred to as a coherent-mode repre-
sentation [34,35], a terminology that will make sense in
Section 4. This expression is also related to the process of
diagonalizing a Hermitian-symmetric function, with λkδkk 0

representing the diagonalized form of J�x1; x2�.
While establishing Eq. (7) in a rigorous manner is beyond the

scope of this work, the reader may easily demonstrate its plau-
sibility by substituting it in Eq. (3) to see that it indeed satisfies
the eigenvalue equation. For a proper development see [33].

If Eq. (6) fails to hold, then it is possible that J�x1; x2� has
uncountably many orthonormal eigenfunctions, and possesses
the expansion

J�x1; x2� �
Z

λ�ν�uν�x1�u�ν �x2�dν: (8)

Stationary optical fields (Section 4.C) are an example
for Eq. (8). When the field is stationary, all the complex expo-
nentials uν�x� � ei2πνx are an eigenfunction for J�x1; x2� �
J�x1 − x2�, and we have

J�x1; x2� �
Z

λ�ν�ei2πν�x1−x2�dν; (9)

where λ�ν� is the Fourier transform of f �x� � J�x; 0�. It is easy
to see that Eq. (9) is a particular case of Eq. (8). Also note that
such cases where the energy may not be finite do not corre-
spond to physical fields but rather idealizations or limiting cases
of physical fields, much like sine–cosine or delta functions.

5. If J�x1; x2� or K �x1; x2� is expressible as the product of
two functions u 0�x1� and u 0 0�x2� as u 0�x1�u 0 0��x2�, then it fol-
lows from Hermitian symmetry that u 0�x1� and u 0 0�x2� are re-
lated by a scalar factor, and further that it is possible to apply
suitable scaling to express J�x1; x2� or K �x1; x2� in self-product
form u�x1�u��x2�. That is, if we have a Hermitian-symmetric
function that we can write in product form, it is possible to
write it in self-product form. Being able to be written in
product form is known as separability.

6. The statements that follow are equivalent: (i) J�x1; x2�
can be written in self-product form (or as a consequence of the
previous item, just in product form). (ii) The eigenvalue se-
quence λk is impulsive (non-zero for only one value of k ); that
is, λk � λ0δkk0 for some k0. See Appendix A. A similar
equivalence holds for K �x1; x2�.

Later we will observe that functions satisfying one of the
equivalent conditions given in item 6 represent light that is
fully coherent. However, first we defined two new functions
in the next section before we discuss incoherence and coherence
in Section 4.

Before we leave this section, we cite two more results from
[33]. If Eq. (6) holds true, then

X
k

λk �
Z

J�x; x�dx (10)

and
X
k

λ2k �
ZZ

jJ�x1; x2�j2dx1dx2: (11)

Equations (10) and (11) are stated in Section 5.25, Exercise
11 and Section 6.11, Exercise 11 of [33], respectively. While we
again relegate matters of rigor to [33], we offer the following
plausibility arguments for the above results. Integrating Eq. (7)
along the diagonal line x1 � x2 and using Eq. (5) leads to
Eq. (10). Multiplying J�x1; x2� with its conjugate, double
integrating over x1 and x2, and again using Eq. (5) leads
to Eq. (11).

3. NORMALIZED MUTUAL INTENSITY

Sometimes, we do not have special interest in the actual inten-
sity of the field, but merely in the correlation of points with
each other. When this is the case, it is convenient to employ
the normalized versions of J�x1; x2� and K �x1; x2�:
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L�x1; x2� �
hf �x1�f ��x2�iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hjf �x1�j2ihjf �x2�j2i
p � J�x1; x2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J�x1; x1�J�x2; x2�
p

(12)

and

M �x1; x2� �
h�f �x1� − μ�x1���f �x2� − μ�x2���iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjf �x1� − μ�x1�j2ihjf �x2� − μ�x2�j2i

p

� K �x1; x2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K �x1; x1�K �x2; x2�

p : (13)

The values of both of these functions are identically unity
when x1 � x2; that is, L�x; x� � 1 and M�x; x� � 1. Observe
that M�x1; x2� is just the normalized mutual intensity of the
mean-subtracted field f �x� − μ�x�. It can also be viewed as
the correlation coefficient of the random variables f �x1� and
f �x2� [32].

L�x1; x2� and M�x1; x2� exhibit similar properties to
J�x1; x2� and K �x1; x2� in these ways:

1. Hermitian symmetry: L�x1; x2� � L��x2; x1� and
M �x1; x2� � M��x2; x1�.

2. L�x1; x2� and M�x1; x2� have real eigenvalues.
3. L�x1; x2� and M �x1; x2� are positive semi-definite with

non-negative eigenvalues. Moreover, jL�x1; x2�j ≤ 1 and
jM�x1; x2�j ≤ 1.

4. One can choose the eigenfunctions such that they are
orthonormal, and similar to Eq. (7), in terms of their eigen-
functions and eigenvalues, L�x1; x2� (or M �x1; x2�) can be
decomposed as

L�x1; x2� �
X
k

λkuk�x1�u�k �x2�; (14)

provided that ZZ
jL�x1; x2�j2dx1dx2 < ∞; (15)

similar to Eq. (6). If Eq. (15) does not hold, it may be the case
that there exists uncountably many orthonormal eigenfunc-
tions, and L�x1; x2� (or M �x1; x2�) has the expansion

L�x1; x2� �
Z

λ�ν�uν�x1�u�ν �x2�dν: (16)

5. If it is possible to write L�x1; x2� or M �x1; x2� in
product form, it is also possible to write it in self-product form.

These additional properties also hold true:

1. The diagonal values of L�x1; x2� and M�x1; x2� for
x1 � x2 are equal to 1. This is necessarily true since any point
is by definition correlated with itself.

2. The following are equivalent (see Appendix A):
(i) L�x1; x2� (or M �x1; x2�) is separable (expressible in product
form). (ii) The eigenvalue sequence of L�x1; x2� (or M�x1; x2�)
is impulsive (i.e., λk � λ0δkk0 for some k0). (iii) The function
L�x1; x2� (or M �x1; x2�) has unit magnitude everywhere:
jL�x1; x2�j � 1 (or jM �x1; x2�j � 1).

Before we leave this section, here is the normalized mutual
intensity counterpart of Eqs. (10) and (11):

X
k

λk �
Z

L�x; x�dx �
Z

dx (17)

and
X
k

λ2k �
ZZ

jL�x1; x2�j2dx1dx2: (18)

It follows as a corollary from Eq. (17) that if the optical
field of interest extends from −∞ to �∞, then the sum of
eigenvalues diverges.

4. FULL INCOHERENCE AND FULL
COHERENCE

Partial coherence is a continuum with one end being full in-
coherence and the other end being full coherence. The basic
concepts of partial coherence are covered in excellent textbooks
such as [3,36]. Here we express full spatial incoherence and full
spatial coherence mathematically in terms of the second-order
correlation functions introduced above.

The basis of incoherence or coherence is statistical correla-
tion. If any two arbitrary samples are completely correlated, we
say the field is coherent. On the other hand, if any two arbitrary
samples are completely uncorrelated, we say the field is inco-
herent. We will say that two random variables are completely
correlated if their correlation with each other is as strong as it is
with themselves. This finds mathematical expression in the
magnitude of the normalized covariance (or correlation) being
equal to unity. We will say that two random variables are
completely uncorrelated if their normalized covariance (or cor-
relation) is equal to zero. While complete incoherence and
complete coherence are mathematical idealizations, a field can
be effectively incoherent or coherent, if under the circumstan-
ces it effectively behaves as if it was completely incoherent or
coherent (e.g., based on finite resolution or apertures).

Employing the normalized functions L�x1; x2� and
M�x1; x2� has certain advantages. On the other hand, choosing
between L�x1; x2� and its mean-subtracted version M �x1; x2�
depends on how we prefer to define incoherence and coherence.
This choice is discussed with care in the context of Young’s ex-
periment in [24]. In this present paper, we continued with
the mutual intensity J�x1; x2� and the normalized L�x1; x2�.
The results for K �x1; x2� and M�x1; x2� are similar. While
the mean-subtracted versions result in different definitions of
incoherence and coherence, this is a non-essential difference.

The rationale for using L may be alternatively explained as
follows. The function J reflects two different qualities of the
field: (i) the spatial correlation (how correlated two points
are with each other), and (ii) the spatial intensity distribution
(how the intensity varies from one point to another). Now con-
sider a J function that is very concentrated along its diagonal.
That means that distinct points have very low correlation and
this is a field which is clearly on the incoherent side. However,
also assume that the intensity is strong only in a certain loca-
tion, but is very small elsewhere. Recalling that the eigenvalues
of a diagonal matrix are merely its diagonal elements, it is not
difficult to realize that this J function will have a few large
eigenvalues and many small eigenvalues.

In other words, although it is clearly a physically incoherent
field, its eigenvalue distribution will not be uniform, but rather
quite concentrated. This is because the effects of the intensity
distribution on the eigenvalues interacts and is entangled with
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the effects of the correlation properties on the eigenvalues. In
other words, J contains information that situates the field both
on the degree of coherence continuum, and on the degree of
stationarity continuum. When we normalize J to obtain L, we
flatten the intensity along the diagonal and eliminate the effect
of intensity on the eigenvalue distribution.

Now, the eigenvalue distribution reflects only the correla-
tion properties. In other words, we have untangled the coher-
ence continuum from the stationarity continuum. However,
there is a side effect. No finite-energy physical signal can be
stationary, but when we go from J to L, the normalization
introduces a partial stationarity (L does not strictly satisfy
the definition of stationarity but nevertheless the uniformity
imposed along the diagonal makes it closer to being stationary).
This sometimes has the consequence of leading to a continuous
eigenvalue spectrum for L.

A. Full Incoherence

Any two different samples of an incoherent field are uncorre-
lated, so that the mutual intensity function J�x1; x2� and its
normalized version L�x1; x2� must be zero with the exception
of the diagonal x1 � x2. Furthermore, since L�x; x� � 1 by
definition, a fully incoherent continuous optical field has a
normalized mutual intensity function of the following form,

L�x1; x2� �
�
1 if x1 � x2
0 if x1 ≠ x2

; (19)

or alternatively if the associated mutual intensity function
J�x1; x2� is zero except when x1 � x2.

It will be helpful to express Eq. (19) as a limit of the form

L�x1; x2� � lim
W→∞

sinc�W �x1 − x2��: (20)

For a fixed W > 0, the eigenvalue equation for
LW �x1; x2� � sinc�W �x1 − x2�� isZ

sinc�W �x − x 0��uk�x 0�dx 0 � λkuk�x�: (21)

The left-hand side of Eq. (21) is the convolution of the sinc
function with uk�x�. This equation can be expressed in the
Fourier domain as

1

W
rect

�
ν

W

�
ũk�ν� � λkũk�ν�; (22)

where ũk�ν� is the Fourier transform of uk�x�. From Eq. (22), we
can conclude that λk � 1∕W provided ũk�ν� is confined to the
interval �−W ∕2;W ∕2�. We see that L�x1; x2� is the limit of a
family of functions LW �x1; x2� with all eigenvalues identical and
equal to 1∕W . Now, considering the limitW → ∞, we see that
the eigenvalue mass of L�x1; x2� is spread as thinly and uniformly
as is possible over all the values of k. Of course, this idealization is
unphysical in the same sense that perfect sinusoids and delta
functions are unphysical. Nevertheless, it serves as a useful formal
device representing the limiting case of full incoherence.

As noted before, incoherence can be defined either in terms
of L�x1; x2� or M �x1; x2�. These definitions become identical
when f �x� has a zero mean. If samples of f �x� are indepen-
dent, M �x1; x2� will equal 0 except when x1 � x2, but
L�x1; x2� will not satisfy a similar property. When the samples
are uncorrelated,M�x1; x2� will equal to Eq. (19). In particular,

this will be the case when the samples are identically distributed
and independent, in which case the field will also be stationary.

B. Full Coherence

Any two samples of a coherent field are completely correlated,
implying that the magnitude of the normalized correlation is
equal to unity everywhere. Therefore the normalized mutual
intensity L�x1; x2� must have a magnitude of unity:

A fully coherent continuous optical field has a normalized
mutual intensity function of

jL�x1; x2�j � 1: (23)

All of the following conditions are equivalent to each other
and to the above definition: (i) J�x1; x2� is in self-product (or
product) form. (ii) L�x1; x2� is in self-product (or product)
form. (iii) The eigenvalue function λk of J�x1; x2� is impulsive:
λk � λ0δkk0 . (iv) The eigenvalue function λk of L�x1; x2� is
impulsive: λk � λ0δkk0 .

The equivalence of these conditions are discussed in
Appendix A. The eigenvalue function being impulsive means
that there is only one non-zero eigenvalue. Any of these equiv-
alent conditions can be used to define full coherence. The
eigenvalue mass is concentrated at a single point as much as
is possible. The same comments regarding the unphysicality
of such idealizations as we have made in the incoherent case
are applicable here as well. In reality, all systems have a finite
spatial extent as well as a finite resolution so fully incoherent
and fully coherent fields as defined do not exist.

Expressing the product form of L�x1; x2� as
L�x1; x2� � u�x1�u��x2�, we see that u�x� must be of unit
magnitude. In other words, the normalized correlation can
be looked upon as the unnormalized correlation of another field
that has been normalized to have unit magnitude. We also note
that u�x� is an eigenfunction of L�x1; x2�. This means that
when we normalize J�x1; x2� to obtain L�x1; x2�, what we have
effectively done is to remove the effect of varying spatial inten-
sity from the field. We would want to do this when we are less
interested in the varying spatial intensity and more interested in
the relative correlation between points.

One class of fields that are coherent are deterministic fields.
For such fields, the ensemble average is not necessary, and the
function J�x1; x2� is already in product form.

C. Stationarity

Here we briefly touch upon the concept of stationarity, in
particular, second-order stationarity.

Stationary optical fields have mutual intensity functions that
are shift-invariant:

J�x1; x2� � J�x1 − x2�: (24)

This means that the second-order correlation depends only
on the distance between x1 and x2 and not on their absolute
values: If J�x1; x2� is spatially stationary, so is L�x1; x2�.

5. MEASURES OF THE PARTIAL COHERENCE
OF A FIELD

In the previous section we established the two limiting end
points of partial coherence, full incoherence and full coherence,
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and presented definitions. We now propose five scalar measures
for the degree of partial coherence in terms of these correlation
functions. This can be achieved by interpolating some particu-
lar feature of the functions. For instance, we observed the
eigenvalue mass of L�x1; x2� for incoherent fields to be uni-
formly spread, and the eigenvalue mass for a coherent field
to be concentrated at a single point. Thus an appropriate func-
tion of the eigenvalues that interpolates between these two ex-
tremes is a candidate for a such a measure. On the other hand,
the function L�x1; x2� corresponding to an incoherent field is
zero except when x1 � x2, representing maximum concentra-
tion, while the function L�x1; x2� corresponding to a coherent
field is everywhere equal to unity, representing maximum
spread. Again, an appropriate interpolation is a candidate for
a such a measure.

There are multiple ways to create such an interpolation, re-
sulting in multiple candidate definitions. We propose selected
candidate definitions. The definitions we have presented are
not exhaustive, but illustrate the different possibilities. The
numbering of the different definitions presented are in one-
to-one correspondence with the numbering used in [24], where
corresponding definitions were offered for fields of discrete
variables.

In Subsection 4.A, we will consider eigenvalue-distribution-
based measures. Eigenvalue distributions are useful for various
problems of statistical optics, such as the theory of laser reso-
nator modes, and some propagation problems with partially
coherent light ([4], Chapter 5). They can be interpreted as
the strength of various coherent modes. In Subsection 4.B,
we considered mutual intensity function based measures.

The mutual intensity function manifests itself in a variety
of experiments and applications. Perhaps the best known
experiment illustrating the physical meaning of mutual intensity
is Young’s double-pinhole experiment. Here, the intensity at an
observation point depends on the value of the mutual intensity
function at the pinholes. Stellar interferometry, propagation
through free space, transmission through optical systems, image
formation, the Van Cittern–Zernike theorem, and scattering
from deterministic or random media are some applications
illustrating the usefulness of mutual intensity functions.

We defined our measures c 0 such that at first the smallest
value c 0min corresponds to full incoherence or coherence, and
the largest value c 0max corresponds to full coherence or incoher-
ence. We then employed an appropriate map to arrive at the
final measure denoted by c, which takes the value 0 for
incoherent light and takes the value 1 for coherent light.

To ensure that c stays within the interval [0, 1] and due to
the smooth transition it affords, we found an arctangent map of
the form c � 2

π arctan�c 0∕α� to be useful. By adjusting the
value of α, one can obtain a smoother or more abrupt depend-
ence. In what follows we will take α � 1. Other functions, such
as c � �1� α∕c 0�−1 could also be used, but the specific type of
function employed usually does not have a substantial effect.

A. Eigenvalue-Distribution-Based Measures

Here we considered the eigenvalue sequence λk of the function
L�x1; x2� as the basis for defining a scalar measure. We have
seen that light that is nearly incoherent is characterized by very

small eigenvalues with the eigenvalue mass being uniformly
spread over k. In contrast, we saw that coherent light is
characterized by the distribution λk � λ0δkk0 with the eigen-
value mass concentrated at a point. The incoherent limit is
characterized by maximal uniform spread of the eigenvalue
mass, whereas the coherent limit is characterized by maximal
concentration of the eigenvalue mass.

To provide some motivation for our definitions, consider
the eigenvalue distribution normalized to yield a sequence that
adds up to unity: λ1∕

PN
k�1 λk;…; λN∕

PN
k�1 λk. This makes it

possible to view this distribution as if it were a discrete prob-
ability distribution. Thus the reader will observe upon reading
further that Definition 1 can be interpreted as the second
moment of a probability distribution and Definition 3 can
be interpreted as its entropy. In Definition 1, the order in which
the λk are indexed with respect to k makes a big difference.
Shuffling the positions of the λk can change the second
moment considerably. The second moment is a measure of
the spread of the distribution and thus tells us whether the
distribution is more concentrated or more uniformly spread.

In Definition 3, on the other hand, the order in which the λk
are indexed with respect to k makes no difference. The entropy
is not a measure of functional spread but a measure of uniform-
ity among a group of numbers. It again tells us whether the
distribution is concentrated or not, but in a different way.
Finally, Definition 2 does not involve the probability distribu-
tion interpretation. It is inspired by the fact that the sum of the
squares of a non-negative sequence is always less than or equal
to the square of the sum, with equality when only one member
of the sequence is non-zero. Thus the ratio of the sum of the
squares, to the square of the sum, will inform us whether the
eigenvalues are concentrated or not.

As explained in Section 3, L�x1; x2� may have uncountably
many eigenfunctions and thus possess a continuous eigenvalue
spectrum if Eq. (15) is not satisfied. In the definitions discussed
below, we address this case as well. However, the continuous
spectrum counterpart of Definition 1 in [24] does not constitute
a very useful measure and is discussed only for completeness.

Definition 1: Taking Definition 1 in [24] into account, we
propose our first measure as

c 01 � lim
N→∞

XN
n�1

�n − 1�2 λnPN
k�1 λk

: (25)

In Eq. (25), we assumed that the eigenvalues are ordered
(i.e., λ1 ≥ λ2 ≥ … ≥ λn ≥ …). For coherent light, λn is non-
zero only for n � 1 so that c 01 � 0. For incoherent light, we
have

c 01 � lim
N→∞

1

N

XN
n�1

�n − 1�2 � ∞: (26)

Mapping this to between 0 and 1 with an inverse tangent
function of its inverse, we finally obtained

c1 �
2

π
arctan

�
1

c 01

�

� lim
N→∞

2

π
arctan

�XN
n�1

�n − 1�2 λnPN
n�1 λn

�−1
; (27)
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from which we obtained c1 � 0 for incoherent light, and
c1 � 1 for coherent light. This definition exhibits the defect
that, certain slowly decaying eigenvalue sequences may also
have c1 � 0, despite the fact that they do not strictly satisfy
our definition of full incoherence. It does not seem this defect
would have much effect in practice, since such distributions
would usually correspond to effectively incoherent fields.

If L�x1; x2� does not satisfy Eq. (15), then it is likely that it
has an expansion given by Eq. (16). If this is the case, based on
the behavior of the function λ�ν� for the coherent and incoher-
ent limits, we might say that the more the concentration of the
eigenvalue distribution, the more the coherence of the light.
On the other hand, the more uniformly spread the distribution,
the more incoherent the light. Since the variance is a common
measure of the spread and concentration of a function, we
might consider the following measure,

c 01 �
Z

�ν − ν̄�2λ�ν�dν; (28)

where ν̄ � R
νλ�ν�dν. This measure becomes zero for the co-

herent limit and tends to infinity for the incoherent limit.
However, that this measure is less than satisfactory becomes
evident when we consider certain special cases. For instance,
consider the eigenvalue distribution λ�ν� � A rect�ν−ν0Δν ��
A rect�ν�ν0

Δν �, where ν0 and A have relatively large values and
Δν is very small. In this case c 01 will have a large value, but
the eigenvalue distribution is nowhere near the uniform distri-
bution we associate with the incoherent limit. The variance
measures distribution of the mass of a function from its center
of gravity, but does not measure how uniformly this mass is
distributed. For this reason, the variance is a more meaningful
measure of concentration at a point versus uniform spread, for
functions which monotonically decrease away from the center
of gravity. In the discrete counterpart of this definition [24], we
ensured monotonicity by assuming that the eigenvalues are in-
dexed in decreasing order, a common practice with discrete
eigenvalue or singular-value distributions [37]. While the same
should in principle be possible for continuous eigenvalue spec-
trums, this is neither a convenient nor common practice.
Therefore, we do not offer the variance of the eigenvalue
distribution as a measure of partial coherence for fields of
continuous variables.

Definition 2: The second measure we considered is

c2 � lim
N→∞

PN
n�1 λ

2
n�PN

n�1 λn
	
2
: (29)

For light that is very nearly incoherent, the eigenvalues are
very small and uniformly distributed, which implies

c2 � lim
N→∞

1

N
� 0: (30)

Moreover, for the coherent light, we get c2 � λ20∕λ20 � 1.
So, the measure of coherence proposed by Eq. (29) works
in the two extreme cases as desired.

A similar measure has received attention in a number of
earlier works [38–45]. However, we should note that our def-
inition is based on the normalized mutual intensity rather than
its unnormalized version. This will be further discussed in
Definition 3.

On the other hand, if L�x1; x2� does not satisfy Eq. (15) and
has a continuous eigenfunction expansion given by Eq. (16),
we argue that the measure considered in Definition 1 is based
on thinking of the distribution of eigenvalues as a function of
the index ν, with the variance of this distribution essentially
corresponding to a spread over ν. But the distribution of eigen-
values can be alternatively measured without referring to any
indexing variable, but just as the internal spread among a col-
lection of numbers. So we chose the variance of the eigenvalues
instead of the variance of the eigenvalue distribution function,

c 02 �
Z

�λ�ν� − λ̄�2dν �
Z

λ2�ν�dν; (31)

where λ̄ � R
λ�ν�dν∕ R dν � 0 is the mean value of the eigen-

values. The integral
R
λ2�ν�dν evaluates to 0 for the incoherent

limit. As we near the limit of full coherence, the value of this
integral will approach ∞. To map

R
λ2�ν�dν to the interval [0,

1], we chose the arctangent function to obtain

c2 �
2

π
arctan

�Z
λ2�ν�dν

�
: (32)

For the incoherent case c2 � 0 and for the coherent case
c2 � 1, as desired. Intermediate values will be obtained for
general partially coherent fields. When λ�ν� is such thatR
λ2�ν�dν � 1, then c2 � 0.5. We may consider this case to

be the geometric midway between full incoherence and full
coherence.

Definition 3: To define our third measure, similar to the
previous measures, we assumed the eigenvalues are arranged
in descending order (i.e., λ1 ≥ λ2 ≥ … ≥ λn ≥ …). Then, as
our measure of coherence, we considered the entropy of the
random variable having the following discrete probability mass
function, �

λ1PN
n�1 λn

;
λ2PN
n�1 λn

;…;
λNPN
n�1 λn

�
;

where we let N go to infinity. In other words, we normalized
the eigenvalue distribution so that it exhibits the properties of a
probability distribution. Then we inquired whether the con-
cept of entropy, measuring disorder versus maximum order,
might form the basis of a suitable measure. A particular reali-
zation of a nearly incoherent process provides a significant
amount of information, whereas a particular realization of a
nearly coherent process provides a minimal amount of informa-
tion. So we defined our measure to be the entropy of the
random variable defined by this probability distribution:

c 03 � − lim
N→∞

XN
n�1

λnPN
k�1 λk

log
λnPN
k�1 λk

: (33)

For coherent light, we can see that c 03 � 0. For incoherent
light, we have c 03 � limN→∞ log N � ∞. Therefore, we define
c3 as

c3 � − lim
N→∞

2

π
arctan

�XN
n�1

λnPN
k�1 λk

log
λnPN
k�1 λk

�−1

;

(34)

which assumes the values c3 � 0 for incoherent light and
c3 � 1 coherent light. As we have noted in [24], Gamo seems
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to have been the first to propose a definition of the degree of
partial coherence based on entropy [46,47]. The entropy con-
cept is also used similarly in [48,49]. The definition in [46,47]
was based on the eigenvalue distribution of the mutual intensity
without normalization. However, if we do not perform normali-
zation, the incoherent limit cannot be appropriately character-
ized. The approach taken in [24], which relies on normalized
matrices, and the approach taken in this paper, which relied on
normalized functions, solved these issues.

On the other hand, if Eq. (15) is not satisfied by L�x1; x2�,
and L�x1; x2� has an expansion given by Eq. (16) instead of
Eq. (14), we must proceed as follows: Note that the eigenvalue
mass distribution function p�ν� � λ�ν�R

λ�ν 0�dν 0 exhibits the prop-

erties of a probability density function. If p�ν� ≥ 0 is a prob-
ability density function satisfying

R
p�ν�dν � 1, the entropy is

defined as −
R
p�ν� log p�ν�dν. (In continuous contexts, the

term differential entropy is also employed.) Since the distribu-
tion of the eigenvalue mass p�ν� satisfies the same basic proper-
ties as a probability density function, the following definition
naturally asserts itself:

c 03 � −

Z
p�ν� log p�ν�dν

� −

Z
λ�ν�R
λ�ν 0�dν 0 log

�
λ�ν�R
λ�ν 0�dν 0

�
dν: (35)

The base of the logarithm does not matter but may be
chosen as e for concreteness. In the incoherent limit we have
c 03 � ∞ and in the coherent limit we have c 03 � −∞.
Therefore, we define

c3 �
1

π
arctan

�Z
λ�ν�R
λ�ν 0�dν 0 log

�
λ�ν�R
λ�ν 0�dν 0

�
dν� � 1

2
:

(36)

For very nearly incoherent fields for which the eigenvalues
are very small and uniformly distributed we find c3 � 0 and
for the coherent limit for which λ�ν� � λ0δ�ν − ν0� we
find c3 � 1.

It may be interesting to explore the class of functions—and
the optical fields they represent—that satisfy

R
λ2�ν�dν � 1 orR

λ�ν� log λ�ν�dν � 0 subject to
R
λ�ν�dν � 1 and λ�ν� ≥ 0.

Such fields correspond to the geometric midway between fully
incoherent and fully coherent light fields, with respect to
Definitions 2 and 3, respectively. An example of an eigenvalue
distribution satisfying both conditions is λ�ν� � rect�ν�, a
function which is intuitively acceptable as the geometric
midway between maximal uniform spread and maximal con-
centration at a point. An example of a normalized mutual
intensity function having such an eigenvalue distribution is
L�x1; x2� � sinc�x1 − x2�. In fact, radiation from an incoherent
source having intensity I�x� � rect�x∕l� in free space results
in a normalized intensity function L�x1; x2� � sinc l�x1−x2�

λd
([36], Chapter 11.3), where d is the distance between the
source and observation planes, constituting a physical example
for a continuous spectrum of rectangular form.

Before closing this section, we briefly discuss how the differ-
ent measures considered can be compared. One might wonder
whether the measures considered use the range [0, 1] in the

same way. Ideally, one would expect that the fields that one
measure maps, for example, close to 0, should again be mapped
close to 0 by the other measures as well. To this end we will
introduce additional parameters to the measures. For example,
instead of c 01 as given by Eq. (25), one might consider

c 01�β� � lim
N→∞

XN
n�1

�n − 1�2
�

λnPN
n�1 λn

�
β

; (37)

with β ≥ 1. With this definition, it can be shown that c 01�β�
and �c2�3 asymptotically behave the same for the same decay
rate of the sequence λn∕

PN
k�1 λk, when β � 6. Alternatively,

instead of the Shannon entropy giving rise to Eq. (33), one can
make use of the Rényi entropy [50], and define

c 03�γ� �
1

1 − γ
lim
N→∞

log

�XN
n�1

�
λnPN
k�1 λk

�
γ
�
; (38)

with γ ≥ 1. Comparing Eq. (29) with Eq. (38), we observed
that Definition 2 is related to the Rényi entropy approach
for γ � 2 through c 03�2� � − log�c2�. Hence, we see that
the three eigenvalue-based definitions are connected to each
other.

B. Function-Spread-Based Measures

We now focus on the normalized mutual intensity function
L�x1; x2� itself, instead of its eigenvalues. When L�x1; x2� is
zero except when x1 � x2, we have incoherent light. When
L�x1; x2� has unit magnitude everywhere, we have coherent
light. By interpolating between these endpoints, we can define
the measures of degree of partial coherence that follow.

Definition 4: We considered the moment of inertia (the
spatial variance) around the line x1 � x2 in the x1-x2 plane.
Since jL�x1; x2�j � jL�x2; x1�j from Hermitian symmetry,
we proposed the measure of spread:

c 04 � lim
W→∞

RW ∕2
−W ∕2

RW ∕2
−W ∕2 �x1 − x2�2jL�x1; x2�j2dx1dx2RW ∕2

−W ∕2
RW ∕2
−W ∕2 jL�x1; x2�j2dx1dx2

: (39)

For incoherent light, we have c 04 � 0 and for coherent light
for which jL�x1; x2�j � 1 we have c 04 � ∞. Defining

c4 �
2

π
arctan�c 04�; (40)

we obtain a measure that is 1 for the fully coherent case and 0
for the fully incoherent case. If the optical field of interest is
defined only on a finite interval, then instead of using the
arctan function, it is sufficient to divide c 04 by the maximum
value it can attain so that c4 is 1 for the coherent case.

However, a problem with the coherent limit becomes
apparent upon closer inspection. Even when the field is not
fully coherent and jL�x1; x2�j ≠ 1, it is possible for c 04 � ∞
and c4 � 1, if the decay of L�x1; x2� away from the line x1 �
x2 is relatively slow. An alternative approach would be to re-
place the denominator of Eq. (39) with

RR
dx1dx2 instead, lead-

ing to a definition more analogous to the discrete counterpart
of this definition given in [24]. Although in this case it is easy to
see that the value of c 04 for the fully coherent case is always
strictly greater than all other cases, it is still possible for some
of these partially coherent cases to have c 04 � ∞, so that this
approach does not fully solve the problem either.
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Definition 5: Another option is to measure the energy of
L�x1; x2� without paying attention to its spatial distribution.
Recalling that L�x1; x2� ≤ 1 and that L�x; x� � 1, this measure
will be minimum when non-zero values of L�x1; x2� are limited
to the line x1 � x2 (incoherent light) and maximum when the
values of L�x1; x2� are of unit magnitude (corresponding to
coherent light):

c 05 �
ZZ

jL�x1; x2�j2dx1dx2: (41)

A suitable normalization would be

c5 � lim
W→∞

RW ∕2
−W ∕2

RW ∕2
−W ∕2 jL�x1; x2�j2dx1dx2

�RW ∕2
−W ∕2 L�x; x�dx�2

� lim
W→∞

RW ∕2
−W ∕2

RW ∕2
−W ∕2 jL�x1; x2�j2dx1dx2

W 2 : (42)

Combining Eq. (42) with Eq. (17) and Eq. (18), we see that
this definition of measure is not essentially different from
Eq. (29) and Definition 2. Similarly to Definition 2, we
have c5 � 0 for the incoherent light and c5 � 1 for the
coherent light.

6. FOURIER-DOMAIN ANALYSIS AND DUALITY

In an earlier section, the definitions of incoherence and coher-
ence were expressed in terms of autocorrelations of the field
f �x�. Now we express equivalent conditions for incoherence
and coherence in the spectral domain.

Denoting the Fourier transform of a function f �x� by
f̃ �ν� � R

f �x� exp�−i2πνx�dx, we could express the mutual
intensity J f̃ of the Fourier transform as

J f̃ �ν1; ν2� �

�Z

f �x1�e−i2πν1x1dx1
�

×
�Z

f �x2�e−i2πν2x2dx2
���

�
ZZ

e−i2πν1x1Jf �x1; x2�ei2πν2x2dx1dx2: (43)

We see that the mutual intensity of the Fourier transform
can be expressed as the double Fourier transform of the mutual
intensity of the original function.

A mutual intensity function Jf �x1; x2� that can be expressed
in the form Jf �x1 − x2� is a second-order stationary random
process. (If the function Jf �x1 − x2� represented the integral
kernel of a linear system, the functional dependence on x1 −
x2 would correspond to a space-invariant system.) The complex
exponentials are known to be the eigenfunctions of kernel func-
tions that can be expressed as functions of the difference x1 − x2.
Therefore the double Fourier transform will “diagonalize”
such functions, in the sense of the following equation:

J f̃ �ν1; ν2� �
ZZ

e−i2πν1x1Jf �x1 − x2�ei2πν2x2dx1dx2
� ΛJ�ν1�δ�ν1 − ν2�: (44)

To put it differently, a second-order stationary field is rep-
resented by a function of x1 − x2 in the spatial coordinate do-
main but by an impulsive function in the spectral domain.

Conversely, if Jf �x1; x2� is impulsive (non-zero only when
x1 � x2), we have a field that is incoherent, and J f̃ �ν1; ν2� will
exhibit the form J f̃ �ν1 − ν2�. That is, a field that is incoherent
is represented by an impulsive function in the spatial coordinate
domain but by a function of ν1 − ν2 in the spectral domain.
In other words, stationarity and incoherence are Fourier
conjugates or Fourier duals.

If it is the case that Jf �x1; x2� is expressible in product form
(separability), then it is possible to show that J f̃ �ν1; ν2� is also
expressible in product form. To put it differently, coherent
fields are represented by separable functions in both the spatial
coordinate and spectral domains; coherence is self-dual.

7. CONCLUSION

We presented the continuous space-variable version of the
linear algebraic theory of partial coherence presented for dis-
crete variables in [24]. We believe this approach facilitates
the use of linear algebraic techniques and makes it possible
to precisely define the concepts of incoherence and coherence
in a mathematical way. Such a formulation may be beneficial in
optical signal processing where the light is of a partially coher-
ent nature.

Several measures for the scalar degree of partial coherence of
a field were proposed. These measures are equal to unity for full
coherence and equal to zero for full incoherence. We first con-
sidered eigenvalue-distribution-based measures for which the
coherent limit corresponds to only one non-zero eigenvalue
and the incoherent limit corresponds to a uniform eigenvalue
distribution. We saw that measures of the width of the eigen-
value distribution function are not always satisfactory in the
incoherent limit, since increasing width does not always
coincide with increasing uniformity. For this reason, measures
such as Definitions 2 and 3, which are based on the distribution
of eigenvalues without indexing them with respect to some
variable, seem more attractive.

We can make a similar observation for function spread-
based measures for which the incoherent limit corresponds
to a normalized mutual intensity that is non-zero only along
the diagonal and the coherent limit corresponds to a normal-
ized mutual intensity with unit magnitude everywhere. Since
measures of width of the normalized mutual intensity do
not always serve as satisfactory measures of uniformity in
the coherent limit, measures such as Definition 5, which
measure how close the normalized correlation values are to
unity, are more attractive. We also saw that Definition 5
was essentially similar to Definition 2.

In [24] we discussed Young’s experiment to relate the
mathematical definitions to our physical understanding of co-
herence. We also discussed the use of correlation versus covari-
ance functions. These discussions are directly applicable to the
continuous formulation discussed in this paper and thus have
not been repeated.

APPENDIX A: ALTERNATIVE DEFINITIONS OF
FULL COHERENCE

Here we show that the following are equivalent, so that any one
of them can be taken as the definition of full coherence:

2122 Vol. 33, No. 11 / November 2016 / Journal of the Optical Society of America A Research Article



(i) J�x1; x2� is in self-product (or product) form.
(ii) L�x1; x2� is in self-product (or product) form.
(iii) For every x1 and x2, jL�x1; x2�j � 1.
(iv) Eigenvalue sequence λk of J�x1; x2� is impulsive:
λk � λ0δkk0 . If Eq. (8) holds, then λ�ν� � λ0δ�ν − ν0�.
(v) Eigenvalue sequence λk of L�x1; x2� is impulsive:

λk � λ0δkk0 . If Eq. (16) holds, then λ�ν� � λ0δ�ν − ν0�.
If J�x1; x2� is replaced by K �x1; x2� and L�x1; x2� is replaced

by M �x1; x2�, the above equivalences still hold, and exactly the
same proofs below are applicable.

Proof of (i) ⇔ (iv): That (iv) implies (i) is easily seen from
the spectral expansion given in Eq. 8 for the continuous spec-
trum case and Eq. 7 for the discrete spectrum case. To show
that (i) implies (iv), let J�x1; x2� � u�x1�u��x2� for some u�x�.
Substituting this in the eigenvalue equation (3) we obtainZ

u�x1�u��x2�uk�x2�dx2 � λkuk�x1� (A1)

and

u�x1�
Z

u��x2�uk�x2�dx2 � λkuk�x1� (A2)

for all k. If λk ≠ 0 for some k, then
R
u��x2�uk�x2�dx2 ≠ 0 fol-

lows necessarily. This implies that u�x1� ∝ uk�x1� for all k for
which λk ≠ 0. Since u�x1� cannot be proportional to more than
one member of an orthonormal set, it follows that λk ≠ 0 is
valid for only one value of k. Now let k0 be the only number
for which λk is nonzero. Since u�x1� ∝ uk0�x1�, we have
u�x1� � Auk0�x1� for some possibly complex number A.
Then from Eq. (A2) we obtain

Auk0�x1�A�
Z

u�k0�x2�uk0�x2�dx2 � λk0uk0�x1� (A3)

and

jAj2uk0�x1� � λk0uk0�x1�: (A4)

Hence λk0 � jAj2 and λk � 0 otherwise. In other words,
λk � λ0δkk0 , where λ0 � jAj2. The proof for the case when
Eq. (8) holds is similar.

Proof of (ii)⇔ (v): Follows from the proof of (i)⇔ (iv) in an
identical manner.

Proof of (i) ⇒ (ii): Given J�x1; x2� � u�x1�u��x2� we can
write

L�x1; x2� �
J�x1; x2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J�x1; x1�J�x2; x2�
p

�
�

u�x1�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J�x1; x1�

p
��

u��x2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J�x2; x2�

p
�

(A5)

so that L�x1; x2� is also separable.
Proof of (ii) ⇒ (iii): Since jL�x; x�j � 1 holds for all x, we

have u�x�u��x� � ju�x�j2 � 1 for all x, where u�x� is the
function appearing in self product form. Then, jL�x1; x2�j �
ju�x1�jju��x2�j � 1 for all x1 and x2.

Proof of (iii) ⇒ (i): It is a well-known fact that [32] if two
random variables are fully correlated, then one must be κ times
the other, where κ is some complex number. If we choose some
point x0, then f �x0� will be a random variable. Likewise, f �x�
can be considered a random variable parameterized by x.

Therefore, if f �x0� and f �x� are fully correlated, then there
is a function κ�x� such that f �x� � κ�x�f �x0�. Thus,

J�x1; x2� � hf �x1�f ��x2�i
� hκ�x1�f �x0�κ��x2�f ��x0�i
� J�x0; x0�κ�x1�κ��x2�
� u�x1�u��x2�;

where u�x� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J�x0; x0�

p
κ�x�.

The above proofs cyclically complete the proof of the equiv-
alence of all five items stated at the beginning of this appendix.
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