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ABSTRACT A cyclic model for gene regulatory networks with time delayed negative feedback is analyzed
using an extension of the so-called secant condition, which is originally developed for systems without time
delays. It is shown that sufficient conditions obtained earlier for delay-independent local stability can be
further improved for homogenous networks to obtain delay-dependent necessary and sufficient conditions,
which are expressed in terms of the parameters of the Hill-type nonlinearity.

INDEX TERMS Gene regulatory networks (GRNs), local stability, negative feedback, secant condition,
time delay systems.

I. INTRODUCTION

ONE of the widely studied gene regulatory network
(GRN) models is the cyclic nonlinear time delayed

feedback system described by n cascaded subsystems as
shown in Fig. 1, where each xi, i = 1, . . . , n, represents a
physical quantity that is nonnegative [1]. The feedback is

xn+1(t) := x1(t − τ ) (1)

where the time delay τ ∈ R+ is assumed to be known.

FIGURE 1. Subsystems of the GRN model.

In this model, the linear time-invariant systems represented
by Hi(s) (where s is the Laplace transform variable) are
bounded analytic functions in C+. In the sequel, the cascade
connections of n subsystems shown in Fig. 1 under feed-
back (1) will be called the GRN model; specific forms of gi
andHi considered in this letter are discussed in the following.

The nonlinear functions gi : R+ → R+ are bounded,
and they satisfy g′i(x) > 0 or g′i(x) < 0 for all x ∈ R+.
Moreover, it is assumed that the Schwarzian derivative of
each gi is negative, which means that gi is at least three times
continuously differentiable on R+ and

g′′′i (x)

g′i(x)
−

3
2

(
g′′i (x)

g′i(x)

)2

< 0 ∀ x ∈ R+.

The left-hand side of the above inequality is the Schwarzian
derivative of gi. Typically, in biological systems, gi is a Hill
function satisfying the above conditions.

An interesting biological example of the GRN defined
above is the repressilator [8], where three subsystems, in the
form of Fig. 1, are connected in cascade, i.e., n = 3, with
xi representing mRNA concentrations. The protein concen-
tration at each stage appears as a state variable of Hi(s). It
should be noted that a homogenous network is proposed in [8]
(see also [11, Sec. II-C] for the justification of this model)
where

Hi(s) =
1

(1+ s)(1+ (s/β))

and gi(x) = α0+α/(1+ xm), for all i = 1, 2, 3. In this letter,
α0 will be taken as zero, and a more general structure for the
Hill function is considered

gi(x) =
a

b+ xm
=: h(x)

where a, b ∈ R+ and the Hill exponentm is a positive integer,
greater or equal to two. The parameter β > 0 denotes the
ratio of the protein decay rate to the mRNA decay rate [8].
In Section III, a similar homogenous network is considered
for the special case corresponding to β → ∞, i.e., Hi(s) =
(s+ 1)−1. This is also consistent with the model studied [6].
Note that in [6], [8], and [11], time delay is ignored. The main
objective of this letter is to derive stability conditions of such
a network in terms of the network parameters a, b ,m, and
n, and the feedback delay τ .
For the equilibrium analysis, consider the case where ui(t)

and xi(t) converge to constant values uei and x
e
i , respectively.

Then, from the steady-state analysis of the systems Hi(s), we
must have xei = Hi(0)uei , where Hi(0) = ki. Therefore, the
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following function plays a crucial role in the equilibrium and
stability analysis of the GRN model defined above:

g := (k1 g1) ◦ (k2 g2) ◦ · · · ◦ (kn gn). (2)

In this letter, the GRN is assumed to be under negative
feedback

g′(x) < 0 ∀x ∈ (0,∞). (3)

It has been shown that (see [1], [3], [9], and the references
therein), in the negative feedback case, g has a unique fixed
point xe1 ∈ R+, satisfying g(xe1) = xe1, and hence the GRN has
a unique equilibrium point xeq = [xe1, . . . , x

e
n]
T in Rn

+, where
xei = kigi(xei+1), i = 2, . . . , n, with xen+1 := xe1. Moreover,
g is a function with negative Schwarzian derivative, and (3)
implies that |g′(xe1)| 6= 1 (see [1] for a formal proof).

The global asymptotic stability of the GRN is guaranteed
by the following sufficient condition:∣∣g′(xe1)∣∣ < 1. (4)

Note that inequality (4) is a small gain condition, and it
implies stability independent of delay, that is, all solutions
x(t) = [x1(t) · · · xn(t)]T converge to xeq as t → ∞, for all
values of τ > 0. See [1] and [9] for more details.

On the other hand, what happens when |g′(xe1)| > 1 is
an interesting question. In this case, it can be shown that
there are some values of τ > 0 leading to periodic solutions
(generically); these correspond to locally unstable response
around the equilibrium point, xeq. However, the condition
|g′(xe1)| > 1 does not rule out stability: in this case, the
system may be locally stable for sufficiently small values of
τ . With some additional assumptions on the system, it can be
shown that delay-dependent local asymptotic stability implies
global asymptotic stability; see [7] and its references where
homogeneity is assumed, and [14] where integral quadratic
constraints are used.

In this letter, the case |g′(xe1)| > 1 is revisited. A necessary
and sufficient condition is derived for the local stability of the
system for the homogenous network case. For this purpose,
the so-called secant condition is used. It has been shown that
the secant condition can be very useful in the analysis of
cyclic systems with no delays; see [4], [5], and the references
therein for further discussions. Briefly, the secant condition
gives a less conservative bound on the gain of the feedback
system than the bound determined by the small gain condi-
tion, for local stability of a cyclic feedback system formed
by first-order stable linear time-invariant filters. Recently, a
delay-dependent local stability condition for the GRN model
considered here has been obtained in [2]; see also [15] for a
similar sufficient condition for local asymptotic stability.

In the next section, the secant condition is stated and its
relation to GRN model is illustrated. The main result is given
in Section III. The repressilator network for a finite β is
studied in Section IV.

II. SECANT CONDITION
Let us consider a feedback system formed by a cascade
connection of n ≥ 2 linear time-invariant stable systems

żi(t) = −λi zi(t)+ ρi zi+1(t) (5)

for i = 1, . . . , n, under time delayed feedback

zn+1(t) = z1(t − τ ) (6)

where λi ∈ R+, ρi ∈ R for all i = 1, . . . , n, and τ ≥ 0. The
characteristic equation of this feedback system is

χ (s) :=
n∏
i=1

(
s
λi
+ 1

)
+ ke−τ s = 0 (7)

where

k := −
n∏
i=1

ρi

λi
(8)

is the dc gain of the system. By definition, the feedback
system is under negative feedback if k > 0, and it is under
positive feedback if k < 0.
The feedback systems (5) and (6) are stable if and only if

the roots of the characteristic equation (7) are in C−. There
are many different techniques to check if all the roots of χ (s)
are inC−, or not (see [12] and [10]). The Nyquist test implies
that when k < 0, i.e., under positive feedback, the system is
stable if and only if −1 < k < 0. The negative feedback
case is more interesting and will be considered in the rest
of this letter. When k > 0, the feedback system is stable if
|k| ≤ 1 (small gain condition) independent of the values of
λ1, . . . , λn and the time delay τ ≥ 0. On the other hand, the
small gain condition is conservative: for k > 1, there exist
(k, τ ) pairs leading to feedback system stability, depending
on the values of λ1, . . . , λn. When λi’s are distinct, analytic
computation of the exact stability region in the (k, τ )-plane
may not be possible; in this case, graphical or numerical tools
are used. For each fixed k and λ1, . . . , λn, these numerical
tools help us compute the critical value of the time delay, τc,
such that the feedback system is stable for all τ < τc and
unstable for τ ≥ τc.
When τ = 0, the secant condition

k ≤
(
sec

π

n

)n
(9)

implies feedback system stability under negative feedback.
Note that when n = 2, inequality (9) is satisfied for all
k ∈ R+. Furthermore, the right-hand side of (9) is strictly
greater than 1 for all n ≥ 3; more specifically, it takes
decreasing values between 8 and 2 as n increases from 3 to 7.
Also note that (9) is equivalent to

π

n
> arccos( n

√
1/k). (10)

For time delay systems, i.e., when τ > 0 in (6), earlier
analysis shows that (see [1], [2]) the secant condition (9)
together with a small delay condition constitutes a sufficient
condition for stability of the feedback system. The result is
formally stated as follows.
Proposition 1: Consider systems (5) and (6), with λi > 0

for i = 1, . . . , n; assume that τ and k defined in (8) are posi-
tive. If k ≤ 1, then the feedback system is stable independent
of delay τ and the parameters λ1, . . . , λn. Suppose now k > 1
and define λ := maxi λi and λ̃ := (

∏n
i=1 λi)

1/n. Then, if

k <
(
sec

π

n

)n
(11)
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and

τ < max{τm, τ̃m} (12)

where

τm :=
π − n arccos( n

√
1/k)

λ
√
k2/n − 1

(13)

τ̃m :=
π − n arccos( n

√
1/k)

λ̃
2n√k2 − 1

(14)

then systems (5) and (6) are stable. Note that by equivalence
(10), inequality (11) implies τm > 0 and τ̃m > 0. Moreover,
when λi = λ for all i = 1, . . . , n, then conditions (11) and
(12) are necessary as well, and in this case, max{τm, τ̃m} =
τm = τc.
Proof: See [1], [2] and also [14] for a similar result. �
Remark: For a fixed k > 1, we have that√

k2/n − 1 ≤ 2n
√
k2 − 1

for all integers n ≥ 2. Thus, τm ≥ τ̃m for the homogenous
GRNs, where λi = λj for all i, j, in which case λ = λ̃. On the
other hand, when λi’s are not uniform, we have λ > λ̃, which
implies that we may have τm ≤ τ̃m. �
Let us now consider a GRN model where Hi(s) =

(1/(s+ λi)). Its linearization around the equilibrium point
xeq = [xe1, . . . , x

e
n]
T leads to a system in the form of (5)

and (6) where zi(t) = xi(t) − xei , ρi = g′i(x
e
i+1), for i =

1, . . . , n− 1, and ρn = g′n(x
e
1). The characteristic equation of

the linearized system around xeq is in the form of (7), where

k = −
n∏
i=1

ρi

λi
= −g′

(
xe1
)
> 0. (15)

Therefore, a sufficient condition for the local asymptotic
stability around the unique equilibrium xeq is given by Propo-
sition 1. In particular, for homogenous GRNs, conditions (16)
and (17) are necessary and sufficient

n
√
1/
∣∣g′(xe1)∣∣ =: κ > cos

(π
n

)
(16)

π − n arccos(κ)

λ
√
κ−2 − 1

=: τm > τ. (17)

III. HOMOGENOUS GRNS WITH HILL-TYPE
NONLINEARITIES
In this section, we consider the homogeneous GRN

ẋ1(t) = −x1(t)+ g1(x2(t))
...

ẋn(t) = −xn(t)+ gn(x1(t − τ ))

(18)

with each gi(x) being a Hill function of the form

gi(x) := h(x) =
a

b+ xm
: R+→ R+ (19)

where a > 0, b > 0, and m ∈ N with m ≥ 2 are common
constants for each of the nonlinearities. Note that h′(x) < 0
for all x > 0, and hence the homogeneous network is under
negative feedback if and only if n is an odd number.

A local stability condition is derived for (18); it depends
only on the parameters a, b, m, τ , and n. This generalizes

an earlier result on the delay-independent local stability pre-
sented in [1], that is, if m > 1 and( a

m

)m
<

(
b

m− 1

)m+1
(20)

then the homogeneous GRN (18) is locally stable around its
unique equilibrium point, independent of delay. The main
result given in the following considers the case where (20)
is not satisfied.
Proposition 2: Consider the homogenous GRN defined by

the set of equations (18) and (19). Let xe1 be the unique
positive root of the polynomial q(x) = xm+1 + bx − a, and

κ =
a

m
(
a− bxe1

) . (21)

If m > sec(π/n) and(
b

m− 1

)m+1
<
( a
m

)m
<

(
b

m− sec(πn )

)m+1
sec

(π
n

)
(22)

then the homogenous GRN (18) is locally stable around its
unique fixed point for all τ < τm and it is locally unstable for
all τ ≥ τm, where

τm =
π − n arccos(κ)
√
κ−2 − 1

(23)

with κ defined in (21). Furthermore, if( a
m

)m
>

(
b

m− sec(πn )

)m+1
sec

(π
n

)
(24)

then systems (18) and (19) are locally unstable independent
of the value of τ .
Proof: Since the equilibrium point is unique in Rn

+ [1], in
the homogenous case (18), it must be in the particular form
xeq = [xe1 · · · x

e
1]
T , where

xe1 =
a

b+
(
xe1
)m . (25)

From Proposition 1, the homogenous GRN (18) exhibits
delay-dependent stability around xeq if∣∣g′(xe1)∣∣ < (

sec
(π
n

))n
⇐⇒

∣∣h′(xe1)∣∣ < sec
(π
n

)
(26)

where g(x) = hn(x). The inequalities (26) hold if and only if

|h′(xe1)| = m

(
xe1
)m+1
a

< sec
(π
n

)
⇐⇒

a
bm

(
m− sec

(π
n

))
< xe1. (27)

Let us define q(x) = xm+1+ bx − a. Note that q(xe1) = 0 and
q′(x) > 0 for all x ∈ R+. Therefore, (27) holds if and only if

q
( a
bm

(
m− sec

(π
n

)))
< 0

which holds if and only if( a
m

)m
<

(
b

m− sec
(
π
n

))m+1 sec (π
n

)
.
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In this particular case, we have

k = |h′(xe1)|
n
=

(
m

a(xe1)
m−1(

b+
(
xe1
)m)2

)n
=

(
m
a− bxe1

a

)n
.

Thus, κ = n
√
1/k is as defined in (21), and the result regarding

the delay follows from Proposition 1. Finally, if (24) holds,
then the secant condition (11) is violated. Since (11) is nec-
essary for local stability in the homogenous case, inequality
(24) leads to local instability independent of delay. �

IV. LOCAL STABILITY ANALYSIS FOR THE
REPRESSILATOR
The repressilator model of [8], where gi(x) = h(x) = α/(1+
xm) and Hi(s) = H (s) = (1/((s+ 1)((s/β)+ 1))) for all
i = 1, 2, 3, fits into the framework of (18) when β → ∞.
Nevertheless, for finite β > 0, it is still possible to perform
a local stability analysis around the unique equilibrium point
xeq = [xe, xe, xe]T, where xe is the unique positive root of
xm+1 + x − α = 0. Let ρ = h′(xe), which can be computed
as ρ = m(((xe)/α)− 1) < 0. Define

k = −ρ = m
(
1−

xe
α

)
> 0.

Then, the linearized system around the equilibrium has the
following characteristic equation:

1+ k3(H (s))3e−τ s = 0.

If k < 1, then the small gain condition is in effect and we have
delay-independent stability. Thus, assume now k > 1. In this
case, local stability condition depends on time delay τ . The
gain cross-over frequencyωc is determined from the equation
|H (jωc)| = 1/k as

ωc =

√√√√
−
β2 + 1

2
+

√(
β2 + 1

2

)2

+ β2(k2 − 1).

Using the Nyquist criterion, it can be shown that the system
is locally stable if and only if

τ <
π − 3θ
ωc

=: τmax (28)

where θ ∈ (0 , (π/2)) satisfies

cos(θ ) =
1− ω2

c/β

k
.

Note the similarity between (17) and (28). We have τmax > 0
if and only if θ < (π/3). After some algebraic manipulations,
it can be shown that θ < (π/3) is equivalent to

1
2

(
β +

1
β

)
>

3
2

(
(k/2)2

1− (k/2)

)
− 1. (29)

The special case β = 1 is interesting because the left-hand
side of (29) becomes minimum at this value. When β = 1 for
k > 1, we have ωc = (k − 1)1/2, and (29) holds if and only
if k < 4/3. Note that the condition k < 4/3 depends on the
parameters α and m: for m = 2, m = 3, and m = 4, the

FIGURE 2. τmax versus α for various values of m and β.

largest allowable α values are 4.23, 1.67, and 1.26, respec-
tively. Accordingly, the largest allowable time delay, τmax ,
can be computed for the allowable range of α (see Fig. 2)
where m = 2 and β → ∞ case is computed
from (23).
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