
Big-Data Streaming Applications Scheduling
Based on Staged Multi-Armed Bandits

Karim Kanoun, Cem Tekin,Member, IEEE, David Atienza, Fellow, IEEE, and

Mihaela van der Schaar, Fellow, IEEE

Abstract—Several techniques have been recently proposed to adapt Big-Data streaming applications to existing many core platforms.

Among these techniques, online reinforcement learning methods have been proposed that learn how to adapt at run-time the

throughput and resources allocated to the various streaming tasks depending on dynamically changing data stream characteristics and

the desired applications performance (e.g., accuracy). However, most of state-of-the-art techniques consider only one single stream

input in its application model input and assume that the system knows the amount of resources to allocate to each task to achieve a

desired performance. To address these limitations, in this paper we propose a new systematic and efficient methodology and

associated algorithms for online learning and energy-efficient scheduling of Big-Data streaming applications with multiple streams on

many core systems with resource constraints. We formalize the problem of multi-stream scheduling as a staged decision problem in

which the performance obtained for various resource allocations is unknown. The proposed scheduling methodology uses a novel

class of online adaptive learning techniques which we refer to as staged multi-armed bandits (S-MAB). Our scheduler is able to learn

online which processing method to assign to each stream and how to allocate its resources over time in order to maximize the

performance on the fly, at run-time, without having access to any offline information. The proposed scheduler, applied on a face

detection streaming application and without using any offline information, is able to achieve similar performance compared to an

optimal semi-online solution that has full knowledge of the input stream where the differences in throughput, observed quality, resource

usage and energy efficiency are less than 1, 0.3, 0.2 and 4 percent respectively.

Index Terms—Scheduling, machine learning, many-core platforms, data mining, big-data, multiple streams processing, concept drift

Ç

1 INTRODUCTION

BIG-DATA streaming applications are now widely used in
several domains such as social media analysis, financial

analysis, video annotation, surveillance and medical serv-
ices. These applications are characterized with stringent
delay constraints, increasing parallel computation require-
ment and a highly variable stochastic input data stream
which have direct impact on the application complexity and
the final Quality of Service (QoS) (e.g., throughput and out-
put quality) [12]. For instance, stream mining applications
[1], one of the main emerging Big-Data stream computing
applications, are used to classify a high input of variable
data stream and are in general modeled using a chain of
stages of classifiers and features-extraction tasks (e.g.,
Fig. 1). Different types of dynamically changing data are
collected from various heterogeneous sources and multiple
types of classifiers are applied on these data to uncover hid-
den patterns or extract knowledge required for prediction

and actionable intelligence applications. In order to adapt to
the heterogeneous nature of the data, each stage may inte-
grate different type of classifiers or quality levels and a
selection of the processing method is realized at run-time
with respect to the predicted type of data. Fig. 1 illustrates
an example of facial detection application using this appli-
cation model. The complexity of each task in each stage of
the chain may change at run-time with respect to the type of
processed input data which is unknown by the application.

Numerous hardware and software solutions have been
proposed in order to copewith the increasing complexity and
computation requirement of modern streaming applications.
At the hardware layer, several many core architectures [9],
[20], [21], [22] have been developed to increase the paralleliza-
tion level and to support the streaming application model. At
the software layer, approaches based on load-shedding tech-
niques have been proposed to reduce the workload by select-
ing the percentage of data that will be processed while other
approaches control the processingmethod of the data streams
to adapt to the given allocated resources. However, themajor-
ity of state-of-the-art solutions do not handlemultiple streams
at the same time. Moreover, even in the single stream case,
without the support of a proper online smart scheduler that
knows how to efficiently coordinate these software optimiza-
tions with the real capacity of existing hardware solutions
and the dynamically changing application needs, these many
core platforms are not able to efficiently handle real time
requirements and characteristics of Big-Data streaming appli-
cation which are dynamically changing at run-time. In fact,
existing online scheduling approaches have very limited con-
siderations to the dynamic characteristics of the data streams,

� K. Kanoun and D. Atienza are with the Embedded Systems Laboratory,
Ecole Polytechnique Federale de Lausanne, Lausanne 1015, Switzerland.
E-mail: {karim.kanoun, david.atienza}@epfl.ch.

� C. Tekin is with the Department of Electrical and Electronics Engineering,
Bilkent University, Ankara 06800, Turkey.
E-mail: cemtekin@ee.bilkent.edu.tr.

� M. van der Schaar is with the Department of Electrical Engineering, Uni-
versity of California at Los Angeles, Los Angeles, CA 90095-1594.
E-mail: mihaela@ee.ucla.edu.

Manuscript received 16 June 2015; revised 13 Dec. 2015; accepted 14 Mar.
2016. Date of publication 4 Apr. 2016; date of current version 14 Nov. 2016.
Recommended for acceptance by A. Gordon-Ross.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2016.2550454

IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 12, DECEMBER 2016 3591

0018-9340� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

which may experience concept drift [11] and thus require con-
tinuous adaptation. Approaches that rely on offline informa-
tion are not able to adapt to these concept drifts online.

Finally, energy consumption in many core architectures
is becoming a major concern as the cost of powering these
type of platforms is significantly increasing [13]. Software
techniques presented in the previous paragraph adapt the
complexity of stream mining applications at run-time.
However, such workload reduction solutions are usually
implemented at the application layer which is often obliv-
ious to the system architecture, available system resources
or available power management features. Therefore, by
combining these software techniques with energy saving
features such as Dynamic Power Management (DPM) to
switch on and off cores, the energy consumption can be
reduced without having an impact on the quality of ser-
vice of the application. In fact, by allocating the proper
amount of resources to each task, only required cores are
activated. Moreover, the slack time between different
application stages can be exploited with DPM when it is
detected. Therefore, it is essential that the operating sys-
tem layer combines techniques from both application and
hardware layers in order to maximize the QoS while mini-
mizing the energy consumption.

To address these challenges, we propose a new system-
atic and efficient methodology and associated algorithms
for online learning and energy-efficient scheduling of Big-
Data streaming applications with multiple streams on many
core systems with resources constraints. The key contribu-
tions of this work are as follows:

� We formalize the problem of multi-streams schedul-
ing as a staged decision problem in which the perfor-
mance obtained for various resource allocations is
unknown a priori but learned over time.

� The proposed scheduling methodology uses a novel
class of online adaptive learning techniques which
we refer to as staged multi-armed bandits. Our
scheduler is able to learn online which processing
method to assign to each stream and how to allocate
resources over time in order to maximize the perfor-
mance on the fly, at run-time, without having access
to any offline information.

� Unlike standard multi-armed bandit problem formu-
lation where each outcome depends only on the lat-
est previous scheduling decision, in our formulation
the outcome of each scheduling action depends on a
sequence of previous scheduling decisions and feed-
backs that are taken at a certain stage (window) of
time.

� The regret (i.e., the difference in performance com-
pared to a scheduler that acts optimally from the

beginning) of the proposed algorithm increases only
logarithmically in the number of rounds.

The proposed scheduler, applied on a multi-stage face
detection streaming application in a dynamically changing
environment and without using any offline information, is
able to achieve similar performance compared to an optimal
semi-online solution that has full knowledge of the input
stream where the differences in throughput, observed qual-
ity, resource usage and energy efficiency are less than 1, 0.3,
0.2 and 4 percent, respectively. We also compare our results
to a scheduling solution [19] with online learning and con-
cept drift detection. Our scheduler significantly outperforms
the solution proposed in [19] in terms of observed quality,
obtained throughput, memory usage and complexity.

The remainder of this paper is organized as follows. In
Section 2, we describe related work and the benefits of
Staged Multi-Armed Bandits. In Section 3, we model our
environment including the application, the Big-Data and
the platform models. In Section 4, we describe our novel
class of online adaptive learning techniques (i.e., our sched-
uler). In Section 6, we present our experimental results.
Finally, we summarize the main conclusions in Section 7.

2 MOTIVATION

2.1 Related Work

Our approach targets a specific type of applications where
the QoS depends on both the throughput and the quality
observed for each task in the application with a dynamic
Big-Data stream under constrained resources. Therefore, we
only discuss techniques that have been proposed to adapt
Big-Data streaming applications to resource constraints.

The first set of approaches relies on load-shedding [6],
[7], where designed algorithms determine when, where,
what, and how much data to discard given the desired QoS
requirements and the available resources. In [6], the impact
of load shedding is known a-priori and the load shedder
was decoupled from the scheduler assuming that an exter-
nal scheduler will handle the assignment of freed resources.
In [7], a load shedding scheme ensures that dropped load
has minimal impact on the benefits of mining and dynami-
cally learns a Markov model to predict feature values of
unseen data. Instead of deciding on what fraction of the
data to process, as in load shedding, the second set of
approaches [1], [2], [3], [4], [5] determine how the available
data should be processed given the underlying resource
allocation. In these works, individual tasks operate at a dif-
ferent performance level given the resources allocated to
them. They assume a fixed model complexity for each
classifier and the variation of the output quality is known
a-priori. The problem was formulated as a network optimi-
zation problem and solved with sequential quadratic pro-
gramming. These solutions assume stationary environment
while, in reality, data streams are dynamic. Therefore, they
may experience a concept drift that requires a continuous
online adaptation of the amount of allocated resources to
each task and the output quality to maximize the QoS, espe-
cially when the resources are constrained. In [11], a survey
has been published recently, which categorizes most of the
existing concept drift approaches. None of these approaches
have been proposed for scheduling Big-Data streaming

Fig. 1. A stream mining application with multiple tasks per stage [8].

3592 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 12, DECEMBER 2016

applications and resource management problems. Recently,
in [19], the authors model the scheduling problem as a Sto-
chastic Shortest Path problem and propose a reinforcement
learning algorithm to learn the environment dynamics to
solve this problem even in the presence of concept drift.
However the allocation of the computing resources to each
streaming task was not realized by the algorithm. Instead, it
assumes that the system knows the amount of resources to
allocate to each task to achieve the desired throughput.
Moreover, they do not provide a systematic way for the task
selection. In Section 6.2.4, we compare our results to the
scheduler proposed in [19].

To summarize, the above two set of solutions are usually
implemented at the application layer and are agnostic to the
system constraints and capabilities. Instead, our online
learning solution is implemented at the operating system
level and it is responsible for resources allocation and proc-
essing method selection for each available stream.

2.2 Benefits of Staged Multi-Armed Bandits

In this paper, we model the multi-stream scheduling prob-
lem as an online learning problem. Many online learning
problems can be formalized using multi-armed bandits
(MABs) [14], [15], [17] and efficient algorithmswith provable
performance guarantees can be developed for these prob-
lems. A common assumption in all these problems is that
each decision step involves taking a single action after which
the reward is observed. Unlike these problems in multi-task
scheduling, each decision step (amount of resource to allo-
cate, quality level, etc.) involves taking multiple actions in
series corresponding to different types of processing applied
on a single data stream andmultiple actions in parallel corre-
sponding to different data streams at each stage.

Another class of MAB problems in which the reward at a
particular stage depends on the sequence of actions that are
taken are the C-MAB problems [16]. However, in these prob-
lems it is assumed that (i) all the actions in the sequence are
selected simultaneously; hence, no feedback is available
between the actions, (ii) the global reward function has a spe-
cial additive form which is equal to a weighted sum of the
individual rewards of the selected actions. Other MAB prob-
lems which involve large action sets are [18] where at each
time step the learner chooses an action in a metric space and
obtains a reward that is a function of the chosen action.
Again, no intermediate feedback about the chosen sequence
of actions is available before the reward is revealed.

MABs are also used in solving decentralized sequential
decision making problems involving multiple learners [31],
[32], [33]. However, unlike multi-stream scheduler in which
there is a centralized learner, in these problems there are
multiple decentralized learners that act on different data
streams. The resources are shared among the learners, hence
they should carefully select the actions in order to maximize
the total reward. But the settings considered in these works
are not applicable to multi-stream scheduling because (i)
there are no stages; (ii) they cannot adapt based on interme-
diate feedbacks provided within each stage; (iii) their com-
plexity grows linearly in the size of the action space which is
combinatorial in the multi-stream scheduling application.
While our staged bandits approach can be extended to
involve decentralized decisionmaking, we leave this tedious

task as a future research direction and focus on the novel
stage decomposition which allows us to learn fast under
large number of data streams and concept drift.

Finally, methods such as Q-learning do not fit well into
our multi-stream application model. For instance, in Q-
learning the feedback space is fixed, and convergence takes
place only asymptotically conditional on the fact that every
feedback-action pair is sampled infinitely often. One of the
most closely related work in Q-learning [37] derives sample
complexity bounds on the performance of two variants of
Q-learning, by assuming a general discounted Markov Deci-
sion Process (MDP) structure. However, the assumptions on
the rewards (and the discount factor) are very different from
ours. For instance, in the standard MDP model, the reward
depends only on the current state and the current action,
and is collected after every taken action. In our work, the
reward depends on the past sequence of feedbacks and
actions, and is collected only at the end of the round.

One of the most famous variant of the sequential decision
making problems is the restless MAB problem [31], [36].
Although logarithmic strong regret bounds [36] are proven
for the restless MAB problem, algorithms that achieve loga-
rithmic strong regret cannot be computationally efficient
[41]. For this reason, we choose to learn a myopic bench-
mark, which can be computed efficiently, and the regret
only depends linearly on the number of stages in a round.

3 SYSTEM MODEL

We consider a streaming application with multiple streams
from different sources. We use sk to refer to the kth stream
and there are Nstream streams in total. Processing of these
data streams is carried out in a chain of stages [8] [1].

There are lmax dependent processing stages i 2 G with
deadlines di, where G :¼ f1; 2; . . . ; lmaxg. Each stage i is com-
posed of a set of tasks T i (processing methods). In order to
optimize the processing of the incoming data of each stream
on the fly, at each stage i, we have multiple tasks to choose

from the set T i. Each task tji 2 T i at stage i implements a
specific processing method that is optimized for a specific
characteristics of data with non-deterministic workload. Let

Ni
task denote the number of tasks in T i. In our model, the

inputs and outputs of stage i depends on the outputs of
stage i� 1. An illustrative system model showing an appli-
cation with multiple input streams, stages and tasks for a
face detection application is given in Fig. 1.

The performance of the processing of sk in stage i is mea-

sured by the output quality qki and the amount of workload

wk
i which depends on tji and the characteristic of sk. In gen-

eral the data streams can exhibit Big-Data characteristics
such as high velocity and high dimensionality so that it is
not possible in general to process all the data on time. There-
fore, the amount of data that is processed within its dead-
line gets to the next task in the chain while the remaining
unprocessed data are simply discarded. While the majority
of prior work assumes stationary data streams, our model is
able to work under concept drift.

Finally, our many core platform model is composed of
Ncore cores with idle power saving states C-states feature sup-
port [23], [24]. C-states are core power states that define the
degree to which the processor is “sleeping”. C0 indicates a

KANOUN ET AL.: BIG-DATA STREAMING APPLICATIONS SCHEDULING BASED ON STAGED MULTI-ARMED BANDITS 3593

normal operation (i.e., full leakage power consumption). All
other C-states (C1-Cn) describe states where the processor
clock is inactive (cannot execute instructions) and different
parts of the processor are powered down (i.e., reduced leak-
age power consumption). Deeper C-states have longer wake-

up latenciesX
ck
switch (the time to transition back toC0) but save

more power. An efficient use of the C-states may then signifi-
cantly reduce the energy consumption.

4 A STAGED ONLINE LEARNING FRAMEWORK

4.1 Problem Formulation

Fig. 2 illustrates staged processing of the input streams. The
system operates in rounds (r ¼ 1; 2; . . .). At the beginning of
each round, multiple data instances arrives from each input
stream to the many core platform. The processing of the
Nstream streams are performed in parallel, as follows. At the
beginning of a round, each input stream is assigned to one
of the processing methods available in stage 1. After the
processing of these data instances are completed or the
allowed processing time is consumed, processed data
instances of each input stream are assigned to the process-
ing methods of stage 2, and so on. The processing time of an
instance at a stage depends on the computing resource allo-
cation, requested quality level and the execution time
related to the selected processing task at that stage. We refer
to these quantities as actions, and the joint action vector1 at
stage i of round r is denoted by aari ¼ ðari;1; . . . ; a

r
i;Nstream

Þ,
where ari;k represents the action taken for the data of stream

k at stage i of round r. The set of feasible actions for a data
stream at stage i is denoted by Ai.

2 For instance, the total
amount of resources allocated to all tasks should be less
than or equal to the sum of available resources at each stage.

The number of actions in Ai is denoted by Ni
action. For our

application, an action a 2 Ai can be represented as a tuple
a ¼ ðt; cÞ, where t is the task selected at stage i and c is the
amount of resource allocated to that task. Without loss of
generality we assume that this holds for the rest of the
paper. The set of feasible joint action vectors at stage i is

denoted by �Ai :¼
QNstream

k¼1 Ai.

After each action ari;k is taken for data stream k in stage i

of round r, a feedback fri;k is observed. Let F i be the set of

feedbacks that can be observed at stage i at any round for a
data stream. We have ; 2 F i. Depending on the stage index
(i.e., either the first stage or remaining stages), the feedback
observed from each stage i can be composed of one or

multiple of these particular elements: (i) Occupancy of the
input buffer of each stream k; (ii) The estimated percentage
of minimum resources required per task to process a fixed
amount of data from stream k; (iii) The selected processing
path of the stream k until stage i; (iv) The amount of resour-
ces used to process the data of stream k; An explicit defini-
tion of the feedbacks for our stream mining application is
given in Section 5.2. The joint feedback from all data streams
at stage i of round r is denoted by ffri ¼ ðfr

i;1; . . . ; f
r
i;Nstream

Þ.
The set of all joint feedbacks at stage i is denoted by
�F i ¼

QNstream
k¼1 F i. In addition, ffr

0 denotes the joint initial

feedback that is available at the beginning of round r before
any action is taken. The set of all joint initial feedbacks is

denoted by �F 0. For our streaming application, this initial
feedback used for the task selection in the first stage is dif-
ferent from other feedbacks used for following stages as it is
more related to the status of the buffer rather than a previ-
ous stage execution.

Given an action ari;k for data stream k at stage i of round
r, let dri;kða

r
i;kÞ be the random variable which denotes the exe-

cution time of task t 2 ari;k for data stream k at round r. The

deadline of stage i denoted by di > 0 represents a delay
constraint and effects the processing of the data streams in
the following way. If dri;kða

r
i;kÞ > di, then unprocessed data

from the data instance corresponding to data stream k is dis-
carded. Only the processed data gets to the next stage.
Therefore, for any round r and stage i the set of data
streams which do not have any dropped data instance is
denoted by Br

i :¼ fk : dr
i0;kða

r
i0;kÞ � di; 8 1 � i0 < ig. Hence,

the set Br
i only depends on both the actions and the feed-

backs before stage i of round r.
Our proposed algorithm select the action in the current

stage of the current round based on the feedbacks and
actions of past stages in the current round and the feedbacks
and actions of the past rounds. In our framework, the joint
action to be taken at stage i of round r may depend on the
set of previously selected actions and observed feedbacks.
The set of all sequences of actions is denoted by

AAall :¼
Qlmax

i¼1
�Ai. For any sequence of action vectors aa 2 AAall,

let FFðaaÞ be the set of sequences of feedbacks that may be
observed, and FF all :¼

S
aa2AAall

FFðaaÞ. The sequence of actions
chosen in round r is denoted by aarall :¼ ðaar1 ; aa

r
2 ; . . . ; aa

r
lmax

Þ. Let
aar½i� :¼ ðaar1 ; . . . ; aa

r
i ; null; . . . ; nullÞ represent the sequence of

actions chosen in the first i stages of round r. Similarly,
ffrall :¼ ðffr0 ; ff

r
1 ; . . . ; ff

r
lmax

Þ denotes the sequence of all feed-

backs observed in round r, and ffr½i� :¼ ðffr
0 ; ff

r
1 ; . . . ; ff

r
i ;

null; . . . ; nullÞ denotes the sequence of feedbacks observed
at the first i stages of round r. Given a sequence of actions
aa 2 AAall and sequence of feedbacks ff 2 FFðaaÞ in a round, the

Fig. 2. Example of the execution of the S-MAB during a full round on a three stages streaming application.

1. When clear from the context, we will refer to joint action vector as
the action.

2. Ai also includes the null action, which implies that no action is
taken for the stream. The null action is denoted by null.

3594 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 12, DECEMBER 2016

reward is drawn from an unknown distribution Faa;ff inde-
pendently from the other rounds. The expected reward is
given by raa;ff . For our Big Data stream mining application,
the reward function takes into account the observed quality
qi;k, the observed throughput thi;k for each stream k in the
stage i executing the task in T i that is given as an element of
ari;k, and finally the amount of unused allocated resources.

For our theoretical analysis, we assume that the expected
reward is normalized to lie in ½0; 1� for all sequences of feed-
backs and actions. However, our results will continue to
hold (with a constant scaling factor) for any expected
reward function that is bounded. An explicit definition of
the reward function for our stream mining application is
given in Section 5.3.

At stage i of round r, the action that is taken for k =2 Br
i is

the null action (since the instance that belongs to any data
stream k =2 Br

i is already discarded in one of the previous
stages of that round.) Hence, we only need to select the
action for data streams k 2 Br

i . Let this constrained action
space at stage i of round r be denoted by Ar

i ðB
r
i Þ :¼Q

k2Br
i
Ai. Given the deadline constraint, an algorithm only

needs to select actions (tasks selection and allocations) for
instances of data streams that are in Br

i .
3

Every action and feedback sequence is encoded into a
state by the rule f : AAall �FF all ! X , where X is a finite set.
For instance, if X is taken to be the set of subsets of all data
streams, then fðaar½i� 1�; ffr½i� 1�Þ :¼ Br

i will denote the set
of data streams that do not have any dropped data instance
at stage i of round r. The probability that feedback ff is
observed when action aa is chosen in stage t when state is x
is given by pt;aa;xðffÞ, which is unknown. Since the state is a
function of the feedback and action, the state transition
probabilities are stage dependent. Due to this, the proposed
state model is different than the stationary MDP model
assumed in prior works in reinforcement learning [34], [35].

4.2 Myopic Benchmark

Since the number of possible sequences of actions and feed-
backs that can be taken/observed in a particular round is
exponential in lmax, it is very inefficient to learn the best
sequence of actions by trying each of them separately to esti-
mate raa;ff for every aa 2 AAall and ff 2 FFðaaÞ. In this section we
propose an oracle benchmark called the Best First (BF)
benchmark whose action selection strategy can be learned
quickly by the learner. The pseudocode for the BF bench-
mark is given in Algorithm 1.

Let AA½i� � AAall be the set of sequences of actions taken in
the first i stages of any round. We will also use ffaa½i0� to
denote the sequence of feedbacks to the subset of the actions
in aa that are taken in the first i0 stages of any round. Let
yaa½i�;ffaa½i� ½i�1� :¼ Eff ½raa½i�;ðffaa½i� ½i�1�;ffÞ� be the ex-ante reward given

the sequence of actions aa½i� before the feedback for the

action vector aai of stage i is observed, where the expectation
is taken with respect to the distribution of the feedback for
action vector aai and state x ¼ fðaa½i� 1�; ff½i� 1�Þ.

Algorithm 1. Pseudocode for the BF Benchmark

1: while r � 1 do
2: Select action aar	1 ¼ argmaxaa2Ar

1
ðBr

1
Þyaa;ffr

0
3: Observe feedback ffr	

1

4: while 1 < i � lmax do
5: aar	i ¼ argmaxaa2Ar

i
ðBr

i
Þðyðaar	½i�1�;aaÞ;ffr	½i�1�Þ

6: i ¼ iþ 1
7: end while
8: r ¼ rþ 1
9: end while

The BF benchmark incrementally selects the next action
based on the sequence of feedbacks observed for the actions
of the previous stages. The action that it selects at the initial
stage of round r is aar	1 ¼ argmaxaa2Ar

1
ðBr

1
Þyaa;ffr

0
.

Let aar	all ¼ ðaar	1 ; aar	2 ; . . . ; aar	lmax
Þ be the sequence of actions

selected and ffr	
all ¼ ðffr	

0 ; ffr	
1 ; . . . ; ffr	

lmax
Þ be the sequence of

feedbacks observed by the BF benchmark in round r. In

general aar	i , depends on both aar	½i� 1� and ffr	½i� 1�.
At any stage i of round r the BF benchmark selects the

action in aa 2 Ar
i ðB

r
i Þ that maximizes yðaar	½i�1�;aaÞ;ffr	½i�1�. The

total expected reward summed over all data streams up to
round n by using the BF benchmark is equal to

RWBFðnÞ :¼
Pn

r¼1 E YAAr	;FFr	
� �

, where AAr	 is the random var-

iable that represents the sequence of actions selected in
round r by the BF benchmark, FF r	 is the random variable
that represents the sequence of feedbacks observed for the
actions selected in round r, and YAAr	FFr	 is the random vari-
able that represents the reward obtained in round r.

Definition of the Regret: Consider any learning algorithm
which selects a sequence of actions AAr based on the
observed sequence of feedbacks FF r. The regret of this learn-
ing algorithm with respect to the BF benchmark in the first
n rounds is given by

E½RðnÞ� :¼ RWBFðnÞ �
Xn

r¼1

E YAAr;FFr

� �
; (1)

where YAAr;FFr is the random variable that represents the
reward obtained in round r. The regret is defined as the
total loss incurred on all data streams up to round n with
respect to the BF benchmark. Hence, minimizing the regret
implies maximizing the total performance on all data
streams. Any algorithm whose regret increases at most sub-
linearly, i.e., OðngÞ, 0 < g < 1, in the number of rounds
will converge in terms of the average reward to the average
reward of the BF benchmark as n ! 1. In the next section
we will propose an algorithm whose regret increases only
logarithmically in the number of rounds.

The definition of regret given in (1) is with respect to the BF
benchmark, and hence, is not the strongest notion of regret.
Numerous other works such as [36] considered stronger
notions of regret, but the algorithms that achieve sublinear
strong regret are computationally intractable. Other
approaches such as [31] considered weaker notions of regret,

3. The algorithms we propose in this paper will select the best
actions in Ar

i ðB
r
i Þ according to an optimality criterion that will be

defined later. Since Br
i can be computed using the past sequence of

actions and feedbacks, the learner knows that the best action in �Ai is
always in Ar

i ðB
r
i Þ. Hence, given the past sequence of actions and feed-

backs, taking the action that maximizes the reward over Ar
i ðB

r
i Þ is

equivalent to taking the action that maximizes the reward over �Ai.

KANOUN ET AL.: BIG-DATA STREAMING APPLICATIONS SCHEDULING BASED ON STAGED MULTI-ARMED BANDITS 3595

in which the regret is computed with respect to the best fixed
action. In contrast to theseworks, the action sequence selected
by the BF benchmark depends on the set of observed feed-
backs, hence is not fixed. Compared to these two definitions,
the use of BF benchmark as the benchmark for regret provides
substantial improvements in the learning speed and algo-
rithm complexity. Moreover, there are several important
cases in which the BF benchmark is proven to be approxi-
mately optimal. For instance, it is shown in [40] that for adap-
tive submodular reward functions, a simple adaptive greedy
policy (which our BF benchmark reduces into under mild
assumptions) is 1� 1=e approximately optimal. Hence, any
learning algorithm that has sublinear regret with respect to
the greedy policy is guaranteed to be approximately optimal.
This work is extended to an online setting in [39], where the
prior distribution over the states is unknown and only the
reward of the chosen sequence of actions is observed. How-
ever, an independence assumption is imposed over actions
and states to estimate the prior in a fast manner. Using the
results in [40], we can show that our BF benchmark is approxi-
mately optimal when the reward function is adaptive mono-
tone submodular, an action can only be selected in a single
stage and the feedback related with each action is realized at
the beginning of each round before action selection takes
place. Hence, work on adaptive submodular learning can be
viewed as a special case of the S-MAB problem.

5 FEEDBACK ADAPTIVE LEARNING (FAL):
A LEARNING ALGORITHM FOR THE S-MAB
PROBLEM

In this section, we propose Feedback Adaptive Learning (FAL)
(pseudocode given in Algorithm 2), which learns the
sequence of actions to select based on the observed feed-
backs to the previous actions (as shown in Fig. 2). FAL
learns to select actions in the way that BF benchmark selects
actions, hence its regret is measured with respect to BF
benchmark.

Let Yaar½i�;ffr½i� denote the random reward obtained in the
first i stages of round r. In order to minimize the regret
given in (1), FAL balances exploration and exploitation
when selecting the actions. Consider the ith stage in round
r. FAL keeps the following sample mean reward estimates:
ŷff;i;aaðrÞ which is the sample mean estimate of the rewards

Yðaaj½i�1�;aaÞ;ðffj½i�2�;ff;ff 0Þ, 1 � j < r, ff 0 2 �F i in the first r� 1

rounds corresponding to stage i for which action aa is
explored after observing feedback ff from the action chosen
at stage i� 1. In addition to these, FAL keeps the following
counters: Tff;i;aaðrÞ which counts the number of times action
aa is explored at stage i after feedback ff is observed from the
action selected at stage i� 1 in the first r� 1 rounds.

Next, we explain how exploration and exploitation is
performed. Let ff denote the feedback observed at stage
i� 1, 1 � i � lmax of round r. At the beginning of stage i of
round r, FAL checks if Ur

i :¼ faa 2 Ar
i ðB

r
i Þ : Tff;i;aaðrÞ <

D log ðr=dÞg is non-empty, whereD > 0 and d > 0 are con-
stants that are input parameters of FAL whose values will
be specified later. If this holds, then FAL explores by
randomly selecting an action aa 2 Ur

i and observes its

reward (after observing the feedback ff 0 2 �F i) Y ðrÞ :¼
Yðaar½i�1�;aaÞ;ðffr½i�1�;ff 0Þ, by which it updates ŷff;i;aaðrþ 1Þ ¼

ðTff;i;aaðrÞŷff;i;aaðrÞ þ Y ðrÞÞ =ðTff;i;aaðrÞ þ 1Þ. For a round in
which FAL explores at stage i, the actions for stage
iþ 1; . . . ; lmax can be taken arbitrarily or with respect to a
predetermined rule (such as the action with the highest
reward so far) (cf. Section 5.1). If Ur

i ¼ ;, then FAL exploits
at stage i by choosing the action that maximizes the esti-
mated reward: aari ¼ argmaxaa2Ar

i
ðBr

i
Þŷff;i;aaðrÞ. Then, the same

procedure repeats for the next stage iþ 1.

Algorithm 2. FAL

1: InputD > 0, d > 0, AAall, FF all, lmax.

2: Initialize: ŷff;i;aa ¼ 0, Tff;i;aa ¼ 0, 8aa 2 �Ai; i ¼ 1; . . . ; lmax, ff 2 �F i;

i ¼ 0; . . . ; lmax. aar½0� ¼ ;, 8r ¼ 1; 2; . . .

3: while r � 1 do
4: Find the set of available actions (cf. Section 5.1):

Ar
1ðB

r
1Þ ¼

Q
k2Br

1
Ai

5: U1 ¼ faa 2 Ar
1ðB

r
1Þ : Tff

r
0
;1;aa < D log ðr=dÞg

6: if U1 6¼ ; then
7: Select aar1 randomly from U1, observe ff

r
1

8: Get reward Y ðrÞ :¼ Yaa
r
1
;ffr½1�

9: Actions for the remaining stages are selected according
to a predefined rule (cf. Section 5.1)

10: i	 ¼ 1, //BREAK
11: else
12: Select aar1 ¼ argmaxaa2Ar

1
ðBr

1
Þŷffr

0
;1;aa and observe ffr

1

13: end if
14: i ¼ 2
15: while 2 � i � lmax do
16: Find the set of streams whose instances are not dropped

yet, i.e., Br
i

17: Find the set of available actions (cf. Section 5.1):
Ar

i ðB
r
i Þ ¼

Q
k2Br

i
Ai

18: Ui ¼ faa 2 Ar
i ðB

r
i Þ : Tff

r
i�1

;i;aa < D log ðr=dÞg
19: if Ui 6¼ ; then
20: Select aari randomly from Ui and observe the feed-

back ffri
21: Get reward Y ðrÞ :¼ Yaar½i�;ffr½i�
22: Actions for the remaining stages are selected accord-

ing to a predefined rule (cf. Section 5.1)
23: i	 ¼ i //BREAK
24: else
25: Select aari ¼ argmaxaa2Ar

i
ðBr

i
Þŷffr

i�1
;i;aa and get the

feedback ffr
i

26: end if
27: i ¼ iþ 1
28: end while
29: if Explored (remaining actions are selected according to a

predefined rule) then
30: Update ŷffr

i	�1
;i	 ;aar

i	
using Y ðrÞ (sample mean update)

31: Tff
r
i	�1

;i	;aar
i	
þ þ

32: end if
33: r ¼ rþ 1
34: end while

Setting the parameters of FAL: The number of explorations
increases in D (lines 5 and 18), hence setting a larger D
results in more accurate reward estimates which leads to
better action selections in exploitations. However, this also
results in an increase in the reward loss due to explorations.
A similar observation can also be made for d (lines 5 and

3596 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 12, DECEMBER 2016

18). When d is small, the probability of choosing a subopti-
mal action in exploitations is small. However, the number
of explorations increases as d becomes smaller.

The regret of FAL: The regret of FAL can be bounded
under two assumptions on the reward structure, which are
stated below. The first assumption states that the optimal
action is a function of the state x 2 X , which is equal to the
most recent feedback.

Assumption 1.We have fðaar½i�; ffr½i�Þ ¼ ffr
i . For any two length

i sequences of action-feedback pairs ðaa½i�; ff½i�Þ and ðaa0½i�; ff 0½i�Þ,
if fðaa½i�; ff ½i�Þ ¼ fðaa0½i�; ff 0½i�Þ, then we have argmaxaa2A0

iþ1
y

ðaa½i�; aaÞ; ff ½i� ¼ argmaxaa2A0
iþ1

yðaa0 ½i�;aaÞ;ff 0 ½i� for any A0
iþ1

� �Aiþ1.

The second assumption states that the optimal action for
every history of sequence of actions and feedbacks is
unique.

Assumption 2. Let Q	
1ðA

0
1; ff0Þ :¼ argmaxaa2A0

1
yaa;ff0 and Q	

iþ1

ðA0
iþ1; aa½i�; ff½i�Þ ¼ argmaxaa2A0

iþ1
fyðaa½i�;aaÞ;ff½i�g. We assume

that jQ	
1ðA

0
1; ff0Þj ¼ 1 for all A0

1 � �A1 and ff0 2 �F 0, and

jQ	
iþ1ðA

0
iþ1; aa½i�; ff½i�Þj ¼ 1 for all aa½i� 2 AA½i�, ff ½i� 2 FFðaa½i�Þ

and A0
iþ1 � �Aiþ1, 1 � i � lmax � 1.

The following theorem, whose proof is given in the sup-
plemental material, shows that the regret of FAL with
respect to the BF benchmark grows logarithmically in the
number of rounds.

Theorem 1. Assume that Assumptions 1 and 2 hold. Let Dmin be
the minimum of the difference between the expected reward of
the best sequence of actions and the second best sequence of
actions,4 where the minimum is taken over all possible

feedbacks. When FAL runs with the set of parameters

D ¼ 4=D2
min and d ¼ ð2bFmaxAmaxlmaxnÞ�1=2 we have

E½RðnÞ� � 1þ lmaxFmaxAmaxDX log ð2bFmaxAmaxlmaxÞ
þ 3lmaxFmaxAmaxDX logn;

where X ¼ jXj, Amax ¼ max1�i�lmax j �Aij, Fmax ¼ max0�i�
lmaxj �F ij, b ¼

P1
t¼1 1=t

2, and E½RðnÞ� is the regret given in
(1). Hence, limn!1 E½RðnÞ�=n ¼ 0.

5.1 Online Management of the Action Space
Definition

Each stage of a stream mining application may integrate dif-
ferent type of tasks that differ with their required workload
and quality level with respect to the input data in order to
adapt to the heterogeneous and dynamic nature of the data
(cf. Section 3). To cope with this highly dynamic environ-
ment, our FAL algorithm (lines 4, 17) builds its action space
on the fly based on the observed feedbacks. The key idea is
to have a database that stores all observed feedbacks for
each stage and an action space that is built online and cus-
tomized for each feedback and assigned to it all along the
execution. Moreover, these action spaces are retrieved and
merged with new actions (if any) generated online each
time their corresponding feedbacks are observed again. As
demonstrated in Sections 5, the FAL algorithm guarantees a
logarithmic increase of the regret in the number of rounds
for a defined action space. Therefore, whenever the action
spaces of observed feedbacks are stabilized (i.e., when no
more new actions are added online), the FAL algorithm exe-
cutes as expected. Figs. 3 and 4 depict the full flow that we
apply to generate and maintain a coherent action space all
along the execution of the application. In the following, we
explain the flow illustrated in these two figures namely,
how the exploration mode of the FAL algorithm behaves
with respect to the defined action space and how the action
space is updated before the execution of each stage.

Each time a new feedback is observed (i.e., not found in
the feedback database), the FAL action space switches to
discovery mode. As shown in the right part of Fig. 3, we ini-
tialize the action space related to the newly observed feed-
back with Ntask discovery actions. In this actions set, each

action aai ¼ ððtj;0i ; cj;0i Þ; . . . ; ðtj;Nstream
i ; cj;Nstream

i ÞÞ executes all

the streams at stage iwith the same task tji (i.e., t
j;k
i ¼ tji) and

the number of cores cj;ki is equally allocated to each stream
k. These actions are mainly used to explore the behavior of
each task on each available input data stream for new

detected feedbacks. The observed workload wj;k
i and output

quality qj;ki are then recorded in a dedicated structure that
keeps track of the observed quality and measured workload
of each selected task j for each stream k after each time a
stage i is executed. An example of this structure is illus-
trated in Fig. 5. As indicated previously in the FAL Algo-
rithm 1, in exploration mode, actions for the remaining
stages are selected according to a predefined rule. In the
case where at least one action in the discovery action space
remains unexplored, processed data are not forwarded to
the next stage. We call these actions blocking actions as the
data is discarded immediately after being processed in

Fig. 3. Action space definition: Switching between discovery action
space and candidate action space.

4. Precise definition of Dmin is given in the supplemental material.

KANOUN ET AL.: BIG-DATA STREAMING APPLICATIONS SCHEDULING BASED ON STAGED MULTI-ARMED BANDITS 3597

order to avoid wasting resources on suboptimal tasks selec-
tions in the next remaining stages. Once all the blocking
actions were tried at least once for the observed feedback,
the data structure that holds the measured workload and
obtained quality is filled/updated. An action space exploit-
ing these newly recorded data can be safely generated. The
FAL action space manager generates then a set of candidate
actions based on previous records (cf. next paragraph).
Fig. 3 illustrates the flow that we use for the selection of
action space for each observed feedback. The FAL algorithm
enters the exploration mode even with an action space con-
taining generated candidates actions as they were not
explored yet. In this case, these actions are non-blocking
and the processed data are forwarded to the next stage. This
helps minimizing the loss of data and keeps a good overall
quality and throughput even in the exploration mode as the
generated candidate tasks were already tuned for previous
observed feedbacks. In the next paragraph, we explain how
we handle the generation of candidate actions.

Our action space manager, responsible for the generation of
a dedicated action space on the fly for each observed feed-
back, exploits the quality/workload data structure (Fig. 5)
built during the explorationmode andwhich is also continu-
ously updated during the exploitation mode as well. As
showed in the flow presented in Fig. 4 (steps 1, 2, 3 and 4),
we start by finding the r first tasks providing at least themin-
imum required output quality with the minimum workload
for each stream based on previous observations. However, if
the minimum output quality is not found then we select r
tasks with the r first maximum output quality. Algorithm 3
illustrates the pseudocode for the candidate tasks selection
for r ¼ 1. Once candidate tasks of each stream are selected,
we select candidate of combinations of resources allocation.
Algorithm 4 illustrates a pseudocode of the algorithm that
we use to generate candidate cores allocation for the pre-
selected candidate tasks. First, we compute the total number
of cores required for all the streams (lines 1-7). Then, we
assign a minimum number of cores for each stream based on
the percentage of its workloadwith respect to the total work-
load (lines 7-9). However, it may happen that the real sched-
ule would require more than the pre-selected cores
allocation as the workload of data are different. Moreover,
the processing of one single data cannot be divided between
the cores. Thus, in line 10, we generate all combinations of
cores allocations satisfying the previously computed esti-
mated cores allocation plus 1; 2; . . . ; h cores for each stream.
Among all generated candidate actions, we discard those
with allocations that exceed Ncores (line 11). Then in steps (5)
(6) and (7), we retrieve the action space built in previous
rounds (if any) for the observed feedback. Finally, in steps

(8) and (9), we merge this action space with the newly gener-
ated action space. The action space is now fully updated and
ready to be processed by the rest of the FAL algorithm.
Unlike discovery actions, the candidate action space guaran-
tees a minimum amount of quality and throughput which
allows the processed data to be safely forwarded to the next
stage even when the FAL algorithm is in exploration mode.
These actions are non-blocking actions.

Algorithm 3. Candidate Tasks Selection

1: Input wi, qi, Nstream, Ntask, q
min.

2: for k inNstream streams do
3: selTask½i� ¼ argmin0�j�Ntask

ðwj;k
i jqj;ki � qmin;k

i Þ
4: if selTask½i� not initialized then
5: selTask½i� ¼ argmax0�j�Ntask

ðqj;ki Þ
6: end if
7: end for

Algorithm 4. Generating Candidate Core Allocations

1: Input wj;k
i , dj;ki ,Ncore,Nstream, h.

2: for k inNstream streams do
3: total workload þ ¼ wj;k

i 	 dj;ki
4: #cores þ ¼ d w

j;k
i

	dj;k
i

corecapacitye
5: end for
6: #cores ¼minðNcore;#coresÞ
7: for k inNstream streams do

8: #cores½i� ¼ w
j;k
i

	dj;k
i

totalworkload 	#cores
9: end for
10: Generate all combinations of allocations where each stream

i core allocation action ranges from #cores½i� to
#cores½i� þ h

11: Discard actions with allocations that exceedNcore cores

5.2 Feedback Space Definition: Exploiting
Feedbacks for Concept Drifts Detection

In reality, data streams are dynamic. They may then experi-
ence a concept drift that requires a continuous online adap-
tation of the task selections and the amount of allocated
resources to each task to maximize the QoS especially when
the resources are constrained. Therefore, the observed feed-
backs parameters should be selected in a way that they
reflect these variations at run-time to the FAL algorithm. To
track the characteristics of the buffer of stream k continu-
ously at run-time, we chose two feedback parameters f0;k

buff

and f1;kbuff . The first parameter f1;k
buff indicates the occupancy

of the buffer of each stream k to illustrate the number of

data in the buffer. The second parameter f1;k
buff indicates the

Fig. 4. Action space manager: Online update of the action space before the execution of each stage during each round.

3598 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 12, DECEMBER 2016

estimated percentage of minimum resources required per
task to process a fixed amount of data from stream k. This
estimated percentage can be computed using the recorded
average workload in previous rounds, a fixed number of
data (e.g., half size of the buffer) and the capacity of the
core. The first feedback parameter triggers a new feedback
when the number of data changes while the second parame-
ter triggers a new feedback when the type of data changes.
An additional feedback illustrating the observed quality can
be also applied as well to detect new observations. Then,
the FAL algorithm guarantees that each task in the first
stage is tried at least once for the new detected feedback
before forwarding the processed data to the next stage.

A concept drift may also appear in one of the stages of
the chain. The concept of detecting these variations in these
stages is also similar to what we have described previously
for the buffers. However, we change the feedback parame-
ters that we observe as these feedbacks are now related to
the results of their previous processing stages rather than a
buffer status. In fact for a stage i, we observe two parame-

ters f0;k
i and f1;k

i (with 0 � i � lmax) for each stream k

namely, the selected processing path of the stream k until
stage i and the amount of resources used to process the data

of stream k. For the first parameter f0;k
i , the processed path

can be computed using the selected task indices in previous
stage, this parameters allows the reward value (we discuss
the reward in the next Section) to be a performance indicator
of the different available processing paths. For the second

parameter f1;k
i , we only take into account the resources that

were actively used. In other words, if the scheduler decides
to allocate M cores and these cores were active 70 percent of
the duration of the time slot, then the amount of resources
used is 0:7 	M. This parameter allows to trigger new feed-
backs when the number of input data from previous stage
or the required workload has changed. Moreover, a varia-
tion in the workload can be highly implied by a variation in
the type of input data. Finally, our feedback parameters are
then fully independent from the nature of the application
and can be applied on any streaming applications that
adopts a chain model with multiple tasks per stage.

5.3 Reward: Quality and Throughput Maximization
and Energy Consumption Minimization

The process of selecting the action space on the fly provides
an estimated lower bound and upper bound of the total

required resources as described in Algorithm 4. Moreover,
the size of action space of each feedback is increasing online.
Therefore a meaningful metric is required by the FAL algo-
rithm in order to guide the algorithm to choose the right
actions among all available actions. This metric is the
reward that is attributed for each action taken for each feed-
back. In other words, when a quality qki and throughput thk

i

are observed for taking action aari for feedback ffr
i�1 a reward

ri is assigned for the tuplet (ffr
i�1 , aa

r
i). These reward values

are used by the FAL algorithm before an action decision is
taken (lines 12 and 25). Our reward function takes into

account the observed quality qki , the observed throughput

thk
i for each stream sk in the stage i executing the action ari;k

and finally the amount of unused allocated resources.

We define ri ¼ ð
PNstream

k¼0 qki Þ << 6 digits þ ð
Pm

k¼0 th
k
i Þ<<

3 digitsþ ucores, where ucores represents the number of
remaining unallocated cores. Each three digits in the final
reward value represents an integer reward value related to
one of the considered metrics to optimize (i.e., quality,
throughput, resource usage). Since we can only have one
single integer reward value to represent all the three metrics
at a time, we sum the value of the quality (shifted by six dig-
its), the throughput (shifted by three digits) and the
resource usage as showed in Fig. 6. Recalling that the pri-
mary goal of the FAL algorithm is to maximize the obtained
reward, therefore by setting these values in this order, the
reward function guides the FAL algorithm to first maximize
the quality then the throughput and finally to minimize the
amount of unused allocated resources. In fact, two actions
with different resources allocations may generate the same
quality and throughput, however in this case, a higher
reward is assigned to the action that allocate less resources
(due to the least three significant digits of the reward func-
tion, i.e., the number of unallocated cores). The leakage
energy consumption is then reduced.

6 EXPERIMENTS

6.1 Experiments Setup

We implemented both our S-MAB scheduler agent and envi-
ronment in C. We also developed a stream mining applica-
tion for face detection similar to the model presented in
Fig. 1 and Section 3. We use Haar feature-based cascade clas-
sifiers [26] in OpenCV [25]. Fig. 7 illustrates the developed
face detection application which is composed of four stages.
Stage 1 detects the face, stage 2 detects the eyes, stage 3
detects the nose, and stage 4 detects the mouth. Each stage
executes a Haar classifier trained to detect its object of inter-
est. Several parameters can be tuned in the Haar classifier in
order to control the false detection rate and its computational
complexity. Moreover detecting these objects sequentially

Fig. 5. Example of a quality/workload tracking structure for an application
with two tasks per stage.

Fig. 6. Illustrating the observed quality, throughput and resource usage
in one single reward integer value.

KANOUN ET AL.: BIG-DATA STREAMING APPLICATIONS SCHEDULING BASED ON STAGED MULTI-ARMED BANDITS 3599

increases the overall classification accuracy and decreases
the required execution time. For instance, when a face is
detected in Stage 1, in Stage 2 it is more efficient to look for
the eyes only inside the detected face (instead of the full
image) reducing then the complexity and false alerts. The
same idea/concept can be applied for the remaining stages.
In our experiments, we use four databases [27], [28], [29],
[30]. These databases have different characteristics (e.g.,
image size, face size...), which impact the workload intensity
and the required tuning of the classifier for each stage. For
instance, by specifying to the classifier theminimumpossible
object size for each stage, where objects smaller than that size
are ignored, both the output quality and the workload can be
controlled. Moreover, there are correlations between the size
of the face, the eyes, the nose and the mouth that can be
exploited to select the right minimum size for each stage.
Thus, we generate multiple configurations of Haar classifiers
for each stage and we select a subset of images from each
database to use for our experiments. We model then Ntask

tasks of a stage iwithNtask configurations of Haar classifiers.
We choose these configurations such that for each images
database, there is at least one path that produces 100% of
accurate results and which is unknown by the S-MAB
scheduler.

Fig. 8 shows the variation of the workload and the
observed quality for stage 1 with respect to the selected task
and the database serving the image. For instance, DB3 has
maximum quality for each possible task in stage 1. How-
ever, the workload measured for Task 3 for DB3 is signifi-
cantly less than the one measured for Task 1. Therefore, the
scheduler has to first learn how and when to explore all the
tasks (since the data characteristics are dynamically chang-
ing over the time) and then to exploit it by choosing the task
with the minimum workload and providing the best
required quality. Following the same previous explanation,

an efficient processing of DB1, DB2, DB3 and DB4 would
require their execution with tasks 2, 2, 3 and 1, respectively.

In stream mining applications, the workload and quality
of each task in each stage depend on selected tasks in previ-
ous stages. Therefore, the selection of the tasks becomes less
trivial when the application has several stages. Fig. 9 depicts
the measured workload and observed quality variation with
respect to each full processing path in the case of our face
recognition application with 81 possible processing paths
(i.e., four stages with three tasks/stages). Fig. 9a shows the
measured workload accumulated among the 4 stages while
Fig. 9b shows the quality (here the quality is the percentage
of the detection of the object of interest) for the stage that
recorded the minimum quality level during the full process-
ing path. All these informations are unknown by the sched-
uler and have to be learned online.

Finally, in order to simulate concept drifts, in Fig. 10, we
show how the input streams of our application are mapped
to the four different databases all along the execution of 900
rounds. We also specify how big is the buffer of each stream
compared to each other. In our experiments, we simulate a
platform of 64 homogeneous cores with the same capacity
C. For the sake of clarity of the experimental section we fix
the deadline of each stage at design time. Stage 1, 3 and 4
are given loose deadlines, while Stage 2 is given a very short
deadline in a way that it will not be possible to process all
the data at that stage (to simulate the workload intensity of
Big-Data). The goal of our experiments is then to show that
our S-MAB scheduler is able to find the correlations
between the different stages and to exploit its sequential
model to find the right processing path for each stream
even when the databases change on the fly (i.e., in the pres-
ence of concept drift) and to select the right resources alloca-
tion strategies that fit the targeted minimum quality and
without any prior knowledge on the relation between the

Fig. 10. Experimental setup: mapping four different databases to three
input data stream for 900 rounds.

Fig. 7. Eighty-one processing paths in our face processing application
with four stages and three tasks/stage.

Fig. 8. Stage 1: workload and quality variation with respect to the
selected tasks and the image database. (a) Average measured execu-
tion time for processing 10 images at stage 1. (b) Average observed
quality (i.e., percentage of the detection of the object of interest in 20
images) at stage 1.

Fig. 9. Workload and quality variation with respect to each full process-
ing path and the image database. (a) Average measured execution time
for fully processing 10 images. (b) Minimum average observed quality
(i.e., percentage of the detection of the object of interest in 20 images in
the stage having the minimum percentage value)

3600 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 12, DECEMBER 2016

processing stages, the used databases characteristics and the
buffer sizes.

6.2 Experiments Results

In the following, first we explain in details the experimental
results obtained for stage 1 namely, exploration and exploi-
tation phases, actions selections, obtained throughput,
observed quality and allocated resource usage (Fig. 11).
Then, we generalize our results for the remaining stages of
the application (Fig. 12). Another feature of our scheduling
algorithm is the possibility for the user to select which mini-
mum processing output quality is required. Therefore, we
also provide experimental results with a minimum output
quality set to 80 percent (Fig. 13) and we compare the
selected resource allocation for each stream with the previ-
ous results (Fig. 14). Next, we compare our results with an
existing Big-Data stream mining applications scheduler [19]
that adopts a reinforcement learning technique and integra-
tes a concept drift detection feature (Figs. 15 and 16).
Finally, we compare our results with a second scheduling

solution that has full knowledge of the streams, workload
and tasks quality at design time. We then compare the
amount of saved leakage energy, the throughput, and
observed quality for the face recognition application
(Fig. 17) and for a set of different configurations of a syn-
thetic application (Fig. 18) modeling Big Data streammining
applications.

6.2.1 Illustrating S-MAB Scheduler Main Features with

Experimental Results Observed in Stage 1

As already discussed in the theory part (Section 5.2), the
feedback used for the task selection in the first stage is
different from other feedbacks used for following stages
as it is more related to the status of the buffer rather than
a previous stage execution. Fig. 11a shows the selected
task index (stacked) at stage 1 for each stream during
each round. The figure shows then that each time the
scheduler detects a variation in the characteristic of the
input stream, the scheduler goes into exploration mode
for few rounds. Once all the tasks are (re-)explored for
this stage, the scheduler goes back into exploitation
mode. This concept is illustrated around rounds 1, 300
and 600 which exactly corresponds to where we have
generated concept drifts in our experimental setup as
showed before in Fig. 10. The idea of switching between
exploration mode and exploitation mode with respect to

Fig. 13. Evolution of the observed quality for each stream in stage 4
when the minimum required quality set by the user is 80 percent.

Fig. 12. Evolution of the obtained throughput, observed quality, allocated
resource and allocated resource usage in: (a) Stage 2, (b) Stage 3 and
(c) Stage 4.

Fig. 11. Stage 1 execution results: (a) Evolution of the task selection for
each stream (stacked). (b) Evolution of the number of unexplored
actions. (c) Evolution of the obtained throughput, observed quality, allo-
cated resource, and allocated resource usage.

Fig. 14. Comparison of the allocated resources per stream (stacked) in
stage 4 between an execution with a minimum quality = 100 percent and
an execution with a minimum quality = 80%).

Fig. 15. Performance comparison between S-MAB and SSP [19] for
stream 3. (a) The obtained global throughput. (b) The observed average
quality (all stages).

Fig. 16. Evolution of the obtained (a) throughput and (b) quality for
stream 3 scheduled with SSP [19].

KANOUN ET AL.: BIG-DATA STREAMING APPLICATIONS SCHEDULING BASED ON STAGED MULTI-ARMED BANDITS 3601

the detected input stream characteristics is also illustrated
in Fig. 11b which shows the evolution of the number of
unexplored actions. In Fig. 11b, there are two types of
unexplored actions. First, unexplored discovery actions,
appearing in (b) when new tasks are explored in (a), are
the actions that block the data at this stage since not all
the tasks were explored yet. Second, the unexplored
actions that appear even when the task selection is stabi-
lized in (a), are the candidate actions that are added at
run-time to the action space of the already explored feed-
backs. These candidate actions only add new resource
allocation configuration without changing the selected
task. Moreover, these candidate actions do not block the
stream (the processed stream is forwarded to the next
processing stage) when the FAL algorithm is in explora-
tion mode. Therefore and as showed in Figs. 11a and 11b,
a feedback is considered explored once the number of
unexplored discovery actions is 0 (i.e., tasks selection
optimized) and fully explored once the number of unex-
plored discovery and candidate actions is 0 (i.e., resource
allocation optimized).

Finally, Fig. 11c depicts the evolution of the overall (i.e.,
all streams accumulated) obtained throughput, observed
quality, allocated resources and allocated resources usage
with respect to the data variation phases (i.e., with respect
to the round index). For Stage 1, the deadline is set in a way
that is possible to process all the data in the buffer. More-
over, only three processing paths are available in Stage 1.
Therefore, the adaptation of the throughput and the quality
to the different simulated data variations is straight for-
ward. Fig. 11c shows that the throughput and the observed
quality were kept over 99 percent with a usage around
90 percent of the allocated resources (e.g., for rounds 1-300,
allocated resources = 58.9 percent and used resources =
52.3 percent). In fact, in the exploitation mode, the scheduler
chooses for each stream the task that provides the maxi-
mum reward obtained during the exploration phase (i.e.,
maximum quality with the least amount of workload and
minimum resources). For instance from rounds 1 to 300,
tasks 1, 1, and 3 are selected for stream 1, 2 and 3, respec-
tively (as shown in Fig. 11a) which is also in reality the opti-
mal selection for DB1, DB2 and DB3 respectively for this
stage (as shown in Figs. 10a and (b). We validate the opti-
mality of the resources allocation later in Section 6.2.5 by
comparing to a scheduling solution that has full knowledge
of the streams, workload and tasks quality at design time.

6.2.2 Generalizing the Results to the Remaining Stages

Figs. 12a, 12b and 12c illustrate the evolution of the through-
put, observed quality, allocated resources and allocated
resources usage obtained for stage 2, 3 and 4, respectively
and using the same experimental setup applied in the previ-
ous Section. We only discuss the results that are different
from the one obtained in the first stage. In our steam mining
application model, the output quality and the workload of
each stage depends on selected tasks in its previous stages.
Therefore, now there are 9, 27, 81 possible processing paths
for stage 2, 3, 4 respectively. In these stages, a feedback is
characterized by the path index taken by the data stream
and the amount of its resources usage. In stage 2 (i.e.,
Fig. 12a), the deadline is set in a way that it is not possible to
process all the data in the buffer, therefore our scheduler
reduces the throughput to a value between 60 and 80 percent
depending on the characteristic input stream while the
observed quality, allocated resources and resource usage
are kept around 100%. After the exploration phase (i.e.,
around rounds 0, 301 and 601) the scheduler decides to
lower the throughput in order to maximize the output qual-
ity. The decrease of the overall throughput observed in
rounds 301-600 (Fig. 12a) is due to the increase in the overall
workload of stream 3 when assigned to DB1. In stage 3 and
4, the quality is kept over 99 percent most of the times while
the allocation usage is around 90 percent which minimizes
the waste of leakage energy (experimental results related to
energy consumption are presented in Section 6.2.5). Even
though the average allocated resource is less than 80 percent
in Stage 3 and Stage 4, the throughput shown in the figures
did not reach its maximum value. This is due to the block-
ing actions that were taken in previous stages for explora-
tion purpose. In fact, when a blocking action is taken, the
stream is discarded in the following stage and a throughput
value of zero is recorded for the remaining stages in that
round. However, when measuring the throughput only for
rounds where the streams are not discarded, then we obtain
a throughput value over 99 percent.

6.2.3 Synchronizing with Minimum User Quality

Requirements

In this experiments set, we show how our scheduler can
adapt its scheduling decision to the minimum required
quality output. For instance, if the user is satisfied with only
80 percent of the possible maximum quality, the scheduler
adapts its scheduling decision in a way that it finds the
processing path that gives a quality level between 80 and
100 percent while providing the maximum possible
throughput. In fact, a lower output quality does not imply

Fig. 17. Performance comparison between S-MAB and a scheduler
with full knowledge of the input steams. (a) Obtained throughput.
(b) Observed quality. (c) Number of allocated cores. (d) Resource usage.

Fig. 18. Synthetic application with different workload and stage configu-
rations: performance comparison of the S-MAB versus a scheduler hav-
ing full knowledge of the input steams.

3602 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 12, DECEMBER 2016

less workload. For instance, decreasing the minimum possi-
ble object size parameter in a Haar feature-based cascade
classifier for object detection increases the classifier sensitiv-
ity and more importantly its workload. However an
increase in the sensitivity may imply an increase in false
detections thus providing an output quality less than
100 percent with a higher workload. Fig. 10 illustrates this
concept. In fact, the figure shows that for DB3, the maxi-
mum quality is obtained for path 81, while other paths pro-
vide lower quality but with a higher workload. The
scheduler should not then lower the quality of stream
mapped to DB3 even if the user allows it as it will decrease
the throughput. To validate this feature of our scheduler,
we run the same experiment setup as in previous section
but with a minimum quality set to 80 percent. Fig. 13 depicts
full details of observed quality per stream. The figure shows
that in fact DB3 (i.e., stream 3 round [1, 300]; stream 1 round
[301, 600]; stream 2 round [601, 900]) was kept at its maxi-
mum quality in order to maximize the throughput. DB4
(stream1 round [601, 900]) was also kept at its maximum
quality as based on Fig. 10, the only quality that can be
observed above 80 percent is 100 percent (i.e., path 1).
Finally, the quality of remaining streams were successfully
decreased to between 80 and 90 percent. Figures 14 com-
pares the resource allocation realized for experiments with
minimum quality 100 and 80 percent, respectively. The
figure shows that, the new task selection and resource man-
agement actions applied by our scheduler allowed to keep
the processing quality level of each stream above 80 percent
(as allowed by the user) while keeping the maximum
throughput and allocating less resources than the experi-
ment realized in previous Section (i.e., compared to mini-
mum quality of 100 percent). Finally, in Fig. 13 streams that
kept an output quality of 100 percent were allocated the
same amount of resources when compared to previous
experiments while other streams were assigned with
less resource.

6.2.4 Comparison with an Existing Big-Data Stream

Mining Solution

In this last experiments set, we compare the results of
our scheduling approach to a recent Big-Data stream min-
ing scheduling solution [19] from the literature. In [19], the
scheduling problem was formalized as a Stochastic Shortest
Path (SSP) problem and a reinforcement learning algorithm
was proposed to learn the environment dynamics. How-
ever, the allocation of the computing resources to each
streaming task was not realized by the algorithm. Instead, it
assumes that the system knows the amount of resources to
allocate to each task to achieve the desired throughput.
Moreover, the SSP solution was applied on a single stream
and it does not provide a clear and systematic way to chose
the tasks of each stage in exploration mode. To adapt [19] to
our experimental setup, we have applied the following
modifications:

First, for the cores allocation, we allocate the number of
minimum required cores given the input size, the desired
throughput and the average measured workload of the
selected task from previous rounds. Second, to handle the
multi-stream model, we assign a dedicated SSP optimizer to

each stream. Since there are no priorities among the streams,
we divide the resources equally among the streams. For
instance if the platform has 60 cores, and three stream inputs,
then, each SSPwill have 20 cores to use for the whole chain of
tasks for its own stream. It is coherent to assume that for each
stream, there are always enough data to process as we work
in Big-Data environment. Third, for the task selection of each
stage in explorationmode (or as the authors call it the quality
check module), when the observed quality of a stage
decreases, a different task is selected for exploration. Once
the observed quality of the first stage is optimized, the fol-
lowing stage is then optimized and so on. This last modifica-
tion is only related to the quality check module as a clear
systematic methodology for selecting the tasks was not pro-
vided in the literature. Finally, in the reward function, a
higher priority is given to the quality.

Since the results obtained for stream 1, 2 and 3 are similar
to each other, we only illustrate the results obtained for
stream 3. Fig. 16 compares the throughput and quality (aver-
age value of all the stages accumulated) between our S-MAB
and SSP [19]. The figure shows that our solution outperforms
the SSP solution in terms of obtained throughput and
observed quality. To understand why [19] fails to provide
the same level of performance as our proposed solution, in
Fig. 16, we illustrate in details the results obtained for each
stage and each data variation phase for stream 3 scheduled
with [19]. The SSP algorithm fails for the following reasons:

The algorithm may fall in a local maxima. In fact, the
exploration may find the task that provides the maximum
quality for stage 1 but the output of that task is not opti-
mized for the remaining stages. Thus, the algorithm keeps
continuously tuning the remaining stages to optimize the
quality without reaching the target quality as the first stage
is stuck at a local maxima. This is illustrated in Fig. 16b in
all data variation phases. However, when the task selection
is tuned, it may have high impact on the workload resulting
in a significant throughput drop. In fact, if selected task in
stage 2 is adjusted and requires a higher number of cores
than the initial action, then remaining stages may end up
with zero core, and data in stage 3 and 4 are discarded. This
is illustrated in the results of Fig. 16b especially for rounds
300-900. This problem is due to the fact that the scheduler
proposed in [19] only controls the throughput but not the
cores allocation unlike our new proposed solution which
instead learns the cores allocation based on the observed
throughput. The throughput has to be a metric that is
observed but not controlled.

In terms of the resources required for the execution of
[19], the algorithm uses a significant amount of memory
compared to our proposed FAL algorithm. In fact, our solu-
tion requires only few megabytes to store the observed feed-
back database, generated action database and the structure
holding the different counters. However, in [19], for each
action in the action set, a reward matrix and a transition
probability matrix of the size of the number of states are
allocated. For instance for the setting used in this experi-
ment, there are 75 actions (i.e., 25 throughput values x 3
tasks options) and around 1,000 states observed which
result in 150 matrices each with a size of 1000x1000 for each
stream. Each value in each matrix is stored on 8 bytes (Dou-
ble precision). Therefore, the total space required to store at

KANOUN ET AL.: BIG-DATA STREAMING APPLICATIONS SCHEDULING BASED ON STAGED MULTI-ARMED BANDITS 3603

least these matrices is over 1 GB for each stream. This space
can significantly increase when more states are observed or
more actions are added. Finally, the algorithm responsible
for computing the scheduling policy suffers from a high
complexity as the value iteration algorithm goes through all
these stored data in order to compute the scheduling policy.

6.2.5 Energy Consumption: Comparison with

an Optimal Scheduling Solution

Since the solution proposed in [19] failed to provide the
same level of performance as our proposed solution, we
compare our S-MAB algorithm to a second scheduling solu-
tion that we have developed and has full knowledge of all
the tasks qualities and the workload of each input data for
each task in each stage before any scheduling decision is
taken. This scheduler provides an optimal solution that
guarantees highest quality with the minimum workload
and the minimum cores allocations. We call it the optimal
scheduler. Fig. 17 compares the performance of our S-MAB
scheduler to the optimal scheduler namely, (a) the obtained
throughput, (b) the observed quality, (c) number of allo-
cated cores and (c) the amount of resource usage.

Fig. (a) shows that the throughput value obtained with S-
MAB is at most 0.6 percent less than the obtained optimal
value while Fig. (b) shows that the observed quality is at
most 0.3 percent less than the obtained optimal value. More-
over, Figs. (c) and (d) shows that our algorithm is also
energy efficient as it allocates the minimum number of cores
required for optimal throughput and optimal quality. In fact
Fig. (c) shows that the S-MAB algorithm allocates around
4 percent more resources (i.e, 1 to 3 cores in total) compared
to the optimal solution, which is mainly due to the variation
of the workload of the photos in each of the three input
streams. Finally the resource usage is kept at a similar level
to the optimal scheduler which confirm the optimized selec-
tion of the processing tasks at each stage.

Finally, in order to generalize our obtained results, we
have added new synthetic applications with different con-
figurations of processing paths to model multiple types of
workloads and different quality requirements. We have
generated them following a set of predefined rules to cover
exhaustively the possible options of the design space of Big
Data applications. Fig. 18 shows how far is S-MAB from the
optimal solution when varying the number of tasks per
stage and the workload intensity. The figure shows a differ-
ence in quality around 2 percent. Moreover, the average
throughput obtained with S-MAB can be higher (i.e., nega-
tive values in the figure) because of the exploration part
(also less quality may generate higher throughput). Finally,
the difference in core usage (percentage of used allocated
cores) is around 4 percent.

7 CONCLUSION

In this paper, we have proposed a new systematic and effi-
cient methodology and associated algorithms for online
learning and energy-efficient scheduling of Big-Data
streaming applications with multiple streams on many core
systems with resources constraints. The key contributions
of this work are as follows: (1) We formalized the problem
of multi-streams scheduling as a staged decision problem in

which the performance obtained for various resource alloca-
tions is unknown a priori but learned over time. (2) Our
scheduler is able to determine which processing method to
assign to each stream and how to allocate resources over
time in order to maximize the performance on the fly, at
run-time, without having access to any offline information.
(3) Unlike other online learning methods such as standard
multi-armed bandits and reinforcement learning, in our for-
mulation the outcome of each scheduling action depends on
a sequence of previous scheduling decisions and feedbacks
that are taken at a certain stage (window) of time.

ACKNOWLEDGMENTS

This work has been partially supported by the YINS RTD
project (no. 20NA21 150939), funded by Nano-Tera.ch with
Swiss Confederation Financing and scientifically evaluated
by SNSF, and the EC H2020 MANGO project (Agreement
No. 671668). This research was also supported by NSF grant
ECCS-1407712.

REFERENCES

[1] R. Ducasse, et al., “Adaptive topologic optimization for large-scale
stream mining,” IEEE J. Selected Topics Signal Process., vol. 4, no. 3,
pp. 620–636, Jun. 2010.

[2] F. Fu, et al., “Configuring competing classifier chains in distrib-
uted stream mining systems,” IEEE J. Selected Topics Signal Pro-
cess., vol. 1, no. 4, pp. 548–563, Dec. 2007.

[3] B. Foo, et al., “A distributed approach for optimizing cascaded
classifier topologies in teal-time stream mining systems,” IEEE
Trans. Image Process., vol. 19, no. 11, pp. 3035–3048, Nov. 2010.

[4] B. Foo, et al., “Configuring trees of classifiers in distributed multi-
media stream mining systems,” IEEE Trans. Circuits Syst. Video
Technol., vol. 21, no. 3, pp. 245–258, Mar. 2011.

[5] D. S. Turaga, et al., “Resource management for networked classi-
fiers in distributed stream mining systems,” in Proc. 6th Int. Conf.,
2006, pp. 1102–1107.

[6] N. Tatbul, et al., “Load shedding in a data stream manager,” in
Proc. 29th Int. Conf. Very large Data Bases, 2003, pp. 309–320.

[7] Y. Chi, et al., “Loadstar: Load shedding in data stream mining,” in
Proc. 31st Int. Conf. Very Large Data Bases, 2005, pp. 1302–1305.

[8] J. Xu, et al., “Learning optimal classifier chains for real-time big-
data mining,” in Proc. Annu. Allerton Conf. Commun. Control, Com-
put., 2013, pp. 512–519.

[9] K. Kanoun, et al., “Low power and scalable many-core architec-
ture for big-data stream computing,” in Proc. IEEE Comput. Soc.
Annu. Symp. VLSI, vol. 1, no. 1, 2014, pp. 468–473.

[10] M. L. Puterman, Markov Decision Processes: Discrete Stochastic
Dynamic Programming. New York, NY, USA: Wiley, 1994.

[11] J. Gama, et al., “A survey on concept drift adaptation,” ACM Com-
put. Surveys, vol. 46, no. 4, 2014, Art. no. 44.

[12] C. Ballard, et al., IBM InfoSphere Streams. Harnessing Data in
Motion. North Castle, NY, USA: IBM Redbooks, 2010.

[13] J. G. Koomey, et al., Estimating Total Power Consumption by Servers
in the U.S. and the World. Stanford, CA, USA: Stanford Univ. Press,
2007.

[14] P. Auer, et al., “Finite-time analysis of the multiarmed bandit
problem,”Mach. Learn., vol. 47, pp. 235–256, May-Jun. 2002.

[15] T. Lai, et al., “Asymptotically efficient adaptive allocation rules,”
Adv. Appl. Math., vol. 6, pp. 4–22, 1985.

[16] Y. Gai, et al., “Combinatorial network optimization with
unknown variables: Multi-armed bandits with linear rewards and
individual observations,” IEEE Trans. Netw., vol. 20, no. 5,
pp. 1466–1478, Oct. 2012.

[17] A. Slivkins, “Contextual bandits with similarity information,”
J. Mach. Learn. Res., vol. 15, no. 1, pp. 2533–2568, 2011.

[18] N. Cesa-Bianchi, et al., “Combinatorial bandits,” J. Comput. Syst.
Sci., vol. 78, no. 5, pp. 1404–1422, 2012.

[19] K. Kanoun, et al., “Big-data streaming applications scheduling
with online learning and concept drift detection” in Proc. Design,
Automation Test Eur. Conf. & Exhibition, 2015, pp. 1547–1550.

3604 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 12, DECEMBER 2016

[20] Y. Matsumoto, et al., “Manycore processor for video mining
applications,” in Proc. 18th Asia South Pacific Design Automation
Conf., 2013, pp. 574–575.

[21] L. Schor, D. Rai, H. Yang, L. Bacivarov, and L. Thiele, “Reliable
and efficient execution of multiple streaming applications on
Intels SCC processor,” in Proc. ROME, Aug. 2013.

[22] (2013). Tilera TILE-Gx72 [Online]. Available: http://www.tilera.
com

[23] R. Sch€one, et al., “Wake-up latencies for processor idle states on
current x86 processors,” Comput. Sci. Res. Develop., vol. 30, no. 2,
pp. 219–227, 2014.

[24] (2011, Jun.). Intel Xeon Processor 5500 series datasheet [Online].
Avaialble: http://www.intel.com

[25] (2014, Nov.). OpenCV [Online]. Available: http://opencv.org
[26] P. Viola, et al., “Rapid object detection using a boosted cascade of

simple features,” in Proc. IEEE Comput. Society Conf. Comput. Vis.
Pattern Recog., 2001, pp. I-511–I-518.

[27] A. S. Georghiades, et al., “From few to many: Illumination cone
models for face recognition under variable lighting and pose,”
IEEE Trans. Pattern Anal. Machine Intell., vol. 23, no. 6, pp. 643–660,
Jun. 2001.

[28] S. Milborrow, J. Morkel, and F. Nicolls, “The MUCT landmarked
face database,” in Proc. PRASA, 2010, http://www.milbo.org/muct

[29] (1999). Faces 1999 (Front) [Online]. Available: http://www.vision.
caltech.edu/archive.html

[30] (2001). The BioID face database [Online]. Available: https://
www.bioid.com/About/BioID-Face-Database

[31] C. Tekin, et al., “Online learning of rested and restless bandits,”
IEEE Trans. Inf. Theory vol. 58, no. 8, pp. 5588–5611, Aug. 2012.

[32] K. Liu, et al., “Distributed learning in multi-armed bandit with
multiple players,” IEEE Trans. Signal Process. vol. 58, no. 11,
pp. 5667–5681, Nov. 2010.

[33] A. Anandkumar, et al., “Distributed algorithms for learning and
cognitive medium access with logarithmic regret,” IEEE J. Selected
Areas Commun., vol. 29, no. 4, pp. 731–745, Apr. 2011.

[34] A. Tewari and P. Bartlett, “Optimistic linear programming gives
logarithmic regret for irreducible MDPs,” in Proc. Adv. Neural
Inform. Proce. Syst. 2008, pp. 1505–1512.

[35] P. Auer, et al., “Near-optimal regret bounds for reinforcement
learning,” in Proc. Adv. Neural Inform. Process. Syst. 2009, pp. 89–
96.

[36] R. Ortner, et al., “Regret bounds for restless Markov bandits,” in
Proc. Algorithmic Learn. Theory, 2012, pp. 214–228,.

[37] E. Even-Dar and Y. Mansour, “Learning rates for Q-learning,”
J. Mach. Learn. Res., vol. 5, pp. 1–25, 2004.

[38] M. Brezzi and T. Z. Lai, “Optimal learning and experimentation
in bandit problems,” J. Economic Dyn. Control, vol. 27, no. 1,
pp. 87–108, 2002.

[39] V. Gabillon, et al., “Adaptive submodular maximization in bandit
setting,” in Proc. Adv. Neural Inform. Process. Syst., 2013, pp. 2697–
2705.

[40] D. Golovin and A. Krause, “Adaptive submodularity: A new
approach to active learning and stochastic optimization,” in Proc.
Conf. Learn. Theory, 2010, pp. 333–345.

[41] C. H. Papadimitriou and J. N. Tsitsiklis, “The complexity of
optimal queuing network control,” Math. Oper. Res., vol. 24, no. 2,
pp. 293-305, 1999.

Karim Kanoun received the PhD degree in elec-
trical engineering from the �Ecole Polytechnique
F�ed�erale de Lausanne (EPFL), Switzerland in
2015 and the MSc degree in computer science
from the ENSIMAG School of Engineering in
Informatics and Applied Mathematics, Grenoble,
France in 2009. He is currently a postdoctoral
researcher in the Embedded Systems Laboratory
(ESL), Ecole Polytechnique Fdrale de Lausanne,
Lausanne, Switzerland. His research interests
include machine learning and energy efficient

schedulers for big-data stream mining applications on mobile many-core
platforms and large scale systems.

Cem Tekin received the PhD degree in electrical
engineering: systems from the University of Mich-
igan, Ann Arbor, in 2013. He is an assistant pro-
fessor in Electrical and Electronics Engineering
Department, Bilkent University, Turkey. From
2013 to 2015, he was a postdoctoral scholar at
University of California, Los Angeles. His
research interests include machine learning and
data mining. He is a member of the IEEE.

David Atienza is an associate professor of EE,
and director of the Embedded Systems Labora-
tory, Ecole Polytechnique Federale de Lausanne.
His research interests include system-level
design methodologies for both high- and low-end
multi-processor system-on-chip (MPSoC) and
embedded systems, including new 2D/3D
thermal-aware design for MPSoCs, ultra-low
power system architectures for wireless body
sensor nodes, HW/SW reconfigurable systems,
dynamic memory optimizations, and network-on-

chip design. He is a co-author of more than 200 publications, and five
U.S. patents. He was technical programme chair of the IEEE/ACM
DATE 2015, and received the IEEE CEDA Early Career Award in 2013,
the ACM SIGDA Outstanding New Faculty Award in 2012 and has been
distinguished lecturer (period 2014-2015) of the IEEE CASS. He is a
senior member of the ACM. He is a fellow of the IEEE.

Mihaela van der Schaar is chancellor’s profes-
sor of electrical engineering at the University of
California, Los Angeles. She was a distinguished
lecturer of the Communications Society (2011-
2012), the editor in chief of IEEE Transactions on
Multimedia (2011-2013) and a member of the edi-
torial board of the IEEE Journal on Selected
Topics in Signal Processing (2011). Her research
interests include engineering economics and
game theory, multi-agent learning, online learn-
ing, decision theory, network science, multi-user

networking, big data and real-time stream mining, and multimedia. She
is a fellow of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

KANOUN ET AL.: BIG-DATA STREAMING APPLICATIONS SCHEDULING BASED ON STAGED MULTI-ARMED BANDITS 3605

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

