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ABSTRACT
In this paper, we present a quasi-convex optimisation method to minimise an upper bound of the
dwell time for stability of switched delay systems. Piecewise Lyapunov–Krasovskii functionals are
introduced and the upper bound for the derivative of Lyapunov functionals is estimated by free-
weighting matrices method to investigate non-switching stability of each candidate subsystems.
Then, a sufficient condition for the dwell time is derived to guarantee the asymptotic stability of the
switched delay system. Once these conditions are represented by a set of linear matrix inequalities ,
dwell time optimisation problem can be formulated as a standard quasi-convex optimisation prob-
lem. Numerical examples are given to illustrate the improvements over previously obtained dwell
time bounds. Using the results obtained in the stability case, we present a nonlinear minimisation
algorithm to synthesise the dwell time minimiser controllers. The algorithm solves the problemwith
successive linearisation of nonlinear conditions.

1. Introduction

A switched system is a dynamical system that includes a
set of subsystems and a discrete switching event between
them.General behaviour of a switched system is governed
by following differential equation:

ẋ(t ) = fσ (t )(x(t )), ∀t > t0,

where σ denotes the switching signal which is a piecewise
constant map from time to an index set representing sub-
systems. See the survey of Lin and Antsaklis (2009) for a
review of the recent results and further references.

The stability analysis encountered in switched systems
can be classified into three categories (Mahmoud, 2010).
The first one is to find common Lyapunov functions so
that the switched systems are stable under any arbitrary
switching signal (Fainshil, Margaliot, & Chigansky, 2009;
Hou, Fu, & Duan, 2013; Shorten, Narendra, & Mason,
2003). The second one is to construct certain switch-
ing signals that make the switched system asymptoti-
cally stable (Liberzon & Morse, 1999). The third cate-
gory is the slow switching strategies such as dwell time
stability or average dwell time stability for which the sys-
tem is asymptotically stable (Geromel & Colaneri, 2006;
Hespanha, 2004; Hespanha & Morse, 1999; Mitra &
Liberzon, 2004; Zhang, Han, Zhu, & Huang, 2013). The
class of switching signals can be restricted to signals with
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the property that the interval between any consecutive
switching times is not less than a value called the dwell
time. The switched delay system is asymptotically stable
if all of the candidate subsystems are asymptotically sta-
ble and the dwell time is large enough (Morse, 1996).
Most switched systems do not share a common Lyapunov
function (Chen & Zheng, 2010). Furthermore, having a
common Lyapunov function is a sufficient condition for
the stability under arbitrary switching, so it can be found
conservative (Lin & Antsaklis, 2009).

In this paper, we present some results on the dwell
time stability analysis and stabilisation of the switched
delay systems. A dwell time is observed in many switch-
ing system applications. The time intervals between the
change in the road conditions among dry, wet and dirt for
a car on the road can be considered as an example (Aller-
hand & Shaked, 2011). Also, the slow switching strategies
with dwell time can avoid chattering problems which can
damage the physical systems (Ishii & Francis, 2001). As a
result, the stability analysis and stabilisation of switched
systems with dwell time are increasingly popular.

The literature is aboundedwith various approaches for
the stability analysis of time-delay systems, one can refer
to Gu, Kharitonov, and Chen (2003) for a review on the
topic. Common methods to deal with delay-dependent
stability problems are model transformations. In this
method, point wise delay system transferred into a dis-
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tributed delay system. Stability of the transformed system
is a sufficient condition for the stability of the original sys-
tem.Hence, stability analysis withmodel transformations
leads to a sort of conservatism since analysis operates on
the transformed system instead of the original system (Gu
et al., 2003). A less conservative approach to stability anal-
ysis is the free-weightingmatricesmethodwhich does not
include any model transformation of the original system
(He, Wang, Xie, & Lin, 2007; Mahmoud, 2010; Wu, He,
& She, 2010). In this paper, we present some results for
switched delay systems with pointwise delays.

There are recent results on dwell time stability of the
switched delay systems. In Sun, Zhao, and Hill (2006)
and Li, Gao, Agarwal, and Kaynak (2013), stability condi-
tions are presented for a given average dwell time. In those
papers, the conditions involve exponential and bilinear
terms when the dwell time is considered as a free param-
eter. Hence, the minimisation of the dwell time and syn-
thesising the dwell time minimiser controllers with those
methods are not tractable. There are some optimisation-
based methods to minimise the upper bound for the
dwell time (Çalışkan, Özbay, & Niculescu, 2013; Yan &
Özbay, 2008). In Çalışkan et al. (2013), the calculation
of dwell time is formulated as a semi-definite program-
ming (SDP) in terms of linear matrix inequalities (LMIs).
Piecewise Lyapunov–Krasovskii functionals are derived
by model transformation methods. The upper bound of
the derivative of the Lyapunov function is minimised
which ends up with a sub-optimal solution to the dwell
time minimisation problem. In Yan, Özbay, and Sansal
(2011), parameter-varying systems with time-delays are
stabilised by switching control. The resulting dwell time
is minimised with iterative search methods. The present
paper proposes a quasi-convex optimisation approach to
directly minimise the dwell time and converges to global
minimum of represented upper bound of the dwell time.
To reduce conservatism due to model transformations,
we derive the stability conditions by using free-weighting
matrices.

The notation to be used in the paper is standard: R

(R+, R+
0 ) stands for the set of real numbers (positive real

numbers, non-negative real numbers), C is used to denote
the set of differentiable functions, Z+ symbolises the set
of positive integers. The identity matrices are denoted
by I. We use X�0 (�, ≺, �0) to denote a positive def-
inite (positive-semidefinite, negative definite, negative-
semidefinite) matrix. σmax[X] and σmin[X] denote the
maximum and minimum singular values of X, respec-
tively. The asterisk symbol (∗) denotes complex conju-
gate transpose of a matrix and xt denotes the transla-
tion operator acting on the trajectory such as xt(θ) =
x(t + θ) for some non-zero interval θ � [−τ , 0]. The

operator diag[X1, X2,… , Xn] denotes a block diagonal
matrix whose elements on the main block diagonal are
X1, X2,… , Xn. The norm ‖ · ‖ is defined as the Eucledian
norm for a vector in R

n and the norm on C is defined as
follows:

| f |[a,b] = max

{
sup

t∈[a,b]
‖ f (t )‖, sup

t∈[a,b]
‖ ḟ (t )‖

}
.

Rest of the paper is organised as follows. In Section 2,
preliminaries and problem definition are introduced. In
Section 3, dwell time stability condition is given. In
Section 4, quasi-convex optimisation of the upper bound
of the dwell time and some numerical examples are pro-
posed. In Section 5, dwell time minimising controller
synthesis is presented with some numerical examples to
illustrate effectiveness of the proposed algorithm. Con-
clusions are summarised in Section 6.

2. Preliminaries and problem definition

Consider a class of switched delay system given by

�σ(t ) :

⎧⎨
⎩
ẋ(t ) = Aσ (t )x(t )

+ Āσ (t )x(t − rσ (t )(t )), t ≥ 0
x(θ ) = ϕ(θ ), ∀θ ∈ [−τmax, 0]

(1)
where x(t ) ∈ R

n is the pseudo-state and σ (t) is the piece-
wise switching signal such that σ (t ) : R

+ → P , P :=
{1, 2, ...,m} is an index set, m ∈ Z

+ is the number of
subsystems and initial condition belongs to Banach space
of continuous functions such that ϕ(·) ∈ C. Time-delay,
rσ (t)(t), is a time-varying differentiable function that sat-
isfies

0 ≤ rσ (t )(t ) ≤ τσ (t ), (2)

|ṙσ (t )(t )| ≤ dσ (t ), (3)

where τσ (t), dσ (t) > 0 are piecewise constants. We intro-
duce the quadropule

�i :=
(
Ai, Āi, τi, di

) ∈ R
n×n × R

n×n × R × R

to describe the ith candidate subsystem of Equation (1)
and τmax = maxi∈P τi.

Definition 2.1: A switched delay system is stable if there
exists a function β of classK such that

‖x(t )‖ ≤ β(|x|[t0−τmax,t0])
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along every solution of Equation (1). Furthermore, a
switched delay system is asymptotically stable when it is
stable and lim

t→+∞ x(t ) = 0.

Lemma 2.1: (See Gu et al., 2003). Consider the non-
switched linear subsystem �i of the system (1) for an i ∈
P . Suppose ui, vi, wi : R

+
0 → R

+
0 are continuous, non-

decreasing functions satisfying ui(0) = vi(0) = 0, wi(s) >

0 for s > 0. If there exists a continuous functional V, such
that

ui(‖x(t )‖) ≤ Vi(t, xt ) ≤ vi(|x|[t−τi,t]), ∀t ≥ t0 (4)
V̇i(t, xt ) ≤ −wi(‖x(t )‖), ∀t ≥ t0 (5)

then the solution x = 0 of the subsystem �i is uniformly
asymptotically stable.

Let us construct the following piecewise Lyapunov
function:

Vi(t, xt ) := xT (t )Pix(t ) +
∫ t

t−ri(t )
xT (s)Qix(s)ds

+
∫ 0

−τi

∫ t

t+θ

ẋT (s)Ziẋ(s)dsdθ, ∀i ∈ P (6)

Lemma 2.2: (SeeWu, He, & She, 2010). Consider the non-
switched linear subsystem �i for an i ∈ P of the switched
system (1) with varying delays, ri(t). Given scalar τ i > 0
and di > 0 for which both Equations (2) and (3) hold, the
ith subsystem is asymptotically stable if there exist symmet-
ric matrices Pi�0, Qi�0, Zi�0, and

Xi :=
[
X11i X12i
∗ X22i

]
� 0, (7)

and any appropriately dimensioned matrices N1i and N2i
such that the following LMIs hold:

φi :=
⎡
⎣φ11i φ12i τiAT

i Zi

∗ φ22i τiĀT
i Zi

∗ ∗ −τiZi

⎤
⎦ ≺ 0, (8)

ψi :=
⎡
⎣X11i X12i N1i

∗ X22i N2i
∗ ∗ Zi

⎤
⎦ � 0, (9)

where

φ11i = PiAi + AT
i Pi + N1i + NT

1i + Qi + τiX11i,

φ12i = PiĀi − N1i + NT
2i + τiX12i,

φ22i = −N2i − NT
2i − (1 − di)Qi + τiX22i.

3. Main results

The following proposition is amodified version of a result
obtained in Çalışkan et al. (2013). In the corresponding
proposition, the time T∗ is calculated as the time instant
after which norm of the states does not exceed the pre-
defined parameter ρ for the non-switched case. Further-
more, after the dwell timeT∗ + τmax the norm of the state
functional does not exceed ρ. Note that the norm of the
state functional is computed as |x|[t−τmax,t]. The time T∗ is
related to the upper bounds defined in Lemma 2.1.

Proposition 3.1: For any non-switching linear subsystem
�i satisfying Lemma 2.1 with lim

s→∞ ui(s) → ∞, assume
there exists a non-decreasing function udi such that

udi (‖ẋ(t )‖) ≤ Vi(t, xt ).

For an arbitrary ρ, 0 < ρ < δ2, |x|[t0−τi,t0] ≤ δ1 implies

|x|[t−τmax,t] ≤ ρ, ∀t > t0 + τmax + Ti(δ1, ρ)

where vi and wi are defined as in Lemma 2.1, u(δ2)= v(δ1)
and

Ti(δ1, ρ) = vi(δ1)

wi(ρ)
.

Proof: Let T∗ > 0 and let ‖x(t1)‖ > ρ for a time instant
t1 > t0 + T∗. Functionwi is non-decreasing by definition,
as a result infρ<s<δ2 wi(s) = wi(ρ). Since the subsystem
�i is stable and Vi is a Lyapunov–Krasovskii functional,
from Lemma 2.1, we have the following:

V̇i(t, xt ) ≤ −wi(ρ), t0 ≤ t ≤ t1.

This implies

Vi(t, xt ) ≤ Vi(t0, x0) − (t − t0)wi(ρ)

≤ vi(δ1) − (t − t0)wi(ρ).

Let T∗ > vi(δ1)/wi(ρ). Then for every t > t0 + T∗, we
haveVi(t, xt)� 0. However, we assume that there is a time
instant t1 > t0 + T∗ such that ‖x(t1)‖ > ρ. This implies
that

Vi(t1, xt1 ) ≥ ui(‖x(t1)‖) > ui(ρ) > 0

This is a contradiction. Therefore, time instant t1 cannot
exist and this implies

‖x(t )‖ ≤ ρ, ∀t > t0 + vi(δ1)

wi(ρ)
.
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Similarly, assuming there is a time instant t1 > t0 + T∗
such that ‖ẋ(t1)‖ ≥ ρ

Vi(t1, xt1 ) ≥ udi (‖ẋ(t1)‖) > udi (ρ) > 0

which is also a contradiction. Hence,

‖x(t )‖ < ρ, ‖ẋ(t )‖ < ρ, ∀t > t0 + T∗

If we wait for a period of maximum time-delay such that
t > t0 + T∗ + τmax , the inequality |x(t )|[t−τmax,t] ≤ ρ

holds, which concludes the proof. �

Now, some specific upper and lower bounds for the
Lyapunov function (6) can be given as vi(s) � μis2 with

μi := σmax [Pi] + τ 2
i σmax [Qi] + 1

2
τ 2
i σmax [Zi] (10)

and

ui(s) = σmin [Pi] s2, (11)

respectively. Another lower bound of the Lyapunov func-
tion with respect to norm of ẋ(t ) can be defined as

udi (s) :=
1
2
τ 2
i σmin [Zi] s2

where udi (‖ẋ(t )‖) ≤ Vi(t, xt ).
The upper bounds vi(s) can be calculated via LMI con-

ditions defined in Lemma 2.2 due to Equation (10). In
order to formulate the upper bounds of the derivative of
the Lyapunov functions wi(s) as an LMI feasibility prob-
lem, we need a new result, stated as Proposition 3.2.
Remark 3.1: In the proof of Proposition 3.2, an inequality
from the proof of Lemma 2.2 in Wu et al. (2010) will be
used, specifically:

V̇i(t, xt ) ≤ ηT
1 (t )
iη1(t ) −

t∫
t−ri(t )

ηT
2 (t, s)ψiη2(t, s)ds

(12)
where ψ i is defined in Equation (9) and

η2(t, s) = [
xT (t ), xT (t − ri(t )), ẋT (s)

]T

i =

[
φ11i + τiAT

i ZiAi φ12i + τiAT
i ZiĀi

∗ φ22i + τiĀT
i ZiĀi

]
.

Note that Equation (8) is the Schur complement of
i. For
more information about the proof, we refer to Wu et al.
(2010).
Proposition 3.2: Consider the system (1)with each�i sat-
isfying Lemma 2.2, if there exist matrices WT

i = Wi � 0

such that following LMIs hold:

φ̄i :=
⎡
⎣φ11i +Wi φ12i τiAT

i Zi

φ22i τiĀT
i Zi

∗ −τiZi

⎤
⎦ ≺ 0, ∀i ∈ P

(13)
then V̇i(t, xt ) ≤ −xT (t )Wix(t ) for all i ∈ P .

Proof: Consider the inequality (12). Since ψ i�0, we
know that V̇i(t, xt ) ≤ ηT

1 (t )
iη1(t ). Bounding this
inequality,

ηT
1 (t )
iη1(t ) ≤ −xT (t )Wix(t )

yields ηT
1 (t )Diη1(t ) ≤ 0 where

Di :=
[

φ11i +Wi + τiAT
i ZiAi φ12i + τiAT

i ZiĀi

φ22i + τiĀT
i ZiĀi

]
.

Since φ̄i is the Schur complement of Di, if Equation
(13) holds, then V̇i(t, xt ) ≤ −xT (t )Wix(t ). �

After defining a new variable

λi := σmin [Wi] , (14)

we can select the upper bound function for the derivative
of the Lyapunov function as wi(s) = λis2.

Assume that the Lemma 2.1 is satisfied for the system
(1). There exists a δ2 > δ1 > 0 such that u(δ2) = v(δ1).
For such δ2, Lemma 2.1 implies that ‖x(t)‖ � δ2 for all
t > t0 if |x|[t0−τi,t0] ≤ δ1. Hence, for u(s) and v(s) defined
in Equations (10) and (11), following inequality holds:

‖x(t )‖ ≤ β|x|[t0−τi,t0], ∀i ∈ P (15)

where

β = max
i∈P

√
μi

σmin [Pi]
.

Consider the kth switching instant tk. The dwell time
τD is defined as the time instant after which the norm
of the state functionals for any tk > tk − 1 + τD does
not exceed the norm of the state functional at time tk − 1.
Hence, ρ in Proposition 3.1 is defined as a fraction of the
norm of the state functional at the switching instant tk − 1.
As a result, the dwell time defined in this paper should
be strictly greater than the maximum of all the possible
delays. The fraction is a pre-defined number α � (0, 1).

Theorem 3.1: Consider the switched delay system
described in Equation (1). Assume all of the candidate
subsystems satisfy Lemma 2.2. Then, the switched delay
system is asymptotically stable for all switching signals
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satisfying dwell time requirement τD

τD = 1
α2 max

i∈P
μi

λi
+ τmax, for any α ∈ (0, 1) (16)

with μi and λi being defined in Equations (10) and (14),
respectively.

Proof: Let us choose ρ = αδk − 1 where δk denotes norm
of the state at the kth switching instant such that δk =
|x|[tk−τmax, tk]. Let us restrict ourselves to switching signals
to signals for which the time interval between two con-
secutive switching instants is larger than dwell time such
that tk − tk − 1 > τD. Introducing this dwell time as

τD = max
i∈P

Ti(δk−1, αδk−1) + τmax,

leads us to an inequality from Proposition 3.1 as

|x|[tk−τmax,tk] ≤ α|x|[tk−1−τmax,tk−1], ∀tk > tk−1 + τD,

(17)
where

Ti(δk−1, αδk−1) = vi(δk−1)

wi(αδk−1)
= μi

α2λi
.

From Equations (15) and (17),

‖x(t )‖ ≤ β|x|[tk−τmax,tk]

≤ βα|x|[tk−1−τmax,tk−1]

...
≤ βαk|x|[t0−τmax,t0]

≤ βα|x|[t0−τmax,t0], ∀α ∈ (0, 1) ,

which is satisfying the stability condition described in
Definition 2.1. �
Remark 3.2: The parameter α is the ratio of the norms of
the state functionals at the consecutive switching instants
as in Equation (17). Hence, it can be regarded as a mea-
sure of the decay rate. This parameter quantifies a trade-
off between the dwell time and the decay rate, i.e. the
larger α, the smaller dwell time but the slower decay rate
(it should be strictly less than 1 for stability of the switched
system).

4. Minimum dwell time via quasi-convex
optimisation

In order to minimise the dwell time in Equation (16), we
can define the optimisation problem with a cost function
f (μi, λi) := maxi∈P μi/λi for a given α. This is a quasi-
convex function since it is the composition of a convex

function with a nondecreasing function (Bullo & Liber-
zon, 2006). It is known that an optimisation problemwith
a quasi-convex cost function and convex constraints can
be solved by iterative methods such as bisection algo-
rithm (Boyd & Vandenberghe, 2004).

We define a new free variable t to bound the cost func-
tion:

μi

λi
≤ t, ∀i ∈ P (18)

The parametersμi and λi are related with the eigenvalues
of Pi, Qi, Zi and Wi as in Equations (10) and (14). We
define pi, qi and zi to define maximum eigenvalues of Pi,
Qi and Zi, respectively. So, the inequality (18) can be re-
written as pi + τiqi + 1

2τ
2
i zi − tλi < 0.

With respect to the free parameters Pi,Qi, Zi,Wi, X11i,
X12i, X22i, N1i, N2i pi, qi, zi, wi, tu, the upper bound of the
dwell time is minimised via following optimisation prob-
lem:

minimise t (19)
subject to diag [Pi,Qi,Zi,Wi,Xi] 
 0, ∀i ∈ P

diag [Pi,Qi,Zi, −Wi]
≺ diag

[
piI, qiI, ziI, −λiI

]
, ∀i ∈ P

ψi � 0, φ̄i ≺ 0, ∀i ∈ P
pi + τiqi + 1

2
τ 2
i zi − tλi < 0, ∀i ∈ P

where Xi, ψ i and φ̄i are defined in Equations (7), (9)
and (13), respectively. Then, the dwell time can be cho-
sen as τD = αt + τmax for any α � (0, 1). However, the
optimisation problem involves a bilinear matrix inequal-
ity when t is considered as a free parameter.

Searching for minimum t with bisection algorithm
generates a sequence of linear SDP feasibility problems
which can easily be solved by SeDuMi Sturm (1999).

In this section, the examples are taken from published
papers for comparison purposes. Examples 4.1–4.3 can be
found in Çalışkan et al. (2013), Yan andÖzbay (2008) and
Chen and Zheng (2010), respectively.

Example 4.1: Let �1 and �2 be

A1 =
[−2 0

0 −0.9

]
, Ā1 =

[ −1 0
−0.5 −1

]
,

τ1 = 0.3s, d1 = 0,

A2 =
[−1 0.5

0 −1

]
, Ā2 =

[−1 0
0.1 −1

]
,

τ2 = 0.6s, d2 = 0.
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Figure . Dwell time results for different delay values of the switched delay system described in the Example . where delays are fixed
such that d = d =  with upper bounds τ  = τ and τ  = τ .

Table . Dwell time for different τ i and di values of Example
., α = ..

τ  τ  d d τD

. s . s  s  s . s
. s . s . s . s . s
. s . s  s  s . s
. s . s . s . s . s
. s . s . s . s . s
. s . s  s  s . s
. s . s . s . s . s
. s . s . s . s . s

Table . Dwell time for different τ i and di values of Example
., α = ..

τ  τ  d d τD

. s . s  s  s . s
. s . s . s . s . s
. s . s . s . s . s
. s . s  s  s . s
. s . s  s  s . s
. s . s . s . s . s
. s . s . s . s . s
. s . s . s . s . s

Dwell time results for different delay values for this
example can be seen in Figure 1. Corresponding mini-
mum dwell times for different τ i and di values are illus-
trated in Table 1.

Example 4.2: Let �1 and �2 be

A1 =
[−1.799 −0.814

0.2 −0.714

]
, Ā1 =

[ −1 0
−0.45 −1

]
,

τ1 = 0.155s, d1 = 0.

A2 =
[−1.853 −0.093

−0.853 −1.1593

]
, Ā2 =

[ −1 0
0.05 −1

]
,

τ2 = 0.2s, d2 = 0.

Corresponding minimum dwell times for different τ i
and di values are illustrated in Table 2. Note that second
subsystem of Example 4.2 is unstable for d2 > 0.905. As d2

Table . Dwell time for α = ..

Example   

Chen and Zheng () – – . s
Yan and Özbay () . s – –
Çalışkan et al. () . s . s –
Present work . s . s . s

coming closer to the stability limits, dwell time increases
dramatically, that sits in shaded row of Table 2.

Example 4.3: This example is the Case 3 of Example 4.1
from the paper (Chen & Zheng, 2010). Let �1 be

A1 =
[

0 1
−10 −1

]
, Ā1 = 0.9 ·

[
0.1 0

−0.01 0.05

]
,

τ1 = 1.82, d1 = 0,

A2 =
[

0 1
−0.1 −0.5

]
, Ā2 = 0.7 ·

[
0.02 0

−0.01 0.02

]
,

τ2 = 1.82, d2 = 0,

Comparison of present paper with previous works for
Examples 4.1–4.3 can be seen in Table 3.

Example 1.1: This example is a slighlty modified version
of Example 4.1 of Sun and Ge (2011) with a = 50, where
a is a parameter used in corresponding example. In the
example, system is not guaranteed stable under arbitrary
switching.

Let the subsystems be:

A1 =
[−0.1 1.1

−0.9 −1

]
, Ā1 =

[
0.05 −0.1
−0.1 0

]
,

τ1 = 0.01, d1 = 0.2

A2 =
[ −0.1 1

−150 −50

]
, Ā2 =

[
0.05 0
−1 −1

]
,

τ2 = 0.05, d2 = 0.1.

Resulting dwell time is τD = 1.698 with T∗ = 1.648.
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5. Dwell timeminimising controller synthesis

Consider a class of switched delay systems given by

�̃σ (t ) :

⎧⎪⎪⎨
⎪⎪⎩
ẋ(t ) = Aσ (t )x(t )

+ Āσ (t )x(t − rσ (t )(t ))
+ Bσ (t )u(t ), t ≥ 0

x(θ ) = ϕ(θ ), ∀θ ∈ [−τmax, 0]
(20)

We introduce the quintet

�̃i :=
(
Ai, Āi,Bi, τi, di

) ∈ R
n×n × R

n×n × R
n×m × R × R

to describe the ith candidate subsystem of Equation (20)
and τmax = maxi∈P τi.

Lemma 5.1: (See Wu et al., 2010). Consider any non-
switching linear subsystem �̃i of the switched delay system
(20) with a delay, ri(t). For given scalar τ i and di which
both Equations (2) and (3) hold, if there exist matrices Li >
0, Ti � 0, Ri > 0, and

Yi :=
[
Y11i Y12i
∗ Y22i

]
� 0,

and any appropriately dimensioned matrices M1i, M2i and
Vi such that the following matrix inequalities hold:

�i =
⎡
⎣�11i �12i τi(LiAT

i +VT
i BT

i )

∗ �22i τiLiĀT
i

∗ ∗ −τiRi

⎤
⎦ ≺ 0, (21)

�i =
⎡
⎣Y11i Y12i M1i

∗ Y22i M2i
∗ ∗ LiR−1

i Li

⎤
⎦ � 0, (22)

where

�11i = LiAT
i + AiLi + BiVi +VT

i BT
i + M1i

+ MT
1i + Ti + τiY11i

�12i = ĀiLi − M1i + MT
2i + τiY12i

�22i = −M2 − MT
2 − (1 − di)Ti + τiY22i

then the subsystem �i can be stabilised by control law
u(t) = Kix(t), and the controller gain is Ki = ViL−1

i .

Proof: After applying memoryless state-feedback con-
troller to closed-loop system

ẋ(t ) = (Ai + BiKi) x(t ) + Āix(t − ri(t )),

let us replace the Ai with Ai + BiKi, pre- and post-
multiply (8) by diag

[
P−1
i , P−1

i ,Z−1
i

]
, pre- and post-

multiply (9) by diag
[
P−1
i , P−1

i , P−1
i

]
, and make the fol-

lowing change of variables:

Li := P−1
i , Ti := P−1

i QiP−1
i , Ri := Z−1

i (23)
M1i := P−1

i N1iP−1
i , M2i := P−1

i N2iP−1
i , Vi = KiP−1

i

Yi := diag
[
P−1
i , P−1

i
] · Xi · diag

[
P−1
i , P−1

i
]

These operations end up with Equations (21) and (22)
which complete the proof. �

Due to the term LiR−1
i Li, condition (22) in Lemma 5.1

is not an LMI. In order to handle this term, let us define
a new variable, Si, for which

LiR−1
i Li � Si, (24)

and replace Equation (22) with

�̄i :=
⎡
⎣Y11i Y12i M1i

∗ Y22 M2i
∗ ∗ Si

⎤
⎦ � 0. (25)

Inequality (24) is equivalent to L−1RL−1�S−1, which the
Schur complement allows us to write as

[
S−1
i L−1

i
∗ R−1

i

]
� 0. (26)

We introduce new variables

Ji = L−1
i , Ui = S−1

i , Hi = R−1
i (27)

so that we can re-write the condition (26) as[
Ui Ji
∗ Hi

]
� 0. (28)

This lifting provides us to use LMIs (28) and (25) instead
of (22) in order to make the condition LMI.

Proposition 5.1: Consider the system (20) with each �̃i
satisfying Lemma 5.1, if there exists a matrixWi = WT

i �
0 such that following LMIs hold:

⎡
⎣�11i + LiWiLi �12i τi(LiAT

i +VT
i BT

i )

∗ �22i τiLiĀT
i

∗ ∗ −τiRi

⎤
⎦ ≺ 0,

∀i ∈ P (29)

then V̇i(t, xt ) ≤ −xT (t )Wix(t ) for all i ∈ P .
Proof: Let us pre- and post-multiply the LMI (13) in
Proposition 3.2 by diag

[
P−1
i , P−1

i , P−1
i

]
and make the

change of variables defined in Equation (23). �
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Similar to the condition in Lemma 5.1, Equation (29)
is also not an LMI and we handle this term with the same
procedure. By defining the new variablesCi andOi, where
Ci − LiWiLi�0, whose Schur complement is

[
Ci Li
∗ Oi

]
� 0, (30)

and assuming Oi = W−1
i , then we can replace the non-

convex representation in Equation (29) with Ci as a con-
vex one

�̄i :=
⎡
⎣�11i +Ci �12i τi(LiAT

i +VT
i BT

i )

∗ �22i τiLiĀT
i

∗ ∗ −τiRi

⎤
⎦ ≺ 0.

(31)
Now, we define lower and upper bounds for the Lya-

punov functions:

μ̃i := σmax
[
L−1
i

] + τiσmax
[
L−1
i TiL−1

i
] + 1

2
τ 2
i σmax

[
R−1
i

]
λ̃i := σmin [Wi] .

Repeating the same procedure with new variables of Fi
and Ei, (Fi � L−1

i TiL−1
i , Ei := T−1

i ),

[
Fi Ji
∗ Ei

]
� 0,

and re-writing μ̃i

μ̃i = σmax [Ji] + τiσmax [Fi] + 1
2
τ 2
i σmax [Hi] . (32)

we obtain LMI conditions.
Consider the upper bound of the term μ̃i/λ̃i ≤ t . For

a constant t, feasibility of the dwell time τD = t + τmax is
the following nonlinear SDP minimisation problem:

min trace

[∑
i∈P

(LiJi + SiUi

+ RiHi + TiEi + OiWi)

]

subject to diag [Li,Ti,Ri,Yi,Wi] 
 0, ∀i ∈ P,

diag [Ji, Fi,Hi, −Wi]
≺ diag

[
jiI, fiI, hiI, −λ̃iI

]
, ∀i ∈ P,

�̄i � 0, �̄i ≺ 0, ∀i ∈ P,[
Ui Ji
∗ Hi

]
� 0,

[
Ci Li
∗ Oi

]
� 0,[

Fi Ji
∗ Ei

]
� 0, ∀i ∈ P,[

Li I
∗ Ji

]
� 0,

[
Si I
∗ Ui

]
� 0,[

Ri I
∗ Hi

]
� 0, ∀i ∈ P,[

Ti I
∗ Ei

]
� 0,

[
Oi I
∗ Wi

]
� 0, ∀i ∈ P,

ji + τi fi + 1
2τ

2
i hi − tλ̃i < 0, ∀i ∈ P.

(33)

The cost function in Equation (33) is minimised to
satisfy the inequality constraints (22) and (29). During
the minimisation procedure, Ji, Ui, Hi, Oi, Ei converge
to L−1

i , S−1
i , R−1

i , W−1
i , T−1

i , respectively. We overcome
the nonlinearity of the cost function of Equation (33) by
using linearisation method provided in Ghaoui, Oustry,
and AitRami (1997). The linearisation of the cost func-
tion is

fi = constant + trace

[ ∑
i∈P

(
LiJ0i + L0i Ji + SiU 0

i + S0i Ui

+ RiH0
i + R0

i Hi + TiE0
i + T 0

i Ei + OiW 0
i + O0

iWi
)]

.

The linearised cost function fi is minimised iteratively.
The cost function is re-linearised around new point(
Lki , Jki , Ski , Uk

i , Rk
i , Hk

i , Tk
i , Ek

i , Ok
i , Wk

i
)
in each step.

The nonlinear conditions (22) and (29) are checked in
each iteration up to a pre-defined number of maximum
iterations. If the conditions (22), (29) and (33) are satis-
fied, t is a proper dwell time.

The minimisation of the dwell time problem is a
nested optimisation problem, where the outer loop (Steps
1 and 4) is a bisection algorithm with the cost function
fi := t and the inner loop (Steps 2–4) is the optimisation
problem defined in Equation (33) with the cost function
fi. If the inner loop is concluded successively, t is halved
in its bisection interval, otherwise doubled (Step 4).

Step 1. Choose a sufficiently large initial tu > 0 such that
there exists a solution. Set tl = 0.

Step 2. Set the iteration index k to 0 and t = (tu + tl)/2.
Find a feasible set for the free parameters
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(Li, Ji, Si, Ui, Ri, Hi, Ti, Ei, Oi, Wi, Yi, M1i, M2i,
Vi, ji, hi, fi, wi) subject to conditions in Equa-
tion (33). Set L0i = Li, J0i = Ji, S0i = Si, U 0

i = Ui,
R0
i = Ri,H0

i = Hi, T 0
i = Ti, E0

i = Ei,O0
i = Oi and

W 0
i = Wi.

Step 3. Solve the following convex optimisation problem
for the same free parameters in Step 2:

min trace

[ ∑
i∈P

(
LiJki + Lki Ji + SiUk

i + SkiUi

+ RiHk
i + Rk

i Hi + TiEk
i + Tk

i Ei

+ OiWk
i + Ok

iWi
)]

s.t. conditions in Equation (33).

Set Lk+1
i = Li, Jk+1

i = Ji, Sk+1
i = Si, Uk+1

i = Ui,
Rk+1
i = Ri, Hk+1

i = Hi, Tk+1
i = Ti, Ek+1

i = Ei,
Ok+1

i = Oi andWk+1
i = Wi.

Step 4. If specified tolerance, such that tu − tl < tol, is sat-
isfied, then set Ki = ViL−1

i for all i ∈ P and exit.
The dwell time is τD = t + τmax .
Else if Equations (22) and (29) are satisfied, then

set tu = t, and return to Step 2.
Otherwise, set k = k + 1 and go to Step 3.

If there is no feasible solutions after speci-
fied number of iterations, then set tl = t and
return to Step 2.

Example 5.1: This example is from Yan, Özbay, and
Şansal (2014). In the corresponding paper, stabilisation
of a linear time-varying system guaranteed with a switch-
ing controller. In order to achieve that, linear parameter
varying (LPV) system is represented as a switching delay
system with two nominal subsystems and uncertainty
bounds are determined. Then, controllers are designed
with robust stability conditions. Synthesised controllers
are

K1 = [ 0.9681, 0.0465 ] , K2 = [−0.2708, 0.3715 ]

and the resulting dwell time is found to be 0.92 seconds.
In this paper, we only considered the nominal subsys-
tems of the switching delay system representation. The
two nominal subsystems are defined as

A1 =
[−3 −1

−1 −1.9

]
, Ā1 =

[ −1 0
−0.45 −1

]
,

B1 =
[
1
1

]
, τ1 = 0.2, d1 = 0.01

A2 =
[−2 −0.5

−1 −2

]
, Ā2 =

[ −1 0
0.05 −1

]
,

B2 =
[
1
1

]
, τ2 = 0.155, d2 = 0.01

Resulting controllers of our algorithm are

K1 = [ 0.5527, −0.5036 ] , K2 = [−0.6483, −0.6561 ]

and the dwell time is τ d = 0.49 seconds.
Example 5.2: This example is a slightly modified ver-
sion of the example of Yuan and Wu (2015), where the
switched system in question is a non-delayed system
which does not admit a common Lyapunov function. In
the corresponding example, switched linear plant is in the
form:

ẋ = A0,σ (t )x + B0,σ (t )w + B1,σ (t )u

where w is the disturbance,

A0,1 =
⎡
⎣ 0.5108 −0.9147 −0.2

−0.6563 0.1798 0.113
0.881 −0.7841 0.1

⎤
⎦ ,

B1,1 =
⎡
⎣0.3257
1.2963
2.43

⎤
⎦

A0,2 =
⎡
⎣ −0.125 −0.9833 −0.34

−0.5305 0.3848 0.58
1.0306 0.6521 0.1

⎤
⎦ ,

B1,2 =
⎡
⎣1.0992
0.6532
3.5

⎤
⎦

By using A0, i and B1, i, we generated our example. Let
�1 and �2 be

A1 = (1 − λ) · A0,1, Ā1 = λ · A0,1, B1 = B1,1,

τ1 = τ̃ , d1 = 0.01,
A2 = (1 − λ) · A0,2, Ā2 = λ · A0,2, B2 = B1,2,

τ2 = 1.6 · τ̃ , d2 = 0.01.

For λ = 0.9 and τ̃ = 0.05, resulting dwell time is 13.78
seconds and controllers are

K1 = [27.78, −25.94, 1.70] ,
K2 = [1.09, −3.08, −1.48]

In Figure 2, minimum upper bounds for the dwell
times can be seen for various τ̃ and λ values. Dwell time
grows linearly for large delay values whereas an expo-
nential growth is observed in Figure 1. The key differ-
ence between two examples is that the subsystems in
Example 5.2 can be stabilised independent of delays but
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Figure . Dwell time results for different τ̃ and λ values of Example ..

the stability of the subsystems in Example 4.1 depends on
delays.

6. Conclusions

We performed the calculation of an upper bound of dwell
time by quasi-convex optimisation methods to ensure
stability of linear switched delay system. LMI condi-
tions of free-weighting matrices method are used to find
appropriate Lyapunov–Krasovskii functionals for non-
switching subsytems. By combining these conditionswith
a cost function, which represents the upper bound of
dwell time, the upper bound is optimised using a bisec-
tion algorithm where each step is a linear SDP feasibil-
ity problem. By the numerical examples, it is shown that
the results obtained in Çalışkan et al. (2013) and Yan and
Özbay (2008) can be improved using the method pro-
posed in the present paper. In addition to this, a dwell
time minimising controller synthesis algorithm is also
developed in this work. Although the conditions are non-
linear and the corresponding set is non-convex, this algo-
rithm successively linearise the conditions and turn the
problem into a linear SDP. The numerical examples are
given to illustrate the efficiency of the proposed method.

Less conservative conditions for the stability of the
delayed switching systems can be found in papers pre-
senting average dwell time methods (see Sun et al., 2006;
Chesi, Colaneri, Geromel, Middleton, & Shorten, 2012).
However, the average dwell time conditions are non-
convex due to exponential and bilinear terms when the
dwell time is considered as a free parameter in optimisa-
tion. Representation of the dwell time in the present paper
is more conservative, but the dwell time minimiser con-
troller synthesisation problem is tractable due to convex
nature of the conditions.

A typical application of the switched control scheme
is the network congestion control systems (Zhao, Zhang,
Shi, & Liu, 2012). Due to the time-delay nature of the
network systems, the method presented in this paper can
contribute to the research on application of the network
congestion control systems.
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