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Bounds
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Abstract—Extracting actionable intelligence from distributed,
heterogeneous, correlated and high-dimensional data sources
requires run-time processing and learning both locally and
globally. In the last decade, a large number of meta-learning
techniques have been proposed in which local learners make
online predictions based on their locally-collected data instances,
and feed these predictions to an ensemble learner, which fuses
them and issues a global prediction. However, most of these works
do not provide performance guarantees or, when they do, these
guarantees are asymptotic. None of these existing works provide
confidence estimates about the issued predictions or rate of learn-
ing guarantees for the ensemble learner. In this paper, we provide
a systematic ensemble learning method called Hedged Bandits,
which comes with both long run (asymptotic) and short run (rate
of learning) performance guarantees. Moreover, our approach
yields performance guarantees with respect to the optimal local
prediction strategy, and is also able to adapt its predictions in
a data-driven manner. We illustrate the performance of Hedged
Bandits in the context of medical informatics and show that
it outperforms numerous online and offline ensemble learning
methods.

Index Terms—Ensemble learning, meta-learning, online learn-
ing, regret, confidence bound, multi-armed bandits, contextual
bandits, medical informatics.

I. INTRODUCTION

Huge amounts of data streams are now being produced by
more and more sources and in increasingly diverse formats:
sensor readings, physiological measurements, GPS events,
network traffic information, documents, emails, transactions,
tweets, audio files, videos etc. These streams are then mined
in real-time to provide actionable intelligence for a variety of
applications: patient monitoring [2], recommendation systems
[3], social networks [4], targeted advertisement [5], network
security [6], [7], medical diagnosis [8] etc. Hence, online data
mining algorithms have emerged that analyze the correlated,
high-dimensional and dynamic data instances captured by one
or multiple heterogeneous data sources, extract actionable
intelligence from these instances and make decisions in real-
time. To mine these data streams, the following questions
need to be answered online, for each data instance: Which
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processing/prediction/decision rule should a local learner (LL)
select? How should the LLs adapt and learn their rules
to maximize their performance? How should the process-
ing/predictions/decisions of the LLs be combined/fused by a
meta-learner to maximize the overall performance?

Existing works on meta-learning [6], [9]–[11] have aimed
to provide solutions to these questions by designing ensemble
learners (ELs) that fuse the predictions1 made by the LLs
into global predictions. A majority of the literature treats the
LLs as black box algorithms, and proposes various fusion
algorithms for the EL with the goal of issuing predictions
that are at least as good as the best LL in terms of prediction
accuracy. In some of these works, the obtained result holds for
any arbitrary sequence of data instance-label pairs, including
the ones generated by an adaptive adversary. However, the
performance bounds proved for the EL in these papers depend
on the performance of the LLs. In this work, we go one step
further and study the joint design of learning algorithms for
both the LLs and the EL. Our approach also differs from
empirical risk minimization (ERM) based approaches [12],
[13]. Firstly, most of the literature on ERM is concerned with
finding the best prediction rule on average. We depart from
this approach and seek to find the best context-dependent
prediction rule. Secondly, data is not available a priori in our
model. Predictions are made on-the-fly based on the prediction
rules chosen by the learning algorithm. This results in a trade-
off between exploration and exploitation, which is not present
in ERM.

In this paper, we present a novel learning method which
continuously learns and adapts the parameters of both the
LLs and the EL, after each data instance, in order to achieve
strong performance guarantees - both confidence bounds and
regret bounds. We call the proposed method Hedged Bandits
(HB). The proposed system consists of a new contextual bandit
algorithm for the LLs and two new variants of the Hedge
algorithm [11] for the EL. The proposed method is able to
exploit the adversarial regret guarantees of Hedge and the data-
dependent regret guarantees of the contextual bandit algorithm
to derive regret bounds for the EL. One proposed variant of
the Hedge algorithm does not require the knowledge of time
horizon T and achieves the O(

√
T logM) on regret uniformly

over time, where M is the number of LLs. The other variant
uses the context/side information provided to the EL to fuse
the predictions of the LLs.

The contributions of this paper are:

1Throughout this paper the term prediction is used to denote a variety of
tasks from making predictions to taking actions.
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• We propose two variants of the Hedge algorithm [11].
The first variant, which is called Anytime Hedge (AH),
is a parameter-free Hedge algorithm [14]–[17]. We prove
that AH enjoys the same order of regret as the orig-
inal Hedge [11]. The second variant, which is called
Contextual Hedge (CH), is novel and uses the context
information provided to the EL when fusing the LLs’
predictions. Since the sequence of context arrivals to the
EL are not known in advance, CH utilizes AH to learn
the best LL for each context.

• We propose a new index-based learning rule for each
LL, called Instance-based Uniform Partitioning (IUP). We
prove an optimal regret bound for IUP, which holds for
any sequence of data instance arrivals to the LL, and
hence, also in expectation.

• We prove confidence bounds for each LL with respect to
the optimal data-dependent prediction rule of that LL.

• Using the regret bounds proven for each LL and the EL,
we prove a regret bound for the EL with respect to the
optimal data-dependent prediction rule.

• We numerically compare IUP, AH and CH with state-
of-the-art machine learning methods in the context of
medical informatics and show the superiority of the
proposed methods.

II. PROBLEM DESCRIPTION

This section describes the system model and introduces the
notation. I(·) is the indicator function, E[·] is the expectation
operator. EP [·] denotes the expectation of a random variable
with respect to distribution P . Given a set S, ∆(S) denotes
the set of probability distributions over S and |S| denotes
the cardinality of S. For a scalar or vector z(t) indexed by
t ∈ N+ := {1, 2, . . .}, zT := (z(1), . . . , z(T )). Given a
vector v, v−i is the vector formed by the components of v
except the ith component. Random variables are denoted by
uppercase letters. Realizations of random variables are denoted
by lowercase letters.

The system model is given in Fig. 1. There are M LLs
indexed by the set M := {1, 2, . . . ,M}. Each LL receives
streams of data instances, sequentially, over discrete time steps
t ∈ {1, 2, . . .}. The instance received by LL i at time t is
denoted by Xi(t). Without loss of generality, we assume that
Xi(t) is a di-dimensional vector in Xi := [0, 1]di .2 Let X :=∏
i∈M Xi denote the joint data instance set.
The collection of data instances at time t is denoted by

X(t) = {Xi(t)}i∈M. For example, X(t) can include in
a medical diagnosis application real-valued features such as
lab test results; discrete features such as age and number of
previous conditions; and categorical features such as gender,
smoker/non-smoker, etc. In this example each LL corresponds
to a (different) medical expert. The true label at time t is
denoted by Y (t), which is a random variable that takes values
in the finite label set Y . Let J denote the joint distribution
of (X(t), Y (t)). It is assumed that {(X(t), Y (t))}Tt=1 is i.i.d.

2The unit hypercube is just used for notational simplicity. Our methods
can easily be generalized to arbitrary bounded, finite dimensional data spaces,
including spaces of categorical variables.
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Fig. 1. Block diagram of the HB. The flow of information towards the EL is
illustrated via a tree graph, where the LLs are the leaf nodes. After observing
the instance, each LL selects one of its prediction rules to produce a prediction,
and sends its prediction to the EL which makes the final prediction. Then,
both the LLs and the EL update their prediction policies based on the received
feedback y(t). Note that the EL only observes the predictions ĥ(t) of the
LLs but not their instances x(t).

Let J ixi denote the conditional distribution of (X−i(t), Y (t))
given Xi(t) = xi.

The set of prediction rules of LL i is denoted by Fi. For
instance, a prediction rule can be a classifier such as an SVM
with polynomial kernel, a neural network or a decision tree.
Let F := ∪i∈MFi denote the set of all prediction rules. The
prediction produced by f ∈ Fi given context xi ∈ Xi is
denoted by Yf (xi). Yf (xi) is a random variable whose distri-
bution is given by Qf (xi), where Qf : Xi → ∆(Y). Prediction
of f ∈ Fi at time t is denoted by Ŷf (t) := Yf (Xi(t)).
Let Z(t) := (X(t), Y (t), {Ŷf (t)}f∈F ). Then, {Z(t)}Tt=1

is an i.i.d. sequence. Realizations of the random variables
Xi(t), Y (t) and Ŷf (t) are denoted by xi(t), y(t) and ŷf (t),
respectively. The accuracy of prediction rule f ∈ Fi for a data
instance x ∈ Xi is given as

πf (x) := E
[
I(Ŷf (t) = Y (t))

∣∣∣ Xi(t) = x
]
.

LL i operates as follows: It first observes xi(t), and then
selects a prediction rule ai(t) ∈ Fi. The selected prediction
rule produces a prediction ĥi(t) = ŷai(t)(t).3 Then, all LLs
send their predictions ĥ(t) := {ĥi(t)}i∈M to the EL, which
combines them to produce a final prediction ŷ(t). We assume
that the true label y(t) is revealed after the final prediction,
by which the LLs and the EL can update their prediction rule
selection strategy, which is a mapping from the history of past
observations, decisions, and the current instance to the set of
prediction rules. We call rf (t) = I(ŷf (t) = y(t)) the reward
of prediction rule f , vi(t) := I(ĥi(t) = y(t)) the reward of
LL i and rEL(t) = I(ŷ(t) = y(t)) the reward of the EL at time

3Without loss of generality we assume that only the selected prediction rule
produces a prediction. For instance, in big data stream mining, the LL may be
resource constrained and require to make timely predictions. The LL in this
setting is constrained to activate only one of its prediction rules for each data
instance. Moreover, observing the predictions of more than one prediction
rule will result in faster learning. Hence, all our performance bounds will still
hold when the LL observes the predictions of all of its prediction rules.
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t. Random variables that correspond to the realizations ai(t),
ĥi(t), rf (t), vi(t) and rEL(t) are denoted by Ai(t), Ĥi(t),
Rf (t), Vi(t) and REL(t), respectively.

In our setup each LL is only required to observe its own
data instance and know its own prediction rules. However,
the accuracy of the prediction rules is unknown and data
dependent. The EL does not know anything about the in-
stances and prediction rules of the LLs.4 We assume that the
accuracy of a prediction rule obeys the following Hölder rule,
which represents a similarity measure between different data
instances.

Assumption 1. There exists L > 0, α > 0 such that for all
i ∈M, f ∈ Fi, and x, x′ ∈ Xi, we have

|πf (x)− πf (x′)| ≤ L||x− x′||α.
We assume that α is known by the LLs. Going back to

our medical informatics example, we can interpret Assumption
1 as follows. If the lab tests, symptoms and demographic
information of two patients are similar, it is expected that they
have the same underlying medical condition, and hence, the
(diagnosis) prediction should be similar for these two patients.

III. PERFORMANCE METRICS: REGRET

In this section, we introduce several performance metrics to
assess the performance of the learning algorithms of the LLs
and the EL. First, we define the performance measures for
the LLs. We start by defining the optimal prediction rules and
local oracles (LOs) that implement these prediction rules. Let
f∗i (x) be the optimal prediction rule of LL i for an instance
x ∈ Xi, which is given by f∗i (x) ∈ arg maxf∈Fi πf (x). The
accuracy of f∗i (x) is denoted by π∗i (x) := πf∗i (x)(x).

LO i knows {πf (·)}f∈Fi perfectly. At each time step t it
observes xi(t) and then selects f∗i (xi(t)) to make a prediction.
Since LL i does not know {πf (·)}f∈Fi a priori, we would like
to measure how well it performs with respect to LO i. For this,
we define the data-dependent regret of LL i with respect to
LO i as

Regi(T ) :=
T∑
t=1

Rf∗i (Xi(t))(t)−
T∑
t=1

RAi(t)(t).

The strategy of LO i only depends on XT
i =

(Xi(1), . . . , Xi(T )). Thus, we would like to measure how well
LL i performs given XT

i . For this, we define the conditional
regret of LL i as

Regi(T |XT
i ) := E[Regi(T ) |XT

i ]. (1)

The algorithm we propose in Section IV almost surely (a.s.)
upper bounds the conditional regret with a deterministic sub-
linear function of time. The expected regret of LL i is defined
as

Regi(T ) := E[Regi(T )]

= E
[
E[Regi(T ) |XT

i ]
]

= E[Regi(T |XT
i )].

4We consider the case when the EL has access to a subset of the features of
the instances in Section VII, and propose a learning algorithm for this case.

This implies that a deterministic upper bound on Regi(T |XT
i )

that holds a.s. also holds for Regi(T ).
Next, we define the performance measures for the EL. Con-

sider any realization {vTi }i∈M of the random reward sequence
{V T

i }i∈M of the LLs. The best LL for this realization is
defined as Ib, where Ib ∈ arg maxi∈M

∑T
t=1 vi(t). In Section

V, we propose a learning algorithm for the EL, whose total
reward is close to the total reward of Ib for any realization
{vTi }i∈M. To measure the distance between total rewards, we
define the pseudo-regret of the EL given {vTi }i∈M as

RegEL(T ) :=
T∑
t=1

vIb(t)− E

[
T∑
t=1

REL(t)

]
(2)

where the expectation is taken with respect to the randomiza-
tion of the EL. In Section V we bound RegEL(T ) by a sublinear
function of T , which implies that limT→∞ RegEL(T )/T = 0.
RegEL(T ) compares the performance of the EL with the best
LL, which makes it a relative performance measure. This
is the standard approach taken in prior works in ensemble
learning [11], [18]. Since LLs themselves are learning agents,
RegEL(T ) depends on the learning algorithms used by the LLs.
Next, we propose a benchmark for the performance measure
of the EL that is independent of the learning algorithms used
by the LLs.

The optimal LO denoted by i∗, is given as i∗ ∈
arg maxi∈M E[

∑T
t=1Rf∗i (Xi(t))(t)]. LO i∗’s total predic-

tive accuracy is greatest among all LOs. On the other
hand, the best LL in expectation is defined as i∗b ∈
arg maxi∈M E

[∑T
t=1RAi(t)(t)

]
. We would like to emphasize

the fact that the expected reward of LL i depends on the
learning algorithm used by the LL, while the expected reward
of LO i is the optimal that can be achieved given the prediction
rules in Fi. Hence, the latter upper bounds the former. This
implies that E[

∑T
t=1RAi∗

b
(t)(t)] ≤ E[

∑T
t=1Rf∗i∗ (Xi∗ (t))(t)].

As an absolute measure of performance we define the expected
regret of the EL as

RegEL(T ):= E

[
T∑
t=1

Rf∗
i∗ (Xi∗ (t))

(t)

]
− E

[
T∑
t=1

REL(t)

]
(3)

which compares the EL with the best LO in terms of the
expected reward.

Our goal is to jointly design algorithms for the LLs and
the EL that minimize the learning loss (i.e. the growth rate of
RegEL(T )). This can be viewed equivalently as maximizing the
learning speed/rate of the LL and the EL algorithms. We will
prove in the Section VI a sublinear upper bound on RegEL(T ),
meaning that the proposed algorithms have a provably fast
rate of learning, and the average regret RegEL(T )/T of the
proposed algorithms converges asymptotically to 0. A learning
algorithm that achieves sublinear regret guarantees that (in
expectation) the number of prediction errors it makes is in the
order of that of the optimal LO, which knows the accuracies
of the prediction rules for each instance in advance.
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IV. AN INSTANCE-BASED UNIFORM PARTITIONING
ALGORITHM FOR THE LLS

Each LL uses the Instance-based Uniform Partitioning
(IUP) algorithm given in Fig. 3. IUP is designed to exploit the
similarity measure given in Assumption 1 when learning the
accuracies of the prediction rules. Basically, IUP partitions Xi
into a finite number of equal sized, identically shaped, non-
overlapping sets, whose granularities determine the balance
between approximation accuracy and estimation accuracy:
increasing the size of a set in the partition results in more past
instances falling within that set, which positively affects the es-
timation accuracy, but also allows more dissimilar instances to
lie in the same set, which negatively affects the approximation
accuracy. IUP strikes this balance by adjusting the granularity
of the data space partition based on the information contained
within the similarity measure (Assumption 1) and the time
horizon T .5

Let mi be the partitioning parameter of LL i, which is
used to partition [0, 1]di into mdi

i identical hypercubes. This
partition is denoted by Pi.6 IUP estimates the accuracy of each
prediction rule for each set (hypercube) p ∈ Pi, separately,
by only using the past history from instance arrivals that fall
into hypercube p. For each LL i, IUP keeps and updates the
following parameters during its operation:
• N i

f,p(t): Number of times an instance arrived to hyper-
cube p ∈ Pi and prediction rule f of LL i is used to
make the prediction prior to time t.

• π̂if,p(t): Sample mean accuracy of prediction rule f ∈ Fi
at time t.

An illustration of the partitions used by IUP for each LL is
given in Fig 2. IUP strikes the balance between exploration
and exploitation by keeping the following set of indices for
each p ∈ Pi and f ∈ Fi:7

gif,p(t) = π̂if,p(t) +

√
2

N i
f,p(t)

(1+2 log(2|Fi|mdi
i T

3
2 )). (4)

The second term in (4) is an inflation term that decreases
with the square root of N i

f,p(t). The (1+2 log(2|Fi|mdi
i T

3/2)
term is a normalization constant that is required for the
regret analysis in Theorem 1. These types of indices are
commonly used in online learning [20] to tradeoff exploration
and exploitation.

At the beginning of time step t, LL i observes xi(t),
and identifies the hypercube pi(t) ∈ Pi that contains xi(t).

5The doubling trick [19] allows any learning algorithm Γ that requires
the time horizon as an input to run efficiently (with the same time order
of regret) without the knowledge of the time horizon. With the doubling
trick, time is partitioned into multiple phases (j = 1, 2, . . .) with doubling
lengths (T1, T2, . . .). For instance, if the first phase is set to last for T̂ time
steps, then the length of the jth phase is equal to 2j−1T̂ time steps. In
each phase j, an independent instance of the original learning algorithm Γ,
denoted by Γj , is run from scratch, without using any information available
from the previous phases. With the doubling trick, Γj ’s time horizon input is
set to 2j−1T̂ . When we run IUP for LL i with the doubling trick, the only
modification that is needed is to set the partitioning parameter of phase j to
mi = d(2j−1T̂ )1/(2α+di)e.

6Instances laying at the edges of the hypercubes can be assigned to one of
the hypercubes in a random fashion without affecting the derived performance
bounds.

7When N i
f,p(t) = 0, we set gif,p(t) to +∞.
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Fig. 2. Illustration of different partitions used by IUP for LLs i and j.
Accuracy parameter is updated for the shaded sets in the partitions, which
contains the current feature vector.

Then, it selects ai(t) ∈ arg maxf∈Fi g
i
f,pi(t)

(t) and predicts
ĥi(t) = ŷai(t)(t). The second term of the index reflects
the uncertainty in the estimated value π̂if,p(t). It decreases
as more observations are gathered from prediction rule f
for data instances that lie in p. Hence, gif,p(t) serves as an
optimistic estimate of the accuracy of f for data instances in
p. LL i explores when ai(t) /∈ arg maxf∈Fi π̂

i
f,pi(t)

(t), and
exploits when ai(t) ∈ arg maxf∈Fi π̂

i
f,pi(t)

(t). In exploration,
it chooses a prediction rule with suboptimal estimated accu-
racy and high uncertainty, while in exploitation it chooses the
prediction rule with the highest estimated accuracy. In Section
VI, we will show that the choice of the index in (4) results in
optimal learning.

IUP for LL i:
Input: T , mi, di
Initialize sets: Create partition Pi of [0, 1]di into mdi

i
identical hypercubes
Initialize counters: N i

f,p = 0, ∀f ∈ Fi, p ∈ Pi, t = 1
Initialize estimates: π̂if,p = 0, ∀f ∈ Fi, p ∈ Pi
while t ≥ 1 do

Find the set p∗ = pi(t) ∈ Pi that xi(t) belongs to
Compute the index for each f ∈ Fi:
for f ∈ Fi do

if N i
f,p∗ > 0 then

gif,p∗ = π̂if,p∗ +

√
2

Ni
f,p∗

(1 + 2 log(2|Fi|mdi
i T

3
2 ))

else
gif,p∗ = +∞
end if

end for
Select ai = argmaxf∈Fi g

i
f,p∗ (break ties randomly)

Predict ĥi(t) = ŷai(t)
Observe the true label y(t) and the reward
vi(t) = I(ĥi(t) = y(t))
π̂iai,p∗ ← (π̂iai,p∗N

i
ai,p∗ + vi(t))/(N

i
ai,p∗ + 1)

N i
ai,p∗ ← N i

ai,p∗ + 1
t← t+ 1

end while

Fig. 3. Pseudocode of IUP for LL i.

V. ANYTIME HEDGE ALGORITHM FOR THE EL

In this section, we consider a parameter-free variant of the
Hedge algorithm, called the Anytime Hedge (AH). Hedge [11]
is an algorithm that uses the exponential weights update rule.
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It achieves O(
√
T ) regret under the prediction with expert

advice model. In this model, the goal is to compete with the
best expert given a pool of experts. Hedge takes as input a
parameter η, that is called the learning rate. The regret of
Hedge is minimized when η is carefully selected according to
the time horizon T .

Unlike the original Hedge, AH does not require a priori
knowledge of the time horizon. The EL uses AH to produce
the final prediction ŷ(t).8 Although, numerous parameter-free
variants of Hedge are introduced in prior works [14]–[17],
to the best of our knowledge the regret analysis for AH is
new. Specifically, in Theorem 2.3 of [17], regret bound for a
parameter-free Exponentially Weighted Average Forecaster is
derived. However, it is assumed that (i) the prediction of the
EL is a deterministic weighted average of the predictions of
the LLs, and (ii) the space of predictions and the loss functions
are convex. In contrast to this, in our setting (i) the prediction
of the EL is probabilistic, and (ii) the space of prediction is a
finite set Y and the loss functions I(ĥi(t) 6= y(t)) and I(ŷ(t) 6=
y(t)) are indicator functions.

Anytime Hedge (AH)
Input: A non-increasing sequence of positive real numbers
{η(t)}t∈N+

Initialization: Li(0) = 0 for i ∈M, t = 1
while t ≥ 1 do

Receive predictions of LLs: ĥ(t)
Choose the LL I(t) to follow according to the distribution
q(t) := (q1(t), . . . , qM (t)) where

qi(t) =
exp(−η(t)Li(t− 1))∑M
j=1 exp(−η(t)Lj(t− 1))

Predict ŷ(t) = ĥI(t)(t)
Observe the true label y(t)
Receive the reward rEL(t) = I(ŷ(t) = y(t)) and observe
losses of all LLs: li(t) := I(ĥi(t) 6= y(t)) for i ∈M
Set Li(t) = Li(t− 1) + li(t)
t← t+ 1

end while

Fig. 4. Pseudocode of AH.

AH keeps a cumulative loss/error vector L(t) =
(L1(t), . . . , LM (t)), where Li(t) denotes the number of pre-
diction errors made by LL i by the end of time step t.
After observing ĥ(t), AH samples its final prediction Ŷ (t)
from this set according to probability distribution q(t) =
(q1(t), . . . , qM (t)), where

Pr(Ŷ (t) = ĥi(t)) = qi(t) =
exp(−η(t)Li(t− 1))∑M
j=1 exp(−η(t)Lj(t− 1))

where {η(t)}t∈N+ is a positive non-increasing sequence. This
implies that AH will choose the LLs with smaller cumulative
error with higher probability.

8We decided to use AH as the ensemble learning algorithm due to its
simplicity and regret guarantees. In practice, AH can be replaced with other
ensemble learning algorithms. For instance, we also evaluate the performance
when LLs use IUP and the EL uses Weighted Majority (WM) algorithm [10]
in the numerical results section. Unlike AH, WM uses qi(t) as the weight
of the prediction of LL i. It sets the weight of y ∈ Y to be wy(t) =∑
i:ĥi(t)=y

qi(t) and predicts ŷ(t) ∈ arg maxy∈Y wy(t).

VI. ANALYSIS OF THE REGRET

In this section we prove bounds on the regrets given in (1)
and (3), when the LLs use IUP and the EL uses AH as their
algorithms. The following theorem bounds the regret of each
LL.

Theorem 1. Regret bounds for LL i. When LL i uses IUP
with the partitioning parameter mi ∈ N+, given XT

i = xTi
we have

Regi(T |XT
i = xTi ) ≤ 1 + 2Ld

α/2
i m−αi T + |Fi|mdi

i

+ 2Ami

√
|Fi|mdi

i T . (5)

Specifically, when mi = dT 1/(2α+di)e, we have

Regi(T |XT
i = xTi ) ≤ T

α+di
2α+di Ci + T

di
2α+di 2di |Fi|+ 1 (6)

where Ci = 2Ami |Fi|1/22di/2 + 2Ld
α/2
i and Ami =

2
√

2(1 + 2 log(2|Fi|mdi
i T

3
2 )). From (6), it immediately fol-

lows that

Regi(T |XT
i ) ≤ T

α+di
2α+di Ci + T

di
2α+di 2di |Fi|+ 1 a.s.

Regi(T ) ≤ T
α+di
2α+di Ci + T

di
2α+di 2di |Fi|+ 1.

Proof. See Appendix B.

Theorem 1 states that the difference between the expected
number of correct predictions made by LO i and IUP increases
as a sublinear function of the sample size T . Time order
of the terms that appear in (5) are balanced when mi =
dT 1/(2α+di)e. This means that the average excess prediction
error of IUP compared to the optimal policy converges to
zero as the number of data instances grows (approaches
infinity). The regret bound enables us to exactly calculate
how far IUP is from the optimal strategy for any finite T , in
terms of the average number of correct predictions. Basically,
we have Regi(T )/T = Õ(T

− α
2α+di ). Moreover the rate of

growth of the regret, which is Õ(T
α+di
2α+di ) is optimal [21] (up

to a logarithmic factor), i.e., there exists no other learning
algorithm that can achieve a smaller rate of growth of the
regret.

Remark 1. The memory complexity of IUP is O(|Fi|mdi
i ). For

mi = dT 1/(2α+di)e, it becomes O(|Fi|T di/(2α+di)). For mem-
ory bounded LLs, with a bound Mi ∈ N+ on the partitioning
parameter, we can set mi = min{dT 1/(2α+di)e,Mi}. In this
case, LL i will incur sublinear regret when dT 1/(2α+di)e ≤
Mi. Otherwise, the regret may not be sublinear. However, we
can still obtain an approximation guarantee for IUP, since
limT→∞ Regi(T |XT

i )/T = 2Ld
α/2
i m−αi . This implies that

IUP’s average reward will be within 2Ld
α/2
i M−αi of the

average reward of LO i.

Remark 2. Time order of the regret decreases as α increases
(given that T > d

α+di/2
i holds. Otherwise, the bound given

in Theorem 1 becomes trivial). This can be observed by
investigating Assumption 1. Given two instances x and x′ and
a prediction rule f , as α increases, difference between the
prediction accuracies of f for two instances x and x′ that
lie in the same set of the partition decreases. The constant
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that multiplies the time order of the regret increases as L
increases. This holds because as L increases, the difference
between prediction accuracies of f for x and x′ may become
larger.

As a corollary of the above theorem, we have the following
confidence bound on the accuracy of the predictions of LL i
made by using IUP.

Corollary 1. Confidence bound for LL i. Assume that LL
i uses IUP with the value of the partitioning parameter
mi given in Theorem 1. Let ACCi,ε(t) be the event that
the prediction rule chosen by IUP for LL i at time t has
accuracy greater than or equal to π∗i (xi(t)) − ε. For any
time t, we have Pr(ACCi,εt(t)) ≥ 1 − 1/T , where εt =√

8
Ni
ai(t),pi(t)

(t)
(1 + 2 log(2|Fi|mdi

i T
3
2 )) + 2Ld

α/2
i T

−α
2α+di .

Proof. See Appendix C.

Corollary 1 gives a confidence bound on the predictions
made by IUP for each LL. This guarantees that the prediction
made by IUP is very close to the prediction of the best
prediction rule that can be selected given the instance. For
instance, in medical informatics, the result of this corollary
can be used to calculate the patient sample size required to
achieve a desired level of confidence in the predictions of the
LLs. For instance, for every (ε, δ) pair, we can calculate the
minimum number of patients N∗ such that, for every new
patient n > N∗, IUP will not choose any prediction rule that
has suboptimality greater than ε > 0 with probability at least
1 − δ, when it exploits (To achieve this we need to set the
second term in (4) appropriately). Moreover, Corollary 1 can
also be used to determine the number of patients that need
to be enrolled in a clinical trial to achieve a desired level of
confidence on the effectiveness of a drug.

The theorem below bounds the pseudo-regret of AH for any
realization of LLs’ rewards, hence almost surely.

Theorem 2. When AH is run with learning parameter
η(t) =

√
logM/t, for any reward sequence {vTi }i∈M,

the pseudo-regret of the EL with respect to the best LL
is bounded by RegEL(T ) ≤ 2

√
T logM . Hence, we have

maxi∈M
∑T
t=1 Vi(t) − E

[∑T
t=1REL(t)

]
≤ 2
√
T logM a.s.,

where the expectation is taken with respect to the randomiza-
tion of the EL.

Proof. The proof is given in the online appendix [22].

The next theorem shows that the expected regret of the EL
given in (3) grows sublinearly over time and the term with the
highest regret order scales with Fmax = maxi∈M |Fi| rather
than |F|, which is the sum of the number of prediction rules
of all the LLs.

Theorem 3. Regret bound for the EL When the EL runs AH
with learning parameter η(t) =

√
logM/t and all LLs run

IUP with the partitioning parameter given in Theorem 1, the
expected regret of the EL with respect to the best LO i∗ is
bounded by

RegEL(T ) ≤ T
α+di∗
2α+di∗ Ci∗ + T

di∗
2α+di∗ 2di∗ |Fi∗ |

+ 2
√
T logM + 1

where the definition of Ci∗ is given in Theorem 1.

Proof. See Appendix D.

Theorem 3 proves that the highest time order of the re-
gret does not depend on M , since Ci∗ only depends on
|Fi∗ | ≤ Fmax but not on | ∪i∈M Fi|. This implies that the
effect of the number of LLs to the learning rate is negligible.
Since regret is measured with respect to the optimal data-
dependent prediction strategy of the best LL (identical to the
best LO), the benchmark will generally improve as LLs with
higher performances are added to the system. Moreover, the
learning loss with respect to the benchmark is only slightly
affected by introducing new LLs to the system. Therefore, the
performance of the EL will generally improve as LLs with
higher performances are added to the system.

VII. EXTENSIONS

Active EL: Since IUP selects a prediction rule with high
uncertainty when it explores, the prediction accuracy of an
LL can be low when it explores. Since the EL combines the
predictions of the LLs, taking into account the prediction of
an LL which explores can reduce the prediction accuracy of
the EL. In order to overcome this limitation, we propose the
following modification: Let A(t) ⊂M be the set of LLs that
exploit at time t. If A(t) = ∅, the EL will randomly choose
one of the LLs’ prediction as its final prediction. Otherwise,
the EL will apply an ensemble learning algorithm (such as AH
or WM) using only the LLs in A(t). This means that only the
predictions of the LLs in A(t) will be used by the EL and
only the weights of the LLs in A(t) will be updated by the
EL. Our numerical results illustrate that such a modification
can indeed result in an accuracy that is much higher than the
accuracy of the best LL.

Contextual EL (CEL): The predictive accuracy of the EL
can be further improved if it can observe a set of contexts
that yields additional information about the accuracies of LLs’
prediction rules. For instance, these contexts can be a subset
of the data instances that LLs observe, or some other side
observation about the instance that the EL currently examines.

We assume that CEL can observe dEL-dimensional context
in addition to the predictions of the LLs. Let xEL(t) be the
context observed at time t by the EL, which is an element of
XEL = [0, 1]dEL . The learning algorithm we propose for CEL is
called Contextual Hedge (CH). Similar to IUP, CH partitions
the context space into equal sized, identically shaped, non-
overlapping sets, and learns a different LL selection rule for
each set in the partition. With this modification, the EL can
learn the best LL for each set in the partition, which will
yield a higher predictive accuracy than learning the best LL
only based on the number of correct predictions.

The pseudocode of the CH is given in Fig. 5. CH runs
a different instance of the AH in each set p of its context
space partition PEL. The cumulative loss vector it keeps for
p at time t is denoted by Lp(t) = (Lp,1(t), . . . , Lp,M (t)),
where Lp,i(t) denotes the number of prediction errors made
by LL i by the end of time step t for contexts that arrived
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to p. NEL,p(t) denotes the number of context arrivals to p
by the end of time t. At the beginning of time step t, CH
identifies the set in P that xEL(t) belongs to, which is denoted
by pEL(t). After CH receives the set of predictions ĥ(t) of the
LLs, it samples its final prediction from this set according to
probability distribution q(t) = (q1(t), . . . , qM (t)), where

Pr(Ŷ (t) = ĥi(t)) = qi(t)

=
exp(−η(NEL,pEL(t)(t))LpEL(t),i(t− 1))∑M
j=1 exp(−η(NEL,pEL(t)(t))LpEL(t),j(t− 1))

.

Standard Hedge algorithm is not suitable in this setting
because it requires the knowledge of NEL,p(T ) beforehand
for each p ∈ PEL. However, AH works properly because
it can update its learning parameter η(·) on-the-fly for each
p ∈ PEL, using the most recent value of NEL,p(t). Let
Zp(t) := {l ≤ t : xEL(l) ∈ p} denote the set of times in
which the context is in p by time t. For a given sequence of
LL rewards {vTi }i∈M and context arrivals xTEL we define the
best LL for set p ∈ PEL of the EL as

i∗p ∈ arg max
i∈M

∑
l∈Zp(T )

vi(l).

The contextual pseudo-regret of CEL is defined as

RegCEL(T ) :=
T∑
t=1

vi∗
pEL(t)

(t)− E

[
T∑
t=1

REL(t)

]
(7)

where the expectation is taken with respect to the randomiza-
tion of CH. The following theorem bounds the regret of CH
based on the granularity of the partition it creates.

Theorem 4. Regret bound for CH. When CEL runs CH
with learning parameter η(t) =

√
logM/t and partitioning

parameter mEL, the contextual pseudo-regret of the CEL is
bounded by

RegCEL(T ) ≤ 2
√
T (mEL)dEL logM

for any ({vTi }i∈M,xTEL).

Proof. See Appendix E.

The regret bound given in Theorem 4 is obtained with-
out making any distributional assumptions on data instance
and context arrivals. Given a fixed time horizon T , this
regret bound increases at rate mdEL/2

EL . Since the trivial regret
bound RegCEL(T ) ≤ T always holds, the bound in Theorem
4 guarantees that the regret is sublinear only if mEL <
(T/(4 logM))1/dEL . It might seem counter-intuitive that the
regret is minimized when mEL = 1. The reason for this is that
our benchmark

∑T
t=1 vi∗pEL(t)

(t) given in the left-hand side of

(7) reduces to the benchmark maxi∈M
∑T
t=1 vi(t) given in

(2) when mEL = 1. The next lemma shows that the reward of
the benchmark in (7) is non-decreasing in mEL when mEL is
chosen from {1, 2, 4, 8, . . .}.
Lemma 1. Consider m′ and m in {1, 2, 4, 8, . . .} such that
m′ > m. Let P ′ (P) be the partition of XEL formed by m′ (m).

Let p′(t) (p(t)) denote the set in P ′ (P) that xEL(t) belongs
to. For any ({vTi }i∈M,xTEL), we have

T∑
t=1

vi∗
p′(t)

(t) ≥
T∑
t=1

vi∗
p(t)

(t).

Proof. Due to the fact that m′ and m are chosen from
{1, 2, 4, 8, . . .}, each p′ ∈ P ′ is included in exactly one p ∈ P9

Moreover, each p ∈ P includes exactly (m′/m)dEL sets in P ′.
Let Sp denote the set of p′ ∈ P ′ such that p′ ⊂ p. For any
p ∈ P we have

max
i∈M

∑
l∈Zp(T )

vi(l) ≤
∑
p′∈Sp

max
i∈M

∑
l∈Zp′ (T )

vi(l).

Hence,
T∑
t=1

vi∗
p(t)

(t) =
∑
p∈P

max
i∈M

∑
l∈Zp(T )

vi(l)

≤
∑
p∈P

∑
p′∈Sp

max
i∈M

∑
l∈Zp′ (T )

vi(l)

=
∑
p′∈P′

max
i∈M

∑
l∈Zp′ (T )

vi(l) =
T∑
t=1

vi∗
p′(t)

(t).

Theorem 4 and Lemma 1 shows the tradeoff between
approximation and estimation errors. The benchmark we com-
pare CH against improves (never gets worse) as mEL increases.
Ideally, we would like CH to compete with

∑T
t=1 vi∗{xEL(t)}

(t),
i.e., with respect to the best LL given context xEL(t). For
xEL(t) ∈ p, CH approximates i∗{xEL(t)} with i∗p. Learning
(estimating) i∗{xEL(t)} is harder than learning i∗p because the
past observations that CH can use to learn i∗{xEL(t)} is less
than or equal to (usually less than) that it can use to learn
i∗p. This is the reason why the regret increases with mEL. The
optimal value for mEL can be found by pre-training CH before
its online deployment.

VIII. ILLUSTRATIVE RESULTS

In this section, we evaluate the performance of several
HB-based methods and compare them with numerous other
state-of-the-art machine learning methods on a breast cancer
diagnosis dataset from the UCI archive [23].

A. Simulation Setup

Description of the dataset: The original dataset contains
569 instances and 32 attributes, of which one attribute is the
ID number of the patient and one attribute is the label. Each
instance contains features extracted from the images of fine
needle aspirate (FNA) of breast mass. There are 30 clinically
relevant attributes. The diagnosis outcome (label) is whether
the tumor of the patient is malignant or benign.

Benchmarks: We compare HB with several state-of-the-
art centralized and decentralized benchmarks. A centralized
benchmark is a machine learning algorithm that has access

9Assignment of the contexts that lie on the boundary to one of the adjacent
sets can be done in any predetermined way without affecting the result.
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Contextual Hedge (CH)
Input: A non-increasing sequence of positive real numbers
{η(t)}t∈N+ , mEL and dEL

Initialize sets: Create partition PEL of [0, 1]dEL into (mEL)
dEL

identical hypercubes
Initialize counters: NEL,p = 0, ∀p ∈ PEL, t = 1
Initialize losses: Li,p = 0, ∀i ∈M, p ∈ PEL
while t ≥ 1 do

Find the set in PEL that xEL(t) belongs to, i.e., pEL(t). Let
p = pEL(t)
Set NEL,p ← NEL,p + 1
Receive predictions of LLs: ĥ(t)
Choose the LL I(t) to follow according to the distribution
q(t) := (q1(t), . . . , qM (t)) where

qi(t) =
exp(−η(NEL,p)Li,p)∑M
j=1 exp(−η(NEL,p)Lj,p)

Predict ŷ(t) = ĥI(t)(t)
Observe the true label y(t)
Receive the reward rEL(t) = I(ŷ(t) = y(t)) and observe
losses of all LLs: li(t) = I(ĥi(t) 6= y(t)) for i ∈M
Set Li,p ← Li,p + li(t) for i ∈M
t← t+ 1

end while

Fig. 5. Pseudocode of CH.

to all the features of an instance. A decentralized benchmark
on the other hand, applies the same LL and EL structure as
the HB. Hence, each LL has access to a subset of features.
However, the algorithms used to train the LL and the EL are
different from the HB.

In the first set of experiments, we compare the HB methods
with centralized benchmarks such as Support Vector Machine
(SVM) and Logistic Regression (LR). In the second set of
experiments, we study the performance of various ensemble
learning methods for the EL, by fixing the learning algorithm
of the LLs as IUP. In the third set of experiments, we evaluate
the impact of system variables such as the number of LLs and
past history on the performance of the HB methods. In the
fourth set of experiments, we consider the extensions described
in Section VII.

The list of the algorithms used by the EL in this section is
given below.
• Adaptive Boosting (AdaBoost) [11].
• Perceptron Weighted Majority (PWM) [6], [24].
• Blum’s variant of Weighted Majority (Blum) [25].
• Herbster’s variant of Weighted Majority (TrackExp) [26].

We also compare performance of the HB with standard bench-
marks that are widely used in learning theory, which are listed
below.
• Best LL: LL with the highest accuracy over the dataset.
• Worst LL: LL with the lowest accuracy over the dataset.
• Average LL: Accuracy averaged over all the LLs.
When IUP is used, we assume that each LL has two

prediction rules: rule 1 always predicts malignant, and rule 2
always predicts benign. Hence, using IUP, each LL is learning
the best prediction for each set in its feature space partition.

General setup: For all the simulations, each algorithm is
run 50 times. The reported results correspond to the averages
taken over these runs.

For the HB, we create 3 LLs, and randomly assign 10
attributes to each LL as its feature types for each run indepen-
dently. The LLs do not have any common attributes. Hence,
di = 10 for all i ∈ {1, 2, 3}. Each run of the HB is done over
T = 10000 data instances that are drawn independently and
uniformly at random from the 569 instances of the original
dataset except Experiment 1 and 2, in which training and test
samples are separated (for offline algorithms).

Performance metrics: We report three performance metrics
for the above experiments: prediction error rate (PER), false
positive rate (FPR) and false negative rate (FNR). PER is
defined as the fraction of times the prediction is different from
the true label. FPR and FNR are defined as the prediction
error rate for benign cases and malignant cases, respectively.
The main goal of diagnosis is to minimize the FPR, given a
tolerable threshold for the FNR selected by the system user.
In the simulations, the threshold for FNR is set to be 3%,
which is considered to be a reasonable level in breast cancer
diagnosis [27]. Using this threshold, we can re-characterize
the performance metric as follows.

minimize FPR subject to FNR ≤ 3%.

FNR can be set below 3% by introducing a hyper-parameter
which trade-offs FPR and FNR. The details are explained
below.

For IUP, π̂i1,p (π̂i2,p) denotes the estimated accuracy for ma-
lignant (benign) classifier for feature set p of LL i. Prediction
is performed using the indices given in (4). LL i will predict
malignant if gi1,p ≥ gi2,p.10 Otherwise, it will predict benign.
Let hIUP be the hyper-parameter for IUP. We can modify the
prediction rule of IUP as follows: LL i predicts malignant if
hIUP× gi1,p ≥ gi2,p. Otherwise, it predicts benign. It is obvious
that when hIUP > 1, LL i classifies more cases as malignant,
which yields a decrease FNR and an increase FPR.

For SVMs and logistic regression, the hyper-parameter is the
decision boundary between the malignant and benign cases.
Assume that we assign label 1 to the malignant case and 0 to
the benign case. An unbiased decision boundary will classify
every output that is greater than 0.5 as malignant and less than
0.5 as benign. If we perturb the decision boundary such that it
lies below 0.5, then it is expected that SVM and LR classify
more cases as malignant. This yields a decrease in FNR and
an increase in FPR.

In order to set FNR just below 3%, we first randomly select
a hyper-parameter value and run the corresponding algorithm
50 times, and then calculate FPR and FNR. After this step, the
hyper-parameter is adjusted to minimize the distance between
FNR and the threshold. The reported PER and FPR correspond
to the ones that are obtained for the hyper-parameter value
which makes FNR just below 3%.

To compare the performance of various algorithms, we
introduce the concept of improvement ratio (IR). Let PM(A)
denote the performance of algorithm A for metric PM. PM
can be any loss metric such as PER, FPR, FNR. The IR of

10Without loss of generality, we assume that the prediction of LL i is
malignant when gi1,p = gi2,p.
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algorithm A with respect to algorithm B is defined as

(PM(B)− PM(A))/PM(B).

B. Experiment 1 (Table I, Fig. 6)

This experiment compares HB against LR, SVM, AdaBoost
(all trained offline); and Best LL, Average LL and Worst LL
benchmarks. The training of the offline methods is performed
as follows. LR and SVM are trained in a centralized way and
have access to all 30 features. In the test phase, they observe
all the 30 features of the new instance and make a prediction.
AdaBoost is trained in a decentralized way. It has 3 weak
learners (logistic regression with different parameters), which
are randomly assigned to 10 of the 30 attributes. These weak
learners do not share any common attributes.

For each run, offline methods are trained using different
285 (50%) randomly drawn instances from the original 569
instances. Then, the performances of both the HB and bench-
marks are evaluated on 10, 000 instances drawn uniformly
at random from the remaining 284 instances (excluding 285
training instances) for each run.

As Table I shows, HB (IUP + WM) has 2.96% PER and
2.61% FPR when the FNR is set to be just below 3%. Hence,
the PER IR of HB (IUP + WM) with respect to the best
benchmark algorithm (LR) is 0.51. We also note that the PER
IR of the best LL with respect to the second best algorithm is
0.44. This implies that the IUP used by the LLs yields high
classification accuracy, because it is able to learn online the
best prediction given the types of features seen by each LL.

HB with WM outperforms the best LL, because it takes
a weighted majority of the predictions of LLs as its final
prediction, rather than relying on the predictions of a single
LL. As observed from Table I, all LLs have reasonably high
accuracy, since PER of the worst LL is 6.23%. In contrast to
WM, AH puts a probability distribution over the LLs based
on their weights, and follows the prediction of the chosen LL.
With highly accurate LLs, the deterministic approach (WM)
works better than the probabilistic approach (AH), because in
almost all time steps, the majority of the LLs make correct
predictions.

TABLE I
COMPARISON OF HB WITH OFFLINE BENCHMARKS

Units(%) Average Standard Deviation
Performance Metric PER FPR FNR PER FPR FNR

HB(IUP+WM) 2.96 2.61 2.99 0.73 1.26 0.88
HB(IUP + AH) 3.83 4.46 2.98 0.85 1.43 0.79

Logistic Regression 6.04 8.48 2.94 2.18 4.07 1.3
AdaBoost 6.91 9.55 2.99 2.58 4.82 1.83

SVMs 9.73 14.21 2.98 2.5 4.19 1.98
Best LL of IUP 3.39 3.57 2.99 0.85 1.43 0.79

Average LL of IUP 4.68 6.17 2.97 0.89 1.49 0.85
Worst LL of IUP 6.23 9.06 2.99 1.62 2.71 1.54

Another advantage of HB is that it has low standard
deviation for PER, FPR and FNR, which is expected since
IUP provides tight confidence bounds on the accuracy of the
prediction rule chosen for any instance for which it exploits.
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Fig. 6. PER of HB, LR and AdaBoost as a function of the composition of
the training set.

In Fig. 6, the performances of HB (with WM), LR and
AdaBoost are compared as a function of the training set
composition. Since both LLs and the EL learn online in
HB, its performance does not depend on the training set
composition. On the other hand, the performance of LR and
AdaBoost highly depends on the composition of the training
set. Although these benchmarks can be turned into an online
algorithm by retraining them after every time step, the com-
putational complexity of the online implementations for these
algorithms will be high compared to that of the HB. Therefore,
implementing the online versions of these benchmarks are not
feasible when the dataset under consideration is large, and
decisions have to be made on-the-fly.

C. Experiment 2 (Table II)

This experiment compares HB against four ensemble learn-
ing algorithms: AdaBoost, PWM, Blum and TrackExp. The
goal of this experiment is to assess how the algorithm used by
the EL impacts the performance. To isolate this effect, all the
LLs use the same learning algorithm. The learning algorithms
we use for the LLs are IUP (online), LR and SVM (offline). In
this experiment, the performance metric is the accuracy for the
1001st patient. All of the other simulation details are exactly
the same as in Experiment 1.

As seen in Table II, performance of the HB is better than
the other ensemble learning methods when the FNR threshold
is set to 3%. More specifically, the performance improvement
ratio of HB (with WM) in comparison with the second best
algorithm (TrackExp) is 0.08 and 0.11 in terms of PER and
FPR when IUP is used by the LLs.

D. Experiment 3 (Fig. 7)

This experiment analyzes the performance of the HB as a
function of two system parameters: the number of LLs and
the dataset size. Firstly, we analyze the performance using
different numbers of LLs - from 2 to 30 -, over 10000 patients
(as in Experiment 1). In this simulation, all the LLs have
access to different types of attributes. Hence, as the number of
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TABLE II
COMPARISON OF HB WITH OTHER ENSEMBLE LEARNING METHODS.

Unit(%) Local Learner Algorithm
IUP Logistic Regression SVMs

Ensemble Learning Algorithm PER FPR FNR PER FPR FNR PER FPR FNR
HB(with WM) 2.72 1.96 2.94 2.81 2.71 2.97 3.43 3.51 2.97
HB(with AH) 4.35 5.05 2.93 3.61 3.81 2.95 4.63 5.11 2.97

AdaBoost 3.02 3.09 2.98 3.28 3.15 2.97 4.27 4.16 2.95
PWM 3.11 2.82 2.96 2.96 3.08 2.96 3.95 4.55 2.96
Blum 3.09 3.12 2.93 3.5 3.78 3.00 3.68 4.18 2.95

TrackExp 2.97 2.21 2.99 3.03 3.05 2.93 4.02 3.81 2.99
Best LL 3.96 4.69 2.96 3.22 3.3 2.99 3.96 4.26 2.96

Average LL 5.22 7.04 2.98 4.5 4.58 2.94 5.64 5.8 2.92
Worst LL 6.55 9.41 2.97 6.4 6.48 2.97 6.36 7.03 2.94
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Fig. 7. Left: Number of features seen by each LL vs PER, Right: Number
of past patients vs PER

LLs increase, the number of attributes per LL decreases. This
can be viewed as increasing the amount of decentralization
in the system. Secondly, we analyze the performance as a
function of the total number of patients that have arrived so
far. For this case, the number of LLs is fixed to 3.

Effect of the number of LLs: The left Fig. 7 shows the
performance of the HB with WM and AH as a function of the
number of LLs. In this case, the number of features seen by
each LL is roughly equal to 30/M . As M increases both the
performance of the LLs and the EL decreases. The decrease in
the performance of the LLs is due to the fact that they see less
features, and each LL has less information about the data. The
decrease in the performance of the EL is due to the decrease
in the performance of the LLs.

Effect of the number of previously diagnosed patients:
The right Fig. 7 shows the performance of the HB as a function
of the number past patients. As expected, the performance
improves monotonically with the number of past patients,
which is consistent with the regret results we have obtained.

E. Experiment 4

1) Extension 1: Active EL (Table III, Table IV): Table III
shows the percentage of times the LLs explore and exploit.
The LLs are in exploration in 1.5% of the time steps, and the
LLs’ overall accuracy in these steps is around 50%.

If the EL only considers the predictions of the LLs that
exploit (Active EL), both HB with WM and AH have improved
performance compared to the original HB, as shown in Table
IV. Specifically, the PER IRs of Active EL (with WM or AH)

TABLE III
PERFORMANCE OF EXPLORATION STEP AND EXPLOITATION STEP.

Units(%) Exploration Exploitation Average
PER 50.34 3.79 4.51
FPR 42.88 2.51 2.94
FNR 55.88 5.93 7.11
Ratio 1.52 98.48 100.00

with respect to the original HB (with WM or AH) are 0.12
and 0.14, respectively.

TABLE IV
PERFORMANCE IMPROVEMENT WITH ACTIVE EL.

Units(%) HB (with WM)
Best LL HB HB with Active EL

PER 3.39 2.96 2.60
FPR 3.57 2.61 2.12
FNR 2.99 2.99 2.98

Units(%) HB (with AH)
Best LL HB HB with Active EL

PER 3.39 3.83 3.30
FPR 3.57 4.46 3.46
FNR 2.99 2.98 2.98

2) Extension 2: Missing and erroneous labels (Fig 8): In
this section, we illustrate the degradation in performance that
results from randomly introducing missing or erroneous labels.
When the label is missing, the LLs and the EL do not update
their learning algorithms. Fig. 8 shows the affect of the missing
label rate to the PER. It is observed that when 50% of the
labels are missing, the PER degradation is only around 1%
for both HB (with AH) and HB (with WM). This shows the
robustness of HB to missing labels.

Next, we introduce erroneous labels (for binary labels, this
correspond to flipped labels). Since the LLs and the EL update
their learning algorithms when the label is incorrect, this
results inaccurate accuracy estimates. Fig. 8 shows the affect
of the erroneous label rate to the PER. For instance, when
10% of the labels are erroneous, the PER degradation is less
than 2% for both HB (with AH) and HB (with WM).

3) Extension 3: Contextual EL (CEL): This experiment
studies CEL introduced in Section VII. CEL is compared
with the original HB and the best LL (each LL uses IUP).
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Fig. 8. Left: Performance degradation due to missing labels. Right: Perfor-
mance degradation due to erroneous labels.

In addition to this, the predictive accuracy of the proposed
method as a function of the number of features assigned to
the CEL (dEL) is computed. The simulation parameters are
exactly the same as the parameters used in Experiment 1.

As Table V shows, CEL with WM has 2.31% PER, 1.48%
FPR, and 2.98% FNR. Hence, the performance improvement
ratios with respect to the original HB (IUP+WM) approach
are 0.22 and 0.43 in terms of PER and FPR, respectively. In
addition, the performance IRs with respect to the best LL are
0.32 and 0.59 in terms of PER and FPR, respectively. In other
words, CEL with WM significantly outperforms the original
HB (IUP+WM) and the best LL in terms of both PER and
FPR. The reason for these improvements is that CEL learns
the best LL for each feature set in its partition, rather than
learning the best LL in overall.

TABLE V
COMPARISON OF CEL WITH ORIGINAL HB AND THE BEST LL IN TERMS

OF PER, FPR AND FNR (dEL = 3 FOR CEL(WM), dEL = 4 FOR
CEL(AH))

Units (%) PER FPR FNR
CEL(WM) 2.31 1.48 2.98
CEL(AH) 3.49 4.01 2.95
HB(WM) 2.96 2.61 2.99
HB(AH) 3.83 4.46 2.98

Best LL of IUP 3.39 3.57 2.99

Table VI shows the performance of CEL as a function of the
number of features observed by the EL. When WM is used, the
performance improves until dEL = 3, while when AH is used
the performance improves until dEL = 4. The reason that the
performance does not improve monotonically with dEL is the
tradeoff between estimation and approximation errors, which
is described in detail in Section VII.

4) Effect of α on performance (Table VII): As α in As-
sumption 1 changes, optimized partitioning parameter mi =
dT 1/(2α+di)e changes. In illustrative results, we set T =
10000, M = 3 and di = 10 for all LLs. Thus, if α ≥ 1.65,
mi = 2. Otherwise, mi = 3. Table VII shows that the optimal
performance is achieved when mi = 2.

IX. RELATED WORKS

In this section, we compare our proposed method with other
online learning and ensemble learning methods in terms of the
underlying assumptions and performance bounds.

TABLE VI
PERFORMANCE OF CEL AS A FUNCTION OF THE NUMBER OF FEATURES

THAT CEL CAN OBSERVE

CEL CEL
+WM +AH

dEL PER FPR FNR PER FPR FNR
0 (Original HB) 2.96 2.61 2.99 3.83 4.46 2.98

1 2.71 2.13 2.99 4.16 5.07 2.97
2 2.33 1.47 3.00 3.74 4.31 2.98
3 2.31 1.48 2.98 3.64 4.16 2.96
4 2.42 1.61 2.92 3.49 4.01 2.95
5 2.46 1.54 2.97 4.03 4.95 2.98
6 2.58 1.71 2.93 4.35 5.34 2.99

TABLE VII
PERFORMANCE OF HB FOR DIFFERENT α VALUES.

Units(%) HB (WM) HB (AH)
α mi PER FPR FNR PER FPR FNR

≥ 1.65 2 2.96 2.61 2.99 3.83 4.46 2.98
< 1.65 3 5.56 6.81 2.98 6.46 9.02 2.97

Heterogeneous data observations: Most of the existing
ensemble learning methods assume that the LLs make pre-
dictions by observing the same set of instances [10], [28],
[29], [30], [31]. Our methods allow the LLs to act based
on heterogeneous data streams that are related to the same
event. Moreover, we impose no statistical assumptions on the
correlation between these data streams. This is achieved by
isolating the decision making process of the EL from the
data. Essentially, the EL acts solely based on the predictions
it receives from the LLs.

Our proposed method can be viewed as attribute-distributed
learning [9], [32]. In attribute-distributed learning, learners
observe different features of the same instance and make
local predictions. These local predictions are merged into a
global prediction by a fusion center (EL). Numerous papers
have considered the attribute-distributed learning model and
proposed collaborative training algorithms to train the LLs
[33], [34]. However, these algorithms require information
exchange between the LLs. In contrast to these works, in our
proposed work, information exchange is only possible between
an LL and the EL. Hence concerns about data security and
privacy are ruled out in our work.

There is a wide range of literature that develops distributed
estimation techniques in which distributed LLs come up with
consensus-based [35] or diffusion-based [36] parameter esti-
mates by iteratively exchanging their local parameters com-
puted based on the local observations. Unlike these works, in
which the optimal parameter estimation problem is formulated
as a distributed optimization problem, in our work the optimal
prediction rule selection problem is formulated as a learning
problem, and we explicitly focus on balancing the tradeoff
between exploration and exploitation. Moreover, we do not
make any restriction on the type of classifiers (prediction rules)
used by LLs (except the similarity assumption), and do not
require any message exchange between LLs.

Data-dependent oracle benchmark vs. empirical risk
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minimization: Our method can be viewed as online supervised
learning with bandit feedback, because only the estimated
accuracies of the prediction rules chosen by the LLs can be
updated after the label is observed. Most of the prior works in
this field use empirical risk minimization techniques [12], [13]
to learn the optimal hypothesis. Let Hi := Xi → Fi denote a
hypothesis for LL i, which is simply a mapping from the data
instance that LL i observes to the set of prediction rules of LL
i. Since the data instance space is taken as [0, 1]di , there are
infinitely many hypothesis. The optimal hypothesis for LL i
is H∗i (xi) = f∗i (xi). As opposed to our work, ERM assumes
access to N i.i.d. samples of the data instances, the label and
the predictions (given as {(x(t), y(t), {ŷf (t)}f∈F )}Nt=1) by
which the loss of any hypothesis Hi can be evaluated. Using
these i.i.d. samples, the empirical risk of Hi is calculated
as Risk(Hi) = 1

N

∑N
t=1[Rf∗i (xi(t))(t) − RHi(xi(t))(t)]. For

LL i, ERM seeks out to find a hypothesis Ĥi such that
Ĥi ∈ arg minh∈Hi Risk(h).

There are several important differences between ERM and
our approach: In our approach the LLs and the EL update
their hypothesis on-the-fly as more data and observations are
gathered. IUP is an alternative to solving for the hypothesis
that minimizes the empirical risk at each time step. Moreover,
our algorithms are: (i) guaranteed to converge to the optimal
hypothesis, and the convergence rate is explicitly characterized
in terms of the regret bounds; (ii) work efficiently even when
the hypothesis space Hi is infinite or very large by partitioning
Xi; (iii) work under partial feedback, i.e., only the prediction
of the selected prediction rule is observed, hence the sam-
ples available at time step t are (x(t), y(t), {ŷai(t)(t)}i∈M}).
Moreover, not all of these are observed by the same learner.

Reduced computational and memory complexity: Most
ensemble learning methods require access to the entire dataset
[11] or process the data in chunks [28]. For instance, [28]
considers an online version of AdaBoost, in which weights are
updated in a batch fashion after the processing of each data
chunk is completed. Unlike this work, our method processes
each instance only once upon its arrival, and do not need to
store any past instances. Moreover, the LLs only learn from
their own instances, and no data exchange between LLs are
necessary. The above properties make our method efficient in
terms of memory and computation, and suitable for distributed
implementation.

Decentralized consensus optimization (DCO): The goal
in DCO is to maximize a global objective function subject to
numerous local constraints [37]–[40]. In this framework, dis-
tributed agents, which only have access to local information,
exchange messages to cooperate with each other, in order to
maximize the global payoff. The message exchange process
continues until a predefined stopping criterion is satisfied.
Unlike DCO, in our work, both local and global payoff
functions are not known in advance. The LLs and the EL
can only obtain noisy feedback about these payoffs, which
is whether a prediction error happened or not. Moreover, the
optimal actions (prediction rules) depend on the data instance
(context), and hence are dynamically changing. In addition,
the information only flows from the LLs to the EL, and there

is only a single message exchange at each decision (time) step.
Unlike maximizing the global objective function of a single-
shot decision problem, our goal is to maximize the cumulative
reward incurred over multiple decision steps.

X. CONCLUSION

In this paper we proposed a new online learning method
that jointly considers the learning problem of the LLs and
the EL. The proposed method comes with confidence and
regret guarantees, which is very important in practice for many
applications. Our theoretical results show that the time order
of the regret for the EL is not affected by the number of
LLs, which implies that the convergence speed of the EL
to the optimal remains almost unchanged when the number
of LLs in the system is increased. Our extensive numerical
results show the superiority of the proposed approach in
terms of its predictive accuracy. Specifically, Contextual EL
performs significantly better than other ensemble learning
methods, since it can utilize more information about the data
features. We also proposed various other extensions to our
proposed methods to deal with low confidence predictions
during explorations and adaptation to missing labels.

APPENDIX A
PRELIMINARIES FOR THE PROOF OF THEOREM 1

All the expressions used in the proofs below are related to
LL i. To simplify the notation, we drop subscripts/superscripts
related to LL i from the notation. For instance, we use π̂f,p(t)
instead of π̂if,p(t), Nf,p(t) instead of N i

f,p(t), p(t) instead of
pi(t) and f∗ instead of f∗i (x) when the data instance we refer
to is clear from the context.

The regret is computed by conditioning on XT
i = xTi . Let

τ ip(t) denote the time step in which the tth context arrives
to p ∈ Pi of LL i. Let x̃p(t) = xi(τ

i
p(t)), r̃f,p(t) =

rf (τ ip(t)), ṽp(t) = vi(τ
i
p(t)), π̃f,p(t) = π̂f,p(τ

i
p(t)), Ñf,p(t) =

Nf,p(τ
i
p(t)) and ãp(t) = ai(τ

i
p(t)). Let N i

p(T ) (or simply
Np(T )) be the number of context arrivals to p ∈ Pi by the
end of time T . Let

Cf,p(t) :=

√
2

Ñf,p(t)
(1 + 2 log(2|Fi|(mi)diT

3
2 )).

For any p ∈ Pi, f ∈ Fi and t ∈ {1, . . . , Np(T )}, we
define the following lower confidence bound (LCB) and upper
confidence bound (UCB):

Lf,p(t) := max{π̃f,p(t)− Cf,p(t), 0}
Uf,p(t) := min{π̃f,p(t) + Cf,p(t), 1}.

Let UC(f, p, v) := ∪Np(T )
t=1 {πf (x̃p(t)) /∈ [Lf,p(t) −

v, Uf,p(t) + v]} denote the event that LL i is not confident
about the accuracy of its prediction rule f at least once for
instances in p by time T . Throughout our analysis we set
v = L(

√
di/mi)

α. Let UC(p, v) :=
⋃
f∈Fi UC(f, p, v) and

UC(v) := ∪p∈PiUC(p, v). (8)

For each p ∈ Pi and f ∈ Fi let πf,p := supx∈p πf (x) and
πf,p := infx∈p πf (x).
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APPENDIX B
PROOF OF THEOREM 1

We will bound the regret in each p ∈ Pi separately. Then,
we will sum over all p ∈ Pi to bound the total regret.
Preliminaries are given in Appendix A.

Regi(T |XT
i ) =

T∑
t=1

πf∗i (Xi(t))(Xi(t))

− E

[
T∑
t=1

πAi(t)(Xi(t))

∣∣∣∣∣XT
i

]
. (9)

The first term in (9) is obtained by observing that

E

[
T∑
t=1

Rf∗i (Xi(t))(t)

∣∣∣∣∣XT
i

]

=
T∑
t=1

∑
f∈Fi

E
[
Rf (t)I(f∗i (Xi(t)) = f)

∣∣∣XT
i

]

=

T∑
t=1

∑
f∈Fi

I(f∗i (Xi(t)) = f) E
[
Rf (t)

∣∣∣XT
i

]

=

T∑
t=1

πf∗i (Xi(t))(Xi(t)).

Let Ft−1 be the sigma field generated by XT
i , At−1

i , Y t−1.
The second term in (9) is obtained by observing that

E

[
T∑
t=1

RAi(t)(t)

∣∣∣∣∣XT
i

]

=

T∑
t=1

∑
f∈Fi

E
[
E[Rf (t)I(Ai(t) = f) | Ft−1]

∣∣∣XT
i

]
(10)

=

T∑
t=1

∑
f∈Fi

E
[
I(Ai(t) = f) E[Rf (t) | Ft−1]

∣∣∣XT
i

]
(11)

=
T∑
t=1

∑
f∈Fi

E
[
I(Ai(t) = f)πf (Xi(t))

∣∣∣XT
i

]
(12)

= E

[
T∑
t=1

πAi(t)(Xi(t))

∣∣∣∣∣XT
i

]
where (10) is by the law of iterated expectations, (11) is by
the fact that I(Ai(t) = f) is Ft−1 measurable, (12) is by
definition of πf (·) and the fact that Rf (t) is independent of
all random variables in (XT

i ,A
t−1
i ,Y t−1) except Xi(t).

For p ∈ Pi, let

Regi,p(T |XT
i = xTi ) :=

Np(T )∑
t=1

πf∗(x̃p(t))(x̃p(t))

− E

Np(T )∑
t=1

πÃp(t)(x̃p(t))

∣∣∣∣∣∣XT
i = xTi

. (13)

Using (9) we obtain

Regi(T |XT
i = xTi ) =

∑
p∈Pi

Np(T )∑
t=1

πf∗(x̃p(t))(x̃p(t))

− E

∑
p∈Pi

Np(T )∑
t=1

πÃp(t)(x̃p(t))

∣∣∣∣∣∣XT
i = xTi


=
∑
p∈Pi

Regi,p(T |XT
i = xTi ). (14)

The expectation in (13) is taken with respect to the randomness
of Ãp(1), . . . , Ãp(Np(T )) given XT

i = xTi . By the definition
of IUP, conditioned on XT

i = xTi , Ãp(t) only depends on
random variables Ãp(1), Ṽp(1), . . . , Ãp(t−1), Ṽp(t−1). Since,
Ṽp(t) = R̃Ãp(1),p(t), we conclude that {Ãp(t)}Np(T )

t=1 only

depends on random variables Rp := ∪f∈Fi{R̃f,p(t)}
Np(T )
t=1 .

Hence, the expectation in (13) is taken with respect to the
conditional distribution of Rp given xTi .

Since {(X(t), Y (t), {Ŷf (t)}f∈F )}Tt=1 is an i.i.d. sequence,
random variables Rf (t), t = 1, . . . , T conditioned on XT

i

are independent. Since Rf (t) ∈ {0, 1} and E[Rf (t) | XT
i =

xTi ] = πf (xi(t)), we can say that conditioned on XT
i = xTi ,

{Rf (t)}Tt=1 is a sequence of independent Bernoulli random
variables with parameters {πf (xi(t))}Tt=1 for f ∈ Fi. With an
abuse of notation, in the subsequent analysis in this section,
Rf (t) will done the random reward of f conditioned on
Xi(t) = xi(t), and all the expectations are taken with respect
to the random variables defined above, unless otherwise stated.
Hence, given XT

i = xTi , we drop the conditioning on XT
i

from the notation and simply write

Regi,p(T ) =

Np(T )∑
t=1

πf∗(x̃p(t))(x̃p(t))− ERp

Np(T )∑
t=1

πÃp(t)(x̃p(t))

 .
By the law of total expectation we have

E[Regi,p(T )] = E[Regi,p(T ) | UC(p, v)] Pr(UC(p, v))

+ E[Regi,p(T ) | UCC(p, v)] Pr(UCC(p, v))

≤ T Pr(UC(p, v)) + E[Regi,p(T ) | UCC(p, v)]. (15)

We will use the results of following lemmas to upper bound
(15).

Lemma 2. (Bound on Pr(UC(f, p, v))) Pr(UC(f, p, v)) ≤
1/(|Fi|mdi

i T ).

Proof. Equivalently, we can define {R̃f,p(t)}Nρ(T )
t=1 in the fol-

lowing way: Let {ηt}Nρ(T )
t=1 be a sequence of i.i.d. random vari-

ables uniformly distributed in [0, 1]. Then, R̃f,p(t) = I(ηt ≤
πf (x̃p(t))). We can express the sample mean reward (accu-
racy) of f as π̃f,p(t) =

∑t−1
l=1 R̃f,p(l)I(ãp(l) = f)/Ñf,p(t).

From the definitions of Lf,p(t),Uf,p(t) and UC(f, p, v), it can
be observed that the event UC(f, p, v) happens when π̃f,p(t)
remains close to (or concentrates around) πf (x̃p(t)) for all
t ∈ {1, . . . , Np(T )}.

This motivates us to use the concentration inequality given
in Appendix F, which is derived in [41] from a similar
concentration inequality in [42]. This inequality requires the
expected reward from an action to be equal to the same
constant at all time steps. This is clearly not the case for
πf (x̃p(t)) since elements of {x̃p(t)}Np(T )

t=1 are not identical
which makes distributions of R̃f,p(t), t ∈ {1, . . . , Np(T )}
different.
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In order to overcome this issue, we propose a novel
sandwich technique. Based on ηt, we define two new se-
quences of random variables, whose sample mean val-
ues will lower and upper bound π̃f,p(t). The best se-
quence is defined as {R̄f,p(t)}Nρ(T )

t=1 where Rf,p(t) =
I(ηt ≤ πf,p), and the worst sequence is defined as
{Rf,p(t)}

Nρ(T )
t=1 where Rf,p(t) = I(ηt ≤ πf,p). Let

πf,p(t) :=
∑t−1
l=1 Rf,p(l)I(ãp(l) = f)/Ñf,p(t) and πf,p(t) :=∑t−1

l=1 Rf,p(l)I(ãp(l) = f)/Ñf,p(t). We have πf,p(t) ≤
π̃f,p(t) ≤ πf,p(t) ∀t ∈ {1, . . . , Np(T )} almost surely.
Let Lf,p(t) := max{πf,p(t) − Cf,p(t), 0}, Uf,p(t) :=
min{πf,p(t) + Cf,p(t), 1}, Lf,p(t) := max{πf,p(t) −
Cf,p(t), 0} and Uf,p(t) := min{πf,p(t) + Cf,p(t), 1}. It can
be shown that

{πf (x̃p(t)) /∈ [Lf,p(t)− v, Uf,p(t) + v]}
⊂ {πf (x̃p(t)) /∈ [Lf,p(t)− v, Uf,p(t) + v]}
∪ {πf (x̃p(t)) /∈ [Lf,p(t)− v, Uf,p(t) + v]}.

The following inequalities can be obtained from Assumption
1.

πf (x̃p(t)) ≤ πf,p ≤ πf (x̃p(t)) + L

(√
di
mi

)α
(16)

πf (x̃p(t))− L
(√

di
mi

)α
≤ πf,p ≤ πf (x̃p(t)). (17)

Since v = L
(√
di/mi

)α
, using (16) and (17) it can be shown

that

{πf (x̃p(t)) /∈ [Lf,p(t)− v, Uf,p(t) + v]}
⊂{πf,p /∈ [Lf,p(t), Uf,p(t)]}, and
{πf (x̃p(t)) /∈ [Lf,p(t)− v, Uf,p(t) + v]}
⊂{πf,p /∈ [Lf,p(t), Uf,p(t)]}.

Using the equation above and the union bound we obtain

Pr(UC(f, p, v)) ≤ Pr
(
∪Np(T )
t=1 {πf,p /∈ [Lf,p(t), Uf,p(t)]}

)
+ Pr

(
∪Np(T )
t=1 {πf,p /∈ [Lf,p(t), Uf,p(t)]}

)
.

Both terms on the right-hand side of the inequality above
can be bounded using the concentration inequality in Ap-
pendix F. Using δ = 1/(2|Fi|(mi)

diT ) in Appendix F gives
Pr(UC(f, p, v)) ≤ 1/(|Fi|(mi)

diT ) since 1 + Nf,p(T ) ≤
T .

Lemma 3. On event UCC(p, v) we have πf∗(x̃p(t)) −
πãp(t)(x̃p(t)) ≤ Uãp(t),p(t) − Lãp(t),p(t) + 2v for all t ∈
{1, . . . , Np(T )}.
Proof. Uãp(t),p(t) + v ≥ Uf∗,p(t) + v since IUP selects the
decision rule with the highest index at each time step. On
event UCC(p, v) this implies πf∗(x̃p(t)) ≤ Uãp(t),p(t) + v.
The proof concludes by observing that πãp(t)(x̃p(t)) ≥
Lãp(t),p(t)− v on event UCC(p, v).

Lemma 4. (Bound on E[Regi,p(T ) | UCC(p, v)])

E[Regi,p(T ) | UCC(p, v)]

≤ 2vNp(T ) + 2Ami

√
|Fi|Np(T ) + |Fi|

where Ami := 2
√

2(1 + 2 log(2|Fi|(mi)diT
3
2 ).

Proof. Let Tf,p := {t ≤ Np(T ) : ãp(t) = f}. By Lemma 3,

E[Regi,p(T )|UCC(p, v)] ≤ 2vNp(T )

+ E

∑
f∈Fi

∑
t∈Tf,p

(UÃp(t),p(t)− LÃp(t),p(t))

∣∣∣∣∣∣UCC(p, v)

. (18)

Next, we show∑
f∈Fi

∑
t∈Tf,p

(Uãp(t),p(t)− Lãp(t),p(t))

≤
∑
f∈Fi

1 +Ami
∑

{t∈Tf,p:Ñf,p(t)≥1}

√
1

Ñf,p(t)

 (19)

= |Fi|+Ami
∑
f∈Fi

Nf,p(T )−1∑
l=0

√
1

1 + l

≤ |Fi|+ 2Ami
∑
f∈Fi

√
Nf,p(T ) (20)

≤ |Fi|+ 2Ami

√
|Fi|Np(T ) (21)

where (19) follows from the definition of Lf,p(t) and
Uf,p(t), (20) follows from the fact that

∑Nf,p(T )−1
l=0

√
1

1+l ≤∫ Nf,p(T )

x=0
(1/
√
x)dx = 2

√
Nf,p(T ) and (21) is obtained by

applying the Cauchy-Schwarz inequality given in Appendix G
and observing that Np(T ) ≥∑f∈Fi Nf,p(T ).

Lemma 2 and the union bound yields

Pr(UC(p, v)) ≤ 1/((mi)
diT ). (22)

Upper bounding (15) by Lemma 4 and (22) gives

E[Regi,p(T )] ≤ 1

(mi)di
+ 2vNp(T ) + 2Ami

√
|Fi|Np(T )

+ |Fi|. (23)

Using (14) together with (23) results in

Regi(T |XT
i = xTi )

≤
∑
p∈Pi

(
1

(mi)di
+ 2vNp(T ) + |Fi|+ 2Ami

√
|Fi|Np(T )

)
≤ 1 + 2vT + |Fi|(mi)

di + 2Ami

√
|Fi|(mi)diT (24)

where the last inequality follows from the Cauchy-Schwarz
inequality and

∑
p∈Pi Np(T ) = T . The result of the theorem

is obtained from (24) by setting mi = dT 1/(2α+di)e.

APPENDIX C
PROOF OF COROLLARY 1

Using (22), (8) and the union bound, we obtain (for any LL
i) Pr

(
UCC

(
L(
√
di
mi

)α
))
≥ 1 − 1

T . Lemma 3 states that on

event UCC
(
L(
√
di
mi

)α
)

we have

πf∗i (xi(t))(xi(t))− πai(t)(xi(t))
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≤ Uai(t),pi(t)(Npi(t)(t))− Lai(t),pi(t)(Npi(t)(t))

+ 2L(

√
di
mi

)α.

The result follows from the definition of Uf,p(t), Lf,p(t) and
the fact that mi = dT 1/(2α+di)e.

APPENDIX D
PROOF OF THEOREM 3

Since the result of Theorem 2 holds for any realization
{vTi }i∈M of the reward sequence, for any distribution over
the reward sequence, we have

E

[
T∑
t=1

Vi∗(t)

]
− E

[
T∑
t=1

REL(t)

]
≤ 2
√
T logM. (25)

The equation above holds since E[maxi∈M
∑T
t=1 Vi(t)] ≥

E[
∑T
t=1 Vi∗(t)] for any distribution over the reward sequence.

RegEL(T ) can be re-written as

RegEL(T ) = E

[
T∑
t=1

Rf∗
i∗ (Xi∗ (t))

(t)

]
− E

[
T∑
t=1

RAi∗ (t)(t)

]
(26)

+ E

[
T∑
t=1

Vi∗(t)

]
− E

[
T∑
t=1

REL(t)

]
(27)

since E[
∑T
t=1RAi∗ (t)(t)] = E[

∑T
t=1 Vi∗(t)]. The result fol-

lows from bounding (26) by using Theorem 1, and (27) by
(25).

APPENDIX E
PROOF OF THEOREM 4

Since CH keeps and updates a separate probability distri-
bution over the LLs for each p ∈ PEL, regret given in (7) can
be re-written as

RegCEL(T ) =
∑
p∈PEL

 ∑
l∈Zp(T )

vi∗p(l)− E

 ∑
l∈Zp(t)

REL(l)

 .
By Theorem 2 we obtain

∑
l∈Zp(T )

vi∗p(l)− E

 ∑
l∈Zp(T )

REL(l)

 ≤ 2
√
NEL,p(T ) logM. (28)

Using (28), the Cauchy-Schwarz inequality given in Appendix
G and the fact that

∑
p∈PEL

NEL,p(T ) = T we get

∑
p∈PEL

 ∑
l∈Zp(T )

vi∗p(l)− E

 ∑
l∈Zp(T )

REL(l)


≤ 2
√

logM
∑
p∈PEL

√
NEL,p(T ) ≤ 2

√
T (mEL)dEL logM.

APPENDIX F
CONCENTRATION INEQUALITY (APPENDIX A IN [41])
Consider a prediction rule f of LL i for which the rewards

are generated by an i.i.d. process {R(t)}Tt=1 with πf =
E[R(t)], where the noise R(t) − πf is bounded in [−1, 1].
Let Nf (T ) ≥ 1 denote the number of times f is selected by
LL i by the end of time T . Let π̂f (T ) =

∑T
t=1 I(ai(t) =

f)R(t)/Nf (T ) For any δ > 0 with probability at least 1− δ
we have

|π̂f (T )− πf |

≤
√

2

Nf (T )

(
1 + 2 log

(
(1 +Nf (T ))1/2

δ

))
∀T ∈ N.

APPENDIX G
CAUCHY-SCHWARZ INEQUALITY

| < x,y > | ≤ √< x,x >< y,y >, where x and y are
D-dimensional real-valued vectors and < ·, · > denotes the
standard inner product.

APPENDIX H
A BOUND ON DIVERGENT SERIES

For ρ > 0, ρ 6= 1,
∑T
t=1 1/(tρ) ≤ 1 + (T 1−ρ − 1)/(1− ρ).

Proof. See [43].
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