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a b s t r a c t 

Wireless mesh networks (WMNs) provide cost-effective alternatives for extending wireless communica- 

tion over larger geographical areas. In this paper, given a WMN with its nodes and possible wireless 

links, we consider the problem of gateway node selection for connecting the network to the Internet 

along with operational problems such as routing, wireless transmission capacity allocation, and trans- 

mission power control for efficient use of wired and wireless resources. Under the assumption that each 

node of the WMN has a fixed traffic rate, our goal is to allocate capacities to the nodes in proportion 

to their traffic rates so as to maximize the minimum capacity-to-demand ratio, referred to as the ser- 

vice level. We adopt a time division multiple access (TDMA) scheme, in which a time frame on the same 

frequency channel is divided into several time slots and each node can transmit in one or more time 

slots. We propose two mixed integer linear programming formulations. The first formulation, which is 

based on individual transmissions in each time slot, is a straightforward extension of a previous formula- 

tion developed by the authors for a related problem under a different set of assumptions. The alternative 

formulation, on the other hand, is based on sets of noninterfering wireless transmissions. In contrast 

with the first formulation, the size of the alternative formulation is independent of the number of time 

slots in a frame. We identify simple necessary and sufficient conditions for simultaneous transmissions 

on different links of the network in the same time slot without any significant interference. Our char- 

acterization, as a byproduct, prescribes a power level for each of the transmitting nodes. Motivated by 

this characterization, we propose a simple scheme to enumerate all sets of noninterfering transmissions, 

which is used as an input for the alternative formulation. We also introduce a set of valid inequalities for 

both formulations. For large instances, we propose a three-stage heuristic approach. In the first stage, we 

solve a partial relaxation of our alternative optimization model and determine the gateway locations. This 

stage also provides an upper bound on the optimal service level. In the second stage, a routing tree is 

constructed for each gateway node computed in the first stage. Finally, in the third stage, the alternative 

optimization model is solved by fixing the resulting gateway locations and the routing trees from the 

previous two stages. For even larger networks, we propose a heuristic approach for solving the partial 

relaxation in the first stage using a neighborhood search on gateway locations. Our computational results 

demonstrate the promising performance of our exact and heuristic approaches and the valid inequalities 
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. Introduction 

A wireless mesh network (WMN) comprises a finite number of

adio nodes that are capable of communicating with one another

nd with the nearby clients in a wireless fashion. A small portion

f these radio nodes are designated to be gateways with wired

onnections to the Internet to enable the flow of traffic into and

ut of the WMN. The rest of the nodes forward traffic toward and

rom gateways in a multi-hop fashion through other radio nodes.

y eliminating the need to install a wired connection to each node,
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MNs provide a cost-effective alternative to extend the coverage

f communication networks to larger geographic regions. 

Since the transmission medium is shared by all nodes, in-

erference among simultaneous transmissions is a major concern

n wireless communications. The interference effect on the unin-

ended receiver is highly dependent on how far the interferer is

nd on the strength of its transmitted signal. In this paper, we

dopt the physical interference model in [13] based on the signal-

o-interference-plus-noise ratio (SINR). In this model, transmission

rom node i to node j is deemed to be successful (in the sense

hat node j can correctly decode the signal from node i ) if the ra-

io of the strength of the signal from node i received at node j to

he total strength of all signals received from all other transmitting

odes at node j plus the ambient noise is above a certain threshold

alue. In contrast to simpler interference models based on identi-

cation of interfering node pairs, the SINR scheme is more realis-

ic since the cumulative effect of all simultaneous transmissions is

aken into account in this model. 

Unlike ad hoc networks, where nodes may be battery operated,

he nodes of WMNs have constant power supplies and hence do

ot have energy conservation concerns. However, there is still a

eed for power control for interference prevention purposes. The

trength of the signal received at a destination node can be in-

reased by increasing the power level of the transmitting node.

owever, such an increase in the power level also increases the

ignal strength received at unintended nodes, causing additional

nterference if they are destination nodes for other transmissions.

herefore, in the SINR model, power levels of transmitting nodes

hould be determined judiciously in order to have successful si-

ultaneous transmissions on several links, referred to as spatial

euse. 

The level of spatial reuse, i.e., the maximum number of simul-

aneous transmissions, is generally not adequate to form a con-

ected network. As a remedy, nodes can share the wireless capac-

ty by either transmitting on different frequency channels or taking

urns transmitting on the same frequency channel. In the former

pproach, a node can be equipped with multiple radios so that

t can simultaneously send or receive signals on different chan-

els without any interference. In this paper, however, we adopt the

atter approach, namely, the time division multiple access (TDMA)

cheme. In this scheme, a time frame is divided equally into T time

lots. Nodes continuously store incoming traffic and forward it over

heir wireless links during the allocated time slots. Note that the

apacity of a wireless link is directly proportional to the number

f time slots during which it is activated. The frame structure is

hen repeated in a periodic manner. 

As we are not addressing the coverage problem for wireless ac-

ess networks (e.g., as in [2] ) in which nodes are installed at candi-

ate positions to cover clients, we assume that the network topol-

gy is given. Since the nodes aggregate traffic flows for a large

umber of clients, we assume that each node in the WMN has a

xed traffic rate that should be forwarded to the Internet. Under

 limited budget for a given number of gateways, our objective is

o maximize the service level, which we define to be the small-

st ratio of the allocated capacity to the demand of each node. A

ervice level value larger than one implies that the resulting WMN

an continue to satisfy the traffic demand of each node at least for

 while under the assumption that traffic rate of each node grows

roportionally over time. In that sense, we search for the network

esign that will satisfy the demand for the longest period. 

To eliminate the need for reordering of packets at the des-

ination, we assume that the traffic of each node is carried to

 gateway on a single path as in [22] . Even though multi-path

outing has the benefit of load balancing, the additional protocol

verhead can be significant. Specifically, we adopt the destination

ased routing scheme, i.e., one routing tree is constructed for each
ateway node. The TDMA time slots are to be allocated to the wire-

ess links on the routing trees so that they have enough capacity

o accommodate the traffic flow. 

In this paper, our main objective is to design and operate a

MN so as to maximize the service level. We select the gateway

ocations, form a routing tree for each one of these gateways, and

etermine the number of time slots that should be allocated to

ach noninterfering transmission set on these routing trees. We

lso determine the power level of each transmitting node to en-

ble spatial reuse of the time slots. 

First, we propose a mixed integer linear programming formu-

ation, which is a straightforward extension of a previous formu-

ation developed by the authors for a related problem under a

ifferent set of assumptions [12] . In this formulation, in order to

odel power control and interference, we need decision variables

nd constraints defined for each time slot. As the number of time

lots in a frame is generally large, these models can get too large

o be solved to optimality. Therefore, in an attempt to develop

n alternative formulation, we identify simple necessary and suf-

cient conditions to have multiple links of the WMN activated in

he same time slot. These conditions can easily be applied as a

reprocessing step to enumerate all possible noninterfering sets

f transmissions in a given WMN. Furthermore, our characteriza-

ion yields a power level for each of the transmitting nodes as a

yproduct. Motivated by this observation, we develop an alterna-

ive mixed integer linear programming (MILP) formulation based

n sets of noninterfering transmissions. This formulation allows us

o completely eliminate power control and interference issues from

onsideration. We also redefine decision variables and modify con-

traints so that the problem size is independent of the number of

ime slots in a frame. 

We perform computational experiments on WMNs with differ-

nt characteristics. Our computational results reveal that our alter-

ative formulation based on noninterfering link sets significantly

utperforms the first formulation in terms of the solution qual-

ty and running time. For smaller and simpler networks, our al-

ernative model can usually compute an exact solution in a short

mount of time. For larger and more complicated networks, solv-

ng even the alternative model to optimality becomes computa-

ionally challenging due to the increase in the numbers of nodes,

inks, and noninterfering transmission sets. We therefore propose

 three-stage heuristic approach for such instances. In the first

tage, we determine the gateway locations by solving a partial re-

axation of our alternative optimization model. The second stage

onsists of constructing a routing tree by fixing the resulting gate-

ay locations computed in the first stage. Finally, in the third

tage, we solve the alternative optimization problem by fixing the

ateway locations and the routing trees computed in the previous

wo stages. Note that, in this final stage, we eliminate a consider-

ble number of noninterfering link sets, which allows us to quickly

ompute a good feasible solution. 

The objective value of the partially relaxed problem in the first

tage yields an upper bound that we utilize in evaluating the per-

ormance of our three-stage heuristic method. For even larger net-

orks in which even the partial relaxation in the first stage can

e difficult to solve, we propose a neighborhood search scheme

n gateway locations for computing a local optimal solution. Our

omputational results demonstrate the effectiveness of our heuris-

ic approaches. 

This paper is organized as follows: We discuss related litera-

ure in the next section. In Section 3 , we present our first mixed

nteger linear programming formulation. Then, we present sim-

le necessary and sufficient conditions in order to have success-

ul simultaneous transmissions on any given subset of links. Our

haracterization also yields an appropriate power level for each

f the transmitting nodes as a byproduct. Then, we propose a



104 K. Gokbayrak, E.A. Yıldırım / Computers and Operations Research 81 (2017) 102–118 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m  

t  

s  

s  

t  

t  

m  

o  

t  

r  

b  

r  

p

 

p  

p  

o  

g  

t  

r  

t

 

o  

w  

t  

l  

r  

h  

l  

d  

t  

i  

c  

i  

s  

d  

l  

a  

r  

m  

t  

f  

n

3

 

n  

t  

n  

W  

w  

W  

f  

n  

i

 

t  

p  

t  

l  

h  

t  

s  

p  

p  
simple procedure to enumerate all sets of noninterfering transmis-

sions and develop an alternative optimization model based on such

sets. A set of valid inequalities is also introduced in this section.

In Section 4 , we present heuristic solution approaches for large

networks. Section 5 is devoted to the presentation of our com-

putational experiments on four sample networks. In this section,

we evaluate the performances of our optimization models and the

heuristic approaches. We also compare the proposed heuristic with

the heuristic from [12] in this section. We conclude the paper with

some remarks in Section 6 . 

2. Related work 

After the turn of the century, there has been a tremendous re-

search effort on WMNs. We discuss below only a few papers re-

lated to our problem. For other references, we refer the reader to

survey papers, e.g., [1] , [20] , and [6] . 

There are quite a few papers on the gateway selection problem.

A common objective is to minimize the number of gateways un-

der quality-of-service requirements on delay and bandwidth. Chan-

dra et al. [8] showed that it is NP-hard to determine the small-

est number of gateways to satisfy node demands. Bejerano [5] and

Aoun et al. [3] presented the gateway selection problem as vari-

ants of the capacitated facility location problem with additional

constraints for routing and link capacities. They both presented

polynomial-time heuristic methods that yield near-optimal results.

Some of the more recent studies employed the physical inter-

ference model as we do in this paper. Papadaki and Friderikos

[17] considered the link scheduling problem and developed a

mixed integer linear programming (MILP) model to maximize the

number of transmissions within a number of time slots while guar-

anteeing that each link transmitted at least once. They proposed

an approximate dynamic programming methodology for this NP-

hard problem. Quintas and Friderikos [21] considered the mini-

mum power scheduling problem and formulated an MILP model

to minimize the total transmission power within a number of time

slots while guaranteeing that all transmission requests were satis-

fied. Assuming a fixed power level at all nodes and with predeter-

mined gateways, Badia et al. [4] formulated an MILP model for the

joint routing and link scheduling problem and proposed a genetic

algorithm to solve this NP-hard problem. 

The concept of noninterfering transmissions can be found in

some recent papers. Karnik et al. [14] defined noninterfering trans-

missions, referred to as independent set of links, for a given power

vector and determined a loose upper bound for the maximum size

of independent sets to limit the number of checks for complete

enumeration performed on the set of all subsets of the links. Luo

et al. [16] , on the other hand, developed a complete enumeration

algorithm based on the proposition that any subset of an inde-

pendent set is also independent and determined independent sets

of increasing sizes until the largest sets were obtained. Note that

these two papers do not adjust transmission powers to generate

noninterfering links, they merely present the complete list for a

given power setting. Luo et al. [16] considered the objective of

maximizing the minimum throughput for a given set of gateways.

They determined the percentage of the time an independent set

should be active. For large networks, they proposed a column gen-

eration approach to limit the number of independent sets in the

formulation by employing exact or greedy pricing. This paper also

provided some engineering insights, illustrating, for instance, that

multipath routing does not produce a significant improvement in

performance over single path routing and that there is a diminish-

ing gain of spatial reuse. The latter argument was supported with

the following observation: For a large number of randomly gen-

erated WMNs where more than six simultaneous noninterfering

transmissions were possible, employing only noninterfering trans-
issions of sizes less than or equal to three yielded an almost op-

imal throughput. Capone et al. [7] considered the joint problem of

cheduling, routing, power control, and rate adaptation for WMNs

o as to minimize the number of time slots needed to deliver the

raffic between pairs of nodes. Similar to our problem formulation,

hey associated integer decision variables to noninterfering trans-

issions, referred to as configurations in [7] . Since the number

f configurations increased exponentially with the network size,

hey applied a column generation method to solve a continuous

elaxation of the problem to obtain a lower bound. For an upper

ound, they solved the original problem using only the configu-

ations with positive values in an optimal solution of the relaxed

roblem. 

The following two papers are most closely related to the work

resented in this paper. Targon et al. [22] and the authors of this

aper [12] presented MILP formulations for the joint optimization

f gateway placement, routing, and link scheduling to support a

iven set of node demands. The objective in [22] was to minimize

otal gateway costs and they employed source-based single-path

outing. On the other hand, the service level was maximized under

ree-based routing in [12] . 

In this paper, we extend our work in [12] as follows: First, in

ur earlier paper, a single transmission power level for each node

as to be determined, i.e., whenever node i transmitted in any

ime slot, it was only allowed to transmit at its designated power

evel π i ∈ [0, 1], which was a decision variable that represents the

atio of the power level to the maximum power level. In this paper,

owever, we assume that nodes can transmit at different power

evels in different time slots. Employing this new setting, we can

erive rules and power levels to form all possible noninterfering

ransmission sets. Second, while our first formulation in this study

s a straightforward extension of the formulation in [12] to the

urrent setting, our alternative MILP formulation is based on non-

nterfering transmission sets, rather than on individual transmis-

ions. Moreover, since it is the number of allocated time slots that

etermines the capacity on a wireless link, the alternative formu-

ation employs integer decision variables for the total number of

llocated slots to each noninterfering transmission set in a frame,

ather than binary assignment variables for each individual trans-

ission in each time slot. Consequently, the size of the alterna-

ive formulation is independent of the number of time slots in a

rame. Finally, based on this alternative formulation, we propose

ew heuristic methods for gateway selection and routing. 

. Problem definition and formulations 

We consider a wireless mesh network (WMN) composed of N

odes. We are interested in forwarding traffic from the nodes of

he WMN to the Internet through gateway nodes. We assume that

ode i has an uplink traffic rate of d i , i = 1 , . . . , N. Any node of the

MN can be designated as a gateway node by equipping it with a

ired link of data rate of a , connecting the WMN to the Internet.

e assume that we have a budget for selecting G gateway nodes

rom among N nodes of the WMN, where G < N . The remaining

odes of the WMN can forward traffic toward the gateway nodes

n a wireless multi-hop fashion through other nodes. 

We assume that each node has an isotropic antenna that dis-

ributes power equally to a spherical region. Hence, the received

ower is inversely proportional to the square of the distance be-

ween the transmitter and the receiver nodes, if they are both

ocated in free space. If nodes are located on irregular terrain,

owever, due to reflection, refraction, diffraction and absorption,

he path loss exponent typically ranges between 3 and 3.4. The

tudy [10] presents a model for path loss exponent, which is de-

endent on the height of the base station antenna. In our exam-

les, we assume a path loss exponent value of 3, i.e., the signal
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Table 1 

Problem parameters. 

N Number of nodes 

E Set of wireless links 

d i Uplink traffic rate of node i , i = 1 , . . . , N

G Number of gateway nodes 

l ij Path loss between nodes i and j , i = 1 , . . . , N; j = 1 , . . . , N; i � = j

γ SINR threshold 

ηj Ambient noise level at node j , j = 1 , . . . , N

P max 
i 

Maximum power level of node i , i = 1 , . . . , N

g ij P max 
i 

l i j , 1 ≤ i ≤ N; 1 ≤ j ≤ N; i � = j

c Data rate of a wireless link 

a Data rate of a wired link at a gateway node 

T Number of time slots in a frame 

t  
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k

 

ransmitted by node i is received at node j at a power level of

 i j = Kr −3 
i j 

times the transmitted signal power, where l ij and r ij are

he path loss value and the distance, respectively, between nodes

 and j . In free space, the multiplier K would be the ratio of the

eceiving surface area times the antenna gain to 4 π . On irregular

errain, though, one needs to solve a parabolic equation that in-

ludes earth’s curvature, refraction index of air, etc. (see [23] ) to

alculate path loss. For simplicity, we assume K = 1 in our exam-

les and emphasize the path loss due to distance only. 

In order to model wireless communication from node i to node

 , we use the signal-to-interference-plus-noise ratio (SINR) scheme

see, e.g., [13] ). In this model, node j can successfully decode a sig-

al from node i if, at node j , the ratio of the power of the signal

eceived from node i to the power of the signals from all other

ransmitting nodes plus the ambient noise level is above a cer-

ain threshold value. More specifically, if each transmitting node

 transmits at a power level of P n , then the signal from node i can

e correctly decoded by node j if and only if 

P i l i j 

η j + 

∑ N 
n =1 

n �∈{ i, j} 
P n l n j 

≥ γc , (1) 

here ηj denotes the ambient noise level at node j and γ c denotes

he SINR threshold value for a transmission rate of c . Note that

igher transmission rates require higher threshold values, but since

e assume a single rate of c , we can drop the subscript in our

otation and employ γ instead. 

We assume that node i can transmit at a maximum power of

 

max 
i 

, i = 1 , . . . , N. Henceforth, we will normalize the power levels

y defining 

i = 

P i 
P max 

i 

∈ [0 , 1] , i = 1 , . . . , N. (2)

e also denote the maximum power that can be received at node

 for signals transmitted by node i as 

 i j = P max 
i l i j , 1 ≤ i ≤ N; 1 ≤ j ≤ N; i � = j. (3)

hen, it follows that the physical interference model in (1) can

quivalently be expressed as 

ρi g i j 

η j + 

∑ N 
n =1 

n �∈{ i, j} 
ρn g n j 

≥ γ . (4) 

A node pair ( i , j ) is defined as a wireless link if the ratio of the

ower of the signal received from node i , which is transmitting

t maximum power level, to the ambient noise level ηj at node j

xceeds the signal-to-interference-plus-noise ratio (SINR) threshold

. The set of directed wireless links of this network is therefore

iven by 

 = { (i, j) | P max 
i l i j ≥ γ η j } = { (i, j) | g i j ≥ γ η j } . (5)

Adopting the time division multiple access (TDMA) scheme, we

ivide the wireless link capacity c into T equal-data-rate parts, as-

uming that there are T time slots in a frame. Spatial reuse is pos-

ible, i.e., multiple transmissions can be enabled in any time slot as

ong as these transmissions do not interfere with each other. We

lso assume the half-duplex operation of nodes, i.e., in the same

ime slot, a node can either transmit to at most one other node or

eceive from at most one other node. 

We assume that a destination-based routing scheme is em-

loyed, i.e., for each gateway node, a routing tree will be con-

tructed in such a way that each node of the WMN belongs to

xactly one routing tree. It follows that the traffic from each non-

ateway node will be forwarded to a gateway node on a single

ath of wireless links in the WMN. 

In this paper, we are interested in designing and operating a

MN in which we select the gateway nodes, construct routing
rees for each gateway node, determine the number of time slots

n which each wireless link will be activated to form these rout-

ng trees along with the power level of each transmitting node so

s to maximize the service level, which is defined as the small-

st ratio of the allocated capacity to the demand of each node. We

epresent the above problem with two different mixed integer lin-

ar programming (MILP) models. We list all the parameters of the

roblem in Table 1 . 

In the next subsection, we present an optimization model,

dapted from the one presented in [12] to the current problem

nder consideration. In Section 3.2 , we present simple necessary

nd sufficient conditions in order to have noninterfering transmis-

ions on any given subset of wireless links in the same time slot.

n Section 3.3 , we use this characterization to describe an effective

rocedure for enumerating the set of all noninterfering transmis-

ions. Finally, we present an alternative optimization formulation

ased on the set of noninterfering transmissions in Section 3.4 . 

.1. First optimization model 

In this section, we present our first optimization model, de-

oted by (WMN0), which is a straightforward extension of the op-

imization model proposed in [12] . First, we present our decision

ariables in Table 2 . 

Note that the decision variable w represents the service level.

he variables f ij and φi are the flow variables. The time slot assign-

ent variables are represented by v t 
i j 

and u ij . The variables z ij are

elated to routing. Finally, y i and ρt 
i 

denote the gateway selection

nd the power control variables, respectively. 

Our first MILP model (WMN0) is presented below: 

ax w (6) 

ubject to 

d i + 

∑ 

h :(h,i ) ∈ E 
f hi = φi + 

∑ 

j :(i, j ) ∈ E 
f i j , i ∈ { 1 , . . . , N} , (7)

i ≤ ay i , i ∈ { 1 , . . . , N} , (8)

f i j ≤
c 

T 
u i j , (i, j) ∈ E, (9)∑ 

j :(i, j ) ∈ E 
z i j = 1 − y i , i ∈ { 1 , . . . , N} , (10)

N 
 

i =1 

y i = G, (11) 

 i j = 

T ∑ 

t=1 

v t i j , (i, j) ∈ E, (12)

 i j ≤ T z i j , (i, j) ∈ E, (13)∑ 

 :(k,i ) ∈ E 
v t ki + 

∑ 

j :(i, j ) ∈ E 
v t i j ≤ 1 , i ∈ { 1 , . . . , N} , t ∈ { 1 , . . . , T } , (14)
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Table 2 

Decision variables of (WMN0). 

w : the minimum ratio of the allocated capacity to the demand at each node, i.e., the service level 

f ij : the traffic flow on link ( i , j ) ∈ E 
φ i : the traffic flow exiting the WMN at node i ∈ {1, 2,…, N } 

v t 
i j 

= 

{
1 , if wireless link (i, j) is active at time slot t, 

0 , otherwise, 
(i, j) ∈ E, t ∈ { 1 , . . . , T } 

u ij : the number of time slots in which the link ( i , j ) ∈ E is active 

z ij = 

{
1 , if wireless link (i, j) belongs to a routing tree , 

0 , otherwise , 
(i, j) ∈ E

y i = 

{
1 , if node i is a gateway , 

0 , otherwise , 
i ∈ { 1 , . . . , N} 

ρt 
i 

: the ratio of the power transmitted by node i at time slot t to the maximum power P max 
i 

, 

i ∈ { 1 , . . . , N} , t ∈ { 1 , . . . , T } 
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w
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P  

ρ  
ρt 
i ≤

∑ 

j :(i, j ) ∈ E 
v t i j , i ∈ { 1 , . . . , N} , t ∈ { 1 , . . . , T } , (15)

ρt 
i g i j + M i j (1 − v t i j ) ≥ γ η j + γ

N ∑ 

n =1 
n � = i, j 

ρt 
n g n j , 

(i, j) ∈ E, t ∈ { 1 , . . . , T } , (16)

where 

M i j = γ

⎛ 

⎝ η j + 

N ∑ 

n =1 
n � = i, j 

g n j 

⎞ 

⎠ , (i, j) ∈ E, 

v t i j ∈ { 0 , 1 } , (i, j) ∈ E, t ∈ { 1 , . . . , T } , (17)

y i ∈ { 0 , 1 } , ∈ { 1 , . . . , N} , (18)

z i j ∈ { 0 , 1 } , (i, j) ∈ E, (19)

ρt 
i ≥ 0 , ∈ { 1 , . . . , N} , t ∈ { 1 , . . . , T } , (20)

φi ≥ 0 , i ∈ { 1 , . . . , N} , (21)

f i j ≥ 0 , (i, j) ∈ E, (22)

u i j ≥ 0 , (i, j) ∈ E, (23)

w ≥ 0 . (24)

Our objective is to maximize the service level w . Under the as-

sumption that the traffic demand of each node will increase pro-

portionally over time, this objective serves to design the network

that can last the longest without any upgrades. Note that the cur-

rent demand of each node will be satisfied if and only if the ser-

vice level is at least one. The flow balance at each node is captured

by the constraints (7) . The constraints (8) represent the gateway

capacity constraints at each gateway node. Note that the data rate

of a wireless link is given by c . Under the TDMA scheme, a time

frame is divided into T time slots and we assume that each time

slot has an equal data rate given by c / T . Therefore, the constraints

(9) imply that the total flow on link ( i , j ) cannot exceed the al-

located wireless capacity. Each gateway node routes the incoming

traffic to the Internet using a wired connection. For each node that

is not a gateway, the constraints (10) ensure that each such node is

allowed to route its traffic to exactly one other node in a wireless

fashion. The number of gateways is specified by (11) and the num-

ber of time slots assigned to each link is given by the constraints
12) . Any wireless link that is not on any route cannot be activated

n any time slot by (13) . Due to half-duplex operation, a node can-

ot transmit and receive in the same time slot by the constraints

14) . By (15) , the power level at each node is zero when there is

o transmission on any of the wireless links incident at that node.

ote that, due to (14) , the right-hand side of (15) is at most one.

he signal-to-interference-plus-noise ratio (SINR) scheme given by

1) is formulated in (16) in the form of a big- M constraint, and a

ossible value that the parameter M can take is given. The domains

f all decision variables are specified in (17) –(24) . 

An optimal solution of the optimization model (WMN0) yields

he gateway locations, routing, assignments of time slots to sub-

ets of wireless links, and the power schedules so as to maximize

he service level. Note that (WMN0) consists of 2 NT + | E| T + 3 N +
 | E| + 1 constraints, T | E| + | E| + N binary and NT + N + 2 | E| + 1

onnegative continuous decision variables. As we have multiplica-

ive terms with T , for realistic network sizes, the size of (WMN0)

ecomes very large. Therefore, we exploit the structure of the

hysical interference constraint (1) to obtain an alternative model

or the same problem. 

.2. Noninterfering transmission sets 

Note that, due to half-duplex operation, it is not possible to

ave simultaneous transmissions on any two wireless links that

hare a common node in the same time slot. Therefore, noninter-

ering transmission sets can only consist of subsets of node-disjoint

inks. 

It follows from the physical interference model in (1) and the

efinition of E in (5) that each wireless link ( i , j ) ∈ E by itself can

e activated in a time slot by simply setting ρi = γ η j /g i j and ρk =
 for each k = 1 , . . . , N, k � = i . 

Our next result gives a simple and complete characterization in

rder for a set of at least two node-disjoint links to have noninter-

ering transmissions in the same time slot. 

roposition 1. Let L = { (k 1 , l 1 ) , (k 2 , l 2 ) , . . . , (k m 

, l m 

) } be a set of

ode-disjoint links in a wireless mesh network, where m ≥ 2 . Then,

ll of the links in L can be activated in the same time slot if and only

f the following system has a feasible solution: 

ρ = b, ρ > 0 , ρ ≤ e, (25)

here A ∈ R 

m ×m is given by 

 i j = 

{
g k i ,l i , i f i = j, 
−γ g k j ,l i , otherwise, 

i = 1 , . . . , m ; j = 1 , . . . , m, 

 ∈ R 

m is given by b i = γ ηl i 
, i = 1 , . . . , m, ρ ∈ R 

m denotes the vector

f decision variables ρi , i = 1 , . . . , m defined as in (2) , g ij is defined

s in (3) , and e ∈ R 

m denotes the vector of all ones. 

roof. Let ˆ ρ ∈ R 

m be a feasible solution of (25) . If we set ρk j 
=

ˆ j , j = 1 , . . . , m, and ρk = 0 for each k ∈ { 1 , . . . , N}\{ k 1 , . . . , k m 

} , it
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s easy to verify that each of the inequalities (4) corresponding to

ach of the links in L will be satisfied. Therefore, all of the links in

 can be activated in the same time slot. 

Conversely, suppose that all of the links in L can be activated in

he same time slot. It follows from (4) , the definitions of A and b ,

nd ρk ∈ [0, 1] for each k = 1 , . . . , N that the following system has

 feasible solution: 

ρ ≥ b, ρ > 0 , ρ ≤ e. 

o show the existence of a feasible solution that satisfies Aρ = b,

et us consider the following linear programming problem: 

in { e T ρ : Aρ ≥ b, ρ ≥ 0 , ρ ≤ e } . 
ote that this problem has a nonempty feasible region by our as-

umption. Furthermore, any feasible solution ρ should satisfy 

 k i ,l i 
ρi − γ

m ∑ 

j =1 , j � = i 
g k j ,l i ρ j ≥ γ ηl i 

, i = 1 , . . . , m, 

hich, combined with the feasibility requirement that ρ > 0, im-

lies that 

i > 

γ ηl i 

g k i ,l i 
, i = 1 , . . . , m. (26)

Since the feasible region of the given linear programming prob-

em is bounded, there exists at least one optimal solution ρ∗ ∈ R 

m .

ote that ρ∗ > 0 by (26) . We claim that Aρ∗ = b. Suppose, for a

ontradiction, that there exists r ∈ { 1 , . . . , m } such that ( A ρ∗) r > b r ,

.e., 

 k r ,l r ρ
∗
r − γ

m ∑ 

j =1 , j � = r 
g k j ,l r ρ

∗
j > γ ηl r . 

n this case, if we decrease ρ∗
r until the strict inequality above is

atisfied with equality while fixing all other components of ρ∗, it

s easy to verify that the resulting solution still satisfies the other

onstraints of A ρ ≥ b since the coefficient of ρr is negative in each

f the remaining rows of A . It follows that the new solution has

 strictly smaller objective function value than that of ρ∗, which

ontradicts the optimality of ρ∗. Therefore, ρ∗ is a solution of the

ystem (25) . �

The next result establishes a useful property of the matrix A

efined in Proposition 1 . 

emma 2. Let L = { (k 1 , l 1 ) , (k 2 , l 2 ) , . . . , (k m 

, l m 

) } be a set of node-

isjoint links in a wireless mesh network, where m ≥ 2 . Suppose that

he following system has a feasible solution: 

ρ = b, ρ > 0 , (27)

here A and b are defined as in Proposition 1 . Then, A is nonsingular

nd the unique solution is given by ρ = A 

−1 b. 

roof. Suppose that the system (27) has a feasible solution. By a

imilar argument as in the proof of Proposition 1 , any feasible so-

ution should satisfy (26) , i.e., 

i > 

γ ηl i 

g k i ,l i 
= � i , i = 1 , . . . , m. 

Let ˆ ρ > 0 be such an arbitrary feasible solution of the system

27) . Suppose, for a contradiction, that A is singular, i.e., there ex-

sts a nonzero d ∈ R 

m such that Ad = 0 . Without loss of general-

ty, we can assume d has at least one positive component. Note

hat if all components of d are nonpositive, we can replace d

ith −d. Let μ > 0 be defined as μ = min j=1 , ... ,n : d j > 0 
ˆ ρ j −� j 

d j 
. Then,

ˆ − μd > 0 and A ( ̂  ρ − μd) = b, which implies that ˆ ρ − μd is a

easible solution of (27) . Note that this solution has at least one
omponent that does not satisfy the inequality in (26) . This is a

ontradiction. �

Combining Proposition 1 and Lemma 2 , we obtain the following

imple and useful characterization. 

orollary 3. Let L = { (k 1 , l 1 ) , (k 2 , l 2 ) , . . . , (k m 

, l m 

) } be a set of node-

isjoint links in a wireless mesh network, where m ≥ 2 . Then, all of

he links in L can be activated in the same time slot if and only if

 is nonsingular and 0 ≤ A 

−1 b ≤ e, where A and b are defined as in

roposition 1 . 

roof. By Proposition 1 , if all of the links in L can be activated

n the same time slot, then (25) has a feasible solution. Note that

he feasibility of (25) implies the feasibility of (27) . It follows from

emma 2 that A is nonsingular and the unique solution satisfies

 < A 

−1 b ≤ e . 

Conversely, if A is nonsingular and 0 ≤ A 

−1 b ≤ e, then A 

−1 b is a

easible solution of (25) . Then, all of the links in L can be activated

n the same time slot by Proposition 1 . �

This corollary presents necessary and sufficient conditions in

rder for a set of wireless links to be activated simultaneously. We

an also employ this corollary to determine a set of power settings

or the source node of each of these wireless links. If A is a non-

ingular matrix, then the unique solution of the system Aρ = b is

iven by 

i = 

det (A i ) 

det (A ) 
, i = 1 , . . . , m, (28)

here A i ∈ R 

m ×m is the matrix obtained from A by replacing the i th

olumn of A with the right-hand side vector b . If these links are

oninterfering, each ρ i should be positive and less than or equal

o one. Using this observation, the next two corollaries establish

ecessary and sufficient conditions for noninterfering wireless link

ets of size two and size three, respectively. 

orollary 4. Given a WMN, two node-disjoint links ( i , j ) and ( s , d )

an be activated together in the same time slot if and only if 

 i j g sd − γ 2 g id g s j ≥ γ max 
{

g sd η j + γ g s j ηd , g i j ηd + γ g id η j 

}
. (29)

urthermore, in this case, the power settings for the source nodes are

iven by 

i = 

γ g sd η j + γ 2 g s j ηd 

g i j g sd − γ 2 g id g s j 

, 

ρs = 

γ g i j ηd + γ 2 g id η j 

g i j g sd − γ 2 g id g s j 

. 

Following a similar discussion, in [12] , we introduced and

emonstrated the benefits of the following set of valid inequali-

ies that prevent an interfering pair of links from being activated

n the same time slot 

 

t 
i j + v t sd ≤ 1 , t ∈ { 1 , . . . , T } , (30)

henever the edges ( i , j ) and ( s , d ) do not satisfy the condition

29) . In this paper, we utilize this condition in Corollary 4 in a

ifferent way: We use it to determine pairs of links that can be

ctivated in the same time slot. As the prescribed power setting

or a source node depends on the other link in the noninterfering

air, we remark that a result similar to Corollary 4 cannot be es-

ablished under the assumptions of [12] . 

Similar conditions and power settings for subsets with three

r more links can be derived using Corollary 3 and the rela-

ion (28) . However, these characterizations get too complicated

o be included in the paper due to space considerations. Rather,

orollary 3 gives us a simple and efficient computational recipe to

heck if any given set of node-disjoint links can be activated in the

ame time slot. The power settings for the source nodes of these

inks can be derived using the relation (28) . 
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3.3. Enumeration of noninterfering transmission sets 

In this section, given a WMN, we develop a simple computa-

tional method for enumerating all noninterfering transmission sets.

Our method consists of two stages. In the first stage, we com-

pute the largest number of links that can be activated in the same

time slot. We utilize a simple optimization model for this task.

The resulting size serves as a terminating condition for the sec-

ond stage. The second stage consists of the repeated application of

Corollary 3 on carefully selected subsets of node-disjoint links of

size less than or equal to the threshold value computed in the first

stage. Similar to [16] , we exploit the proposition that any proper

subset of a noninterfering link set is also noninterfering. Note that

the terminating condition prevents unnecessary checks for larger

sets of links. In addition, we do not need to prespecify power set-

tings. Rather, our approach yields an appropriate power level for

each transmitting node as a byproduct. 

For the first stage, we propose a mixed integer linear program-

ming (MILP) problem, denoted by (AUX), for computing the largest

number of links that can be activated in the same time slot. The

parameters of this problem are already defined in Table 1 , and the

decision variables are presented in Table 3 . 

We next present our MILP model (AUX) that computes the

largest number of links that can be activated in the same time

slot. 

max 
∑ 

(i, j) ∈ E 
s i j (31)

subject to ∑ 

k :(k,i ) ∈ E 
s ki + 

∑ 

j :(i, j ) ∈ E 
s i j ≤ 1 , i = 1 , . . . , N, (32)

ρi ≤
∑ 

j :(i, j ) ∈ E 
s i j , i = 1 , . . . , N, (33)

ρi g i j + M i j (1 − s i j ) ≥ γ η j + γ
N ∑ 

n =1 n �∈{ i, j} 
ρn g n j , (i, j) ∈ E, (34)

where 

M i j = γ

⎛ 

⎜ ⎝ 

η j + 

N ∑ 

n =1 
n �∈{ i, j} 

g n j 

⎞ 

⎟ ⎠ 

, (i, j) ∈ E, 

s i j ∈ { 0 , 1 } , (i, j) ∈ E, (35)

ρi ≥ 0 , = 1 , . . . , N. (36)

The constraint set (32) ensures that a node can either trans-

mit to at most one other node or receive from at most one other

node in the same time slot. If a node does not transmit a signal

in a time slot, then the constraint set (33) sets its power level to

zero. Finally, the constraint set (34) is used to formulate the SINR

interference model. 

The MILP model (AUX) has a total of 2 N + | E| constraints, | E |

binary and N nonnegative continuous decision variables. Our com-

putational experiments reveal that (AUX) is fairly easy to solve for

networks of reasonable sizes. Note that any optimal solution of

(AUX) yields a set of noninterfering transmissions with the largest

cardinality. 
Table 3 

Decision variables of (AUX). 

s ij = 

{
1 , if link (i, j) is included in the set of n

0 , otherwise , 

ρ i ∈ [0, 1] : the ratio of transmission power of node i to
In the second stage, we start by populating the set S of non-

nterfering link sets with the set {( i , j )} for each link ( i , j ) in the

et E . These sets constitute the noninterfering sets of cardinality

ne, which we denote by S 1 . Then, we determine the noninterfer-

ng sets of larger sizes S m 

, where m ≥ 2, as follows: In order to

etermine if a node-disjoint link set of cardinality m is noninter-

ering, we first check if all of its subsets of cardinality m − 1 are

oninterfering. If they are, then we apply Corollary 3 to see if the

et itself is noninterfering and determine the appropriate power

alues. We continue in this fashion until we determine all nonin-

erfering sets of node-disjoint links of size less than or equal to the

ptimal value of (AUX). We therefore obtain a complete list of all

ets of noninterfering transmissions together with the correspond-

ng power settings that enable such transmissions. A pseudocode

f the algorithm is given in Algorithm 1 . 

Algorithm 1: Enumeration of all noninterfering transmissions. 

Data : Problem parameters in Table 1 

Result : Set S of all noninterfering transmissions 

Solve the optimization problem (AUX) and let κ denote its 

optimal value; 

S ← ∅ ; 
for each (i, j) ∈ E do 

S ← S ∪ { (i, j) };
end 

m ← 2 ; 

while m ≤ κ do 

for each node-disjoint subset F ⊆ E of size m do 

if each subset F ′ ⊆ F of size m − 1 belongs to S then 

Apply Corollary 3 to the set of links in F ; 

if conditions of Corollary 3 are satisfied then 

S ← S ∪ F ; 

end 

end 

end 

m ← m + 1 ; 

end 

In Algorithm 1 , the most computationally intensive operation is

he verification of the conditions of Corollary 3 , which has a worst-

ase complexity of O ( m 

3 ) for each subset F ⊆ E of size m because a

ystem of equations involving an m × m matrix needs to be solved.

ince there are at most 
(| E| 

m 

)
node-disjoint subsets F ⊆ E of size

 and since m ≤ κ , the number of such verifications is bounded

bove by 
∑ κ

m =2 

(| E| 
m 

)
≤ ∑ κ

m =2 | E | m = O (| E | κ+1 ) . It follows that the

orst-case complexity of Algorithm 1 is O (| E| κ+1 κ3 ) . Our compu-

ational results reveal that the running time of Algorithm 1 is fairly

egligible even for considerably large instances. 

.4. Alternative optimization model 

In this section, we develop an alternative MILP model for the

roblem of maximizing the service level of a given WMN. As a

rst step, in contrast to defining time slot assignment variables

ver the set of edges E as in (WMN0), we define them over the set

f all noninterfering transmission sets S, which can be completely

numerated using Algorithm 1 in Section 3.3 . In other words, we
oninterfering links , 
(i, j) ∈ E

 the maximum power level denoted by P max 
i 

, i = 1 , . . . , N
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Table 4 

Sizes of two models (WMN0) and (WMN1). 

Model (WMN0) (WMN1) 

# of constraints 2 NT + | E| T + 3 N + 3 | E| + 1 3 N + 3 | E| + 2 

# of nonnegative continuous 

variables 

NT + N + 2 | E| + 1 N + 2 | E| + 1 

# of binary variables | E| T + N + | E| N + | E| 
# of nonnegative integer 

variables 

0 |S| 
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eplace decision variables v with x̄ defined as follows: 

¯
 

t 
σ = 

{
1 , if set σ is active at time slot t, 
0 , otherwise, 

σ ∈ S, t ∈ { 1 , . . . , T } . 

Consequently, since each of these sets in S satisfies the con-

traints (14) –(16) , we can replace those constraints with the fol-

owing constraint: ∑ 

∈S 
x̄ t σ = 1 , t ∈ { 1 , . . . , T } . (37)

his constraint suggests that we can activate only one noninterfer-

ng set at each time slot t . We can also remove the power control

ecision variables ρ as we have already obtained them for each

lement of S . 

We also need to update the constraint (12) according to the

ew variable definition. Utilizing the subset of S defined as S i j =
 σ ∈ S| (i, j) ∈ σ } , which is the set of noninterfering sets that in-

lude the link ( i , j ), we write 

 i j = 

∑ 

σ∈ S i j 

T ∑ 

t=1 

x̄ t σ , (i, j) ∈ E, (38)

Note that there are |S| T binary decision variables x̄ t σ and there

re T equality constraints in (37) . In order to eliminate the number

f time slots T in the number of constraints and decision variables,

s a second step, we replace binary decision variables x̄ t σ with in-

eger decision variables x σ defined as 

 σ = 

T ∑ 

t=1 

x̄ t σ , σ ∈ S. (39)

ote that x σ represents the number of time slots in which the

oninterfering transmission set σ is active in a TDMA frame. Then,

mploying the definition of x σ in (37) and (38) , the alternative

ILP model, denoted by (WMN1), can be formulated as follows:

ax w (40) 

ubject to (7) –(11), (13), (18), (19), (21) –(24) and ∑ 

∈S 
x σ = T , (41) 

 i j = 

∑ 

σ∈ S i j 

x σ , (i, j) ∈ E, (42)

 σ ≥ 0 , integer , σ ∈ S. (43)

The constraint (41) , which is simply obtained by summing

37) over all time slots t , states that the total number of time slots

llocated to noninterfering transmission sets should be equal to

he number of available time slots in a TDMA frame. Note that it

s possible for a noninterfering transmission set to be activated in

everal time slots. The number of time slots in which each link

s active is given by (42) , which replaces the constraints (12) in

WMN0). The integer decision variables of (WMN1) are defined in

43) . 

An optimal solution of (WMN1) yields the gateway locations,

he routing trees, and the number of time slots allocated to each

oninterfering transmission set in a TDMA frame so as to max-

mize the service level. Note again that the power level of each

ransmitting node in any noninterfering transmission set is already

etermined using Corollary 3 and the relation (28) . Therefore, the

ower management issue is completely eliminated in this alterna-

ive formulation. 

The original model (WMN0) and the alternative model (WMN1)

re compared in terms of the number of constraints and the num-

er of variables in Table 4 . 
Note that (WMN1) has a smaller size than that of (WMN0), ex-

ept for the number of integer variables that can grow exponen-

ially as a function of the number of edges | E |. The number of

onstraints and the number of binary and continuous variables in

WMN1) are both linear in the number of nodes N and the num-

er of edges | E |. In contrast with (WMN0), we remark that the size

f (WMN1) is independent of the number of time slots T . There-

ore, it is the preferred model when T is large. In Section 4 , we

xploit this feature of (WMN1) to develop a three-stage heuristic

ethod, which is based on initially solving the problem under the

ssumption that T goes to infinity so as to determine decent gate-

ay locations. 

.5. A set of valid inequalities 

As mentioned above, for a given number of gateways, the de-

and of each node in a WMN can be satisfied if and only if the

ervice level w is at least one. Under this assumption, we propose

 set of valid inequalities for the optimization models in this sec-

ion. 

In both models, the inequality set (13) ensures that links that

re not on any routing tree are not activated. On the other hand, if

 link ( i , j ) is on a routing tree, then this link has to carry at least

he traffic d i of node i toward a gateway. Since the capacity of the

ink ( i , j ) in a time slot is given by c / T , it follows that the link ( i , j )

as to be allocated at least � d i T c 
 time slots to carry node i ’s own

raffic toward a gateway. Hence, assuming that the service level w

s at least one, we propose the following set of valid inequalities:

 i j ≥
⌈

d i T 

c 

⌉
z i j , (i, j) ∈ E, (44)

e discuss the effect of these valid inequalities in Section 5 . 

. A three-stage heuristic method 

Note that the number of nonnegative integer variables of

WMN1) may grow exponentially as a function of the number of

dges | E |. Therefore, on large networks, (WMN1) can be a very

hallenging model for MILP solvers. In this section, we propose a

hree-stage heuristic approach for computing an approximate solu-

ion of (WMN1) on larger networks. 

In the first stage, we determine a set of gateways and an upper

ound for the optimal service level. In the second stage, we deter-

ine routing trees rooted at those gateways. Finally, in the third

tage, we fix the gateway locations and the corresponding routing

rees in the original optimization model (WMN1) so as to allocate

ime slots to noninterfering transmission sets. 

.1. Stage one: upper bound computation and gateway selection 

In the first stage, our goals are to determine the gateway lo-

ations and to obtain a good upper bound on the optimal service

evel. In order to achieve both of these objectives, we seek a partial

elaxation of the original optimization model (WMN1). The optimal

alue of this partially relaxed model will serve as an upper bound

or assessing the quality of our heuristic solutions. Our main goal
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2 Note that a similar k -opt (also called k -change in [18] ) local search method was 

proposed in [9] and [15] as a heuristic solution method for the Traveling Salesman 

Problem (TSP), where a local search was performed over the set of all tours that 

were different in at most k edges from the current tour. 
is to strike a balance between the computational cost of solving

the resulting relaxation and the quality of the upper bound given

by the optimal value of this relaxation. 

We first consider the extreme case, i.e., the linear programming

(LP) relaxation. Under the assumption that the wired link rate a

is at least as large as the wireless link rate c , in any optimal so-

lution of the LP relaxation, each node acts as a fractional gateway

and transfers its traffic directly to the Internet through wired links.

Missing the wireless side of the problem, the LP relaxation does

not provide a good upper bound on the optimal service level. In

an attempt to obtain a better bound by precluding fractional gate-

ways, we formulate below a partial relaxation of (WMN1), where

we keep the gateway selection variables { y i } N i =1 
binary so that each

of the non-gateway nodes must communicate through wireless

links to forward traffic to a gateway node. 

We remove the constraint sets (10) and (13) , and the routing

variables z ij in (19) from (WMN1). In other words, we do not en-

force single path routing. Moreover, we relax the integrality con-

dition on the variables x σ in (WMN1). Then, we can further per-

form a change of variable by defining ˆ x σ = x σ /T for each σ ∈ S .

In a similar fashion, the decision variables u ij can be replaced by

ˆ u i j = u i j /T for each ( i , j ) ∈ E . The new variables ˆ x σ and ˆ u i j can be

interpreted as the fraction of a TDMA frame in which the noninter-

fering set σ and the wireless link ( i , j ) are active, respectively. The

modified optimization model, denoted by (WMN-S1), determines

the best set of gateways under multipath routing and under the as-

sumption that any arbitrary fraction of a TDMA frame can be allo-

cated to any noninterfering transmission set. Therefore, the service

level obtained from (WMN-S1) is an upper bound on the optimal

service level obtained from (WMN1). 

We next present our partial relaxation, denoted by (WMN-S1):

max w (45)

subject to (7), (8), (11), (18), (21), (22), (24) , and 

f i j ≤ c ˆ u i j , (i, j) ∈ E, (46)∑ 

σ∈S 
ˆ x σ = 1 , (47)

ˆ u i j = 

∑ 

σ∈ S i j 

ˆ x σ , (i, j) ∈ E, (48)

ˆ u i j ≥ 0 , (i, j) ∈ E, (49)

ˆ x σ ≥ 0 , σ ∈ S. (50)

Constraints (9), (41) , and (42) are modified using the new vari-

able definitions as (46), (47) , and (48) , respectively. Similarly, vari-

able definitions (49) and (50) replace earlier definitions (23) and

(43) , respectively. Note that the model (WMN-S1) does not depend

on the number of time slots T . Therefore, the gateway set and the

upper bound obtained from this partial relaxation are independent

of the number of time slots in a TDMA frame. 

Unfortunately, for large networks, it may still take a long time

to solve (WMN-S1). To address this issue, we propose a neigh-

borhood search method that can be used to find an approximate

solution. 

4.1.1. k -opt hill climbing for gateway selection 

In [11] , Fischetti and Lodi introduce the notion of “local branch-

ing.” In this scheme, given a binary vector ȳ ∈ R 

N and a positive in-

teger k ≤ N , the authors define a k -opt neighborhood as the set of

all binary vectors which differ from ȳ in at most k components. Lo-

cal branching is proposed as a branching criterion, in which, given

an incumbent solution ȳ , the solution space is partitioned into two

sets with respect to solutions that are in the k -opt neighborhood

of ȳ and the remaining solutions. 
We adopt the same k -opt neighborhood definition for the bi-

ary vectors y ∈ R 

N in (WMN-S1) corresponding to gateway loca-

ions. By (11) , exactly G of the N components of y ∈ R 

N should

e equal to one in any feasible solution. Let us denote the set

f all such binary vectors by 
. Let us also define A ( ̄y ) = { i ∈
 1 , . . . , N} : ȳ i = 1 } , i.e., the set A ( ̄y ) consists of the indices of the

ateway nodes represented by the solution ȳ . The corresponding

 -opt neighborhood of ȳ is then defined by 

 k ( ̄y ) := 

{ 

y ∈ 
 : 
∑ 

i ∈ A ( ̄y ) 
y i ≥ G − k 

} 

. 

ote that ˆ y ∈ N k ( ̄y ) if and only if the corresponding gateway sets

 ( ̂  y ) and A ( ̄y ) have at least G − k common elements, where k ∈
 1 , . . . , G } . As the parameter k increases, additional binary vectors

rom 
 are added to the set of neighbors, i.e., N k ( ̄y ) ⊂ N k +1 ( ̄y ) for

ll k ∈ { 1 , . . . , G − 1 } , and N G ( ̄y ) = 
. 

We propose the following local-branching-based approach for

omputing a heuristic solution of the first stage model (WMN-S1).

tarting at an initial binary vector ȳ ∈ 
 with the corresponding

ateway set A ( ̄y ) , we seek the best solution of (WMN-S1) only

mong the solutions in the k -opt neighborhood of ȳ , i.e., we solve

WMN-S1) with the following additional constraint: ∑ 

 ∈ A ( ̄y ) 
y i ≥ G − k. (51)

f the gateway set obtained in the solution of (WMN-S1) with the

dditional constraint (51) is different from the starting gateway set

 ( ̄y ) , we update the incumbent binary vector and the correspond-

ng gateway set and repeat this procedure until the set of gateway

odes does not change. Note that the optimal value obtained in

ach iteration is not lower than the optimal value at the previ-

us iteration and the set of gateways is always updated to another

ateway set corresponding to one of the k -opt neighbors of the

revious incumbent binary vector. We therefore refer to this local

earch as the k -opt hill climbing method. 2 

We remark that, for larger instances, the k -opt hill climbing

ethod can be employed as an alternative to directly solving the

rst stage optimization model (WMN-S1). The k -opt hill climb-

ng can be started from a randomly selected initial set of gate-

ays. Once we obtain the final set of gateways, which clearly de-

ends on the initial set, we can proceed with the next two steps of

ur three-stage heuristic approach. Since the final solution of the

hree-stage heuristic will depend on the initial gateway selection,

e can repeat this approach for several randomly selected gate-

ay sets and report the best solution. We discuss the quality of

he resulting solutions from (WMN-S1) and the k -opt hill climbing

ethod in Section 5 . 

For small values of k , our computational experiments in

ection 5 indicate that the optimization model (WMN-S1) with the

dditional constraint (51) can usually be solved fairly quickly. How-

ver, since the number of neighbors would also be small, the algo-

ithm may get stuck at a local optimal solution of (WMN-S1). A

arger value of k would bring additional neighbors into considera-

ion at the expense of longer computation times. Numerical exam-

les in Section 5 demonstrate this trade-off. 

Note that, unless we choose k = G, the k -opt hill climbing

ethod does not guarantee global optimality. Therefore, in contrast

ith directly solving (WMN-S1), we cannot obtain an upper bound

or the service level using this approach. 
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Table 5 

Sizes of the four sample networks. 

Label N | E | 

A 30 98 

B 27 162 

C 49 168 

D 37 254 

Table 6 

Some parameter values. 

SINR threshold γ = 50 

Ambient noise level at node j , j = 1 , . . . , N η j = 1 . 5 × 10 −10 mW 

Maximum power level of node i , i = 1 , . . . , N P max 
i 

= 15 mW 

Data rate of a wireless link c = 24 Mbps 

Data rate of a wired link at a gateway node a = 45 Mbps 
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.2. Stage two: tree-based routing 

We modify (WMN-S1) by adding the constraints (10) and (13) ,

nd the routing variables z ij in (19) . We also fix the gateway loca-

ions computed in the first stage, i.e., we set y i = ȳ i , i = 1 , . . . , N,

here ȳ denotes the optimal (or near-optimal) values of y in

WMN-S1). We therefore obtain the second optimization model,

enoted by (WMN-S2), presented below: 

ax w 

ubject to (7), (19), (21), (22), (24), (46) –(50) , and 

i ≤ a ȳ i , i = 1 , . . . , N, (52)∑ 

j :(i, j ) ∈ E 
z i j = 1 − ȳ i , i = 1 , . . . , N, (53)

ˆ 
 i j ≤ z i j , (i, j) ∈ E. (54)

The constraints (52) and (53) are the gateway capacity (8) and

he single path (10) constraints, respectively, that are reformulated

or the gateway locations given by ȳ . The constraint set (54) , on

he other hand, is the constraint set (13) expressed in terms of the

ariables ˆ u . Note that we no longer need the gateway budget con-

traints (11) , as the gateway locations are already given. An optimal

olution of (WMN-S2) yields routing trees rooted at the gateway

odes obtained from the first stage. 

.3. Stage three: time slot allocation 

We impose additional constraints in the original model

WMN1) by setting the values of the variables y and z to their re-

pective optimal (or near-optimal) values, denoted by ȳ and z̄ , from

he first two stages. In other words, we fix them in the original

ptimization model (WMN1) in order to compute the allocation of

ime slots to noninterfering transmission sets. Fixing the routing

ree in (WMN1) eliminates a rather large number of noninterfering

ransmission sets in S from consideration. Therefore, the resulting

ILP problem can usually be solved very quickly, even for large

etworks. 

We present below the MILP formulation, denoted by (WMN-S3),

hat performs the time slot allocation: 

ax w 

ubject to (7), (9), (21) –(24), (41) –(43), (52) , and 

 i j ≤ T ̄z i j , (i, j) ∈ E. (55)

Note that the constraint set (55) is the constraint set (13) re-

ormulated for the routing trees given by z̄ . In this model, we do

ot need single path constraints (10) , gateway budget constraints

11) , and the variable definitions in (18) and (19) as the gateway

ocations and the routing trees are already determined. 

In the next section, we present our computational results on

etworks of different sizes and characteristics in order to demon-

trate the effectiveness of our heuristic approaches. 

. Computational results 

In this section, we consider four networks denoted by A, B, C,

nd D. Networks A and C are of grid topology consisting of node

onfigurations of 5 × 6 and 7 × 7, respectively, and the vertical

nd horizontal distances between any two neighboring nodes are

ssumed to be 1 kilometer (km). Networks B and D, on the other

and, consist of 27 nodes and 37 nodes, respectively, that are ran-

omly generated from a uniform distribution over a 4 km-by-4 km

quare. 

In each of these networks, each gateway connection is assumed

o have a capacity of a = 45 Mbps as of a T3 cable connection and
ach link has a capacity of c = 24 Mbps for the SINR threshold

alue of γ = 50 . Note that this value of γ guarantees a 100% frame

eception ratio under static path loss (see [19] ). 

The ambient noise η is assumed to be 1 . 5 × 10 −10 mW at all

odes. In each of the four networks, each node is assumed to have

 maximum transmission power of 15 mW . The path loss l ij is as-

umed to be l i j = r −3 
i j 

, where r ij denotes the distance between node

 and node j . Note that under these parameter settings, a node with

 maximum transmission power of 15 mW can form wireless links

oward nodes that are at most 1.26 km away. The resulting wireless

inks for Networks A, B, C, and D are presented in Fig. 1 . We re-

ark that each wireless link actually represents two directed links

n reverse directions due to the identical power settings for the

odes. Table 5 summarizes the sizes of each of the four networks,

here N denotes the number of nodes and E denotes the set of

irected wireless edges. 

We summarize the values of our parameters in Table 6 . 

In each network, the demand of each node (in Mbps) was ran-

omly chosen uniformly from the set { 0 . 1 , 0 . 2 , . . . , 1 . 0 } . Table 7

resents the demand of each node in each network. 

Our computational experiments were performed on a dual 2.4

Hz Intel Xeon E5620 CPU PC with 16 GB RAM. The optimization

roblems were solved using CPLEX 12.6 in parallel mode using up

o 16 threads. We set a CPU time limit of 20 h (72,0 0 0 s) for each

ptimization problem unless stated otherwise. Algorithm 1 was

mplemented in Matlab R2015b, whereas the three-stage heuristic

mploying k -opt in the first stage was implemented in Java. 

In our experiments, in order to obtain service levels exceeding

ne, the number of gateways G takes values from the sets {3, 4,

, 6}, {2, 3}, {4, 5, 6, 7}, and {3, 4, 5} for Networks A, B, C, and

, respectively. For each of the four sample networks, we consider

he instances where the number of time slots T in a frame takes

alues from the set {64, 128}. 

For each of the four networks, we first solved the optimiza-

ion model (AUX) in order to compute the maximum number of

oninterfering wireless links. Next, we used Algorithm 1 to enu-

erate all noninterfering transmission sets in each of the four net-

orks. For each network, the maximum number of noninterfering

ireless links and the total number of noninterfering transmission

ets are presented in Table 8 along with the number of nonin-

erfering transmission sets of sizes one through five. In Table 8 ,

 m 

denotes the set of noninterfering transmission sets of size m ,

 = 1 , 2 , . . . , 5 . The CPU times (in seconds) for solving (AUX) and

mplementing Algorithm 1 are also presented. 

Table 8 indicates that the CPU time required for solving the op-

imization model (AUX) and implementing Algorithm 1 is less than

alf a minute on each of the four networks. Therefore, the maxi-

um number of noninterfering wireless links and the set of all

oninterfering transmission sets can be computed fairly effectively

ven for considerably large instances. 
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Fig. 1. Example network topologies. 
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5.1. Model comparisons 

We start by comparing the proposed model (WMN1) against

the extension of the previous model (WMN0) supplemented with

the valid inequalities (30) proposed in [12] . The comparisons are

performed on all four networks. 

We compare the solutions obtained within 72,0 0 0 s of CPU

time in Table 9 , which is organized as follows: The first set of

columns presents the details of each instance. Note that the num-

ber of gateways is denoted by G and the number of time slots in

a TDMA frame is denoted by T . The second set and the third set

of columns present the objective function value of the best feasi-

ble solution and the best upper bound computed within the time

limit, the corresponding optimality gap, and the CPU time using

(WMN0) with the set of valid inequalities (30) and (WMN1), re-

spectively. In two instances for which CPLEX ran out of memory

(indicated by an asterisk), we report the CPU time when the pro-

cess was killed. Note that all CPU times in this section are reported

in seconds and the optimality gap is defined as the difference be-

tween the best upper bound and the objective function value of

the best feasible solution divided by the latter. The boldface en-

tries in each row indicate an improvement over the other model. 

For the simplest network, Network A, (WMN1) could solve

seven instances out of eight to optimality within the time limit.

The best solutions, best upper bounds, and optimality gaps ob-

tained by (WMN1) were better than those obtained from (WMN0)

with (30) in all eight instances. 

(  
For Network B, (WMN1) could compute an optimal solution

n two out of four instances. The best solutions of (WMN0) with

30) in all instances were inferior to the best solutions obtained

rom (WMN1). Moreover, the optimality gaps obtained from the

ormer were larger in all instances. 

In all instances of Network C, (WMN0) with (30) returned

ptimality gaps that were over 350%. Even though (WMN1) com-

uted better solutions in all these instances, it could not close

he optimality gap in any of them. However, the optimality gaps

rom (WMN1) were considerably lower than those from (WMN0)

ith (30) . We remark that, in two instances, (WMN1) ran out of

emory. 

One of the instances of Network D was solved to optimality by

WMN1). In the other five instances, the optimality gaps obtained

rom (WMN1) were always lower than 8%. (WMN0) with (30) , on

he other hand, returned inferior results with optimality gaps over

50% in all instances. 

Overall, our results on four networks reveal that (WMN1) out-

erformed (WMN0) supplemented with (30) in all of the instances.

ow that we have shown the benefit of modeling with noninterfer-

ng sets over the whole time frame as opposed to individual links

n individual time slots, we proceed with our computational results

sing only the model (WMN1). 

.2. The effect of the valid inequality (44) 

To demonstrate the effects of the set of valid inequalities in

44) on (WMN1), we solve (WMN1) with and without them on
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Table 7 

Node demands in Mbps . 

Node Network A Network B Network C Network D 

1 0.9 0.1 0.6 0.5 

2 1.0 0.3 0.6 0.4 

3 0.2 0.1 0.1 0.6 

4 1.0 0.1 0.4 0.6 

5 0.7 0.9 0.7 0.9 

6 0.1 0.7 0.4 0.8 

7 0.3 0.4 0.3 0.7 

8 0.6 1.0 0.3 0.4 

9 1.0 0.1 0.3 0.9 

10 1.0 0.5 0.9 0.6 

11 0.2 0.4 0.8 0.4 

12 1.0 0.8 0.2 1.0 

13 1.0 0.8 0.3 0.9 

14 0.5 0.2 0.4 0.6 

15 0.9 0.5 0.3 0.7 

16 0.2 0.5 0.2 0.6 

17 0.5 0.7 0.6 0.8 

18 1.0 0.8 0.2 0.4 

19 0.8 0.8 0.2 1.0 

20 1.0 0.3 0.3 0.5 

21 0.7 0.7 0.3 0.3 

22 0.1 0.7 0.9 0.9 

23 0.9 0.2 0.6 0.9 

24 1.0 0.2 0.6 0.8 

25 0.7 0.5 0.9 0.9 

26 0.8 1.0 0.4 0.8 

27 0.8 0.4 0.7 0.5 

28 0.4 0.4 0.4 

29 0.7 0.3 1.0 

30 0.2 0.3 0.5 

31 0.3 1.0 

32 0.1 0.2 

33 0.8 1.0 

34 0.2 1.0 

35 0.3 0.5 

36 0.4 0.2 

37 0.3 1.0 

38 0.2 

39 0.6 

40 0.1 

41 0.6 

42 0.6 

43 0.9 

44 0.4 

45 0.7 

46 0.4 

47 0.3 

48 0.3 

49 0.3 
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3 We observe similar improvements when the valid inequalities (44) are incorpo- 

rated into (WMN0) supplemented with (30) . However, the performance of the re- 

sulting model still remains inferior to that of (WMN1) in all of the instances, even 

without adding valid inequalities (44) . Therefore, we do not report these experi- 

ment results. 
ach of the four networks. The solutions are reported in Table 10 ,

hich is organized exactly the same way as Table 9 . 

For Network A, (WMN1) was able to solve seven instances to

ptimality and could not close the gap in the remaining instance.

n the other hand, with the addition of valid inequalities, each

f the eight instances was solved to optimality. Furthermore, the

alid inequalities improved the solution time in seven out of eight

nstances. 

For Network B, two instances were solved to optimality

ith (WMN1) whereas the addition of valid inequalities suc-

essfully closed the optimality gap on all four instances. In all

f these instances, the valid inequalities improved the solution

imes. 

Unfortunately, none of the instances of Network C could be

olved to optimality with either of the two models. The valid

nequalities improved the best feasible solution in three out of

ight instances. In two of the remaining five instances, where

oth alternatives returned the same best feasible solutions, the

alid inequalities improved the upper bound and, consequently,

he optimality gap. In the remaining three instances, the valid

nequalities did not lead to an improvement over the original
odel. Note, however, that the valid inequalities prevented prema-

ure termination of CPLEX run due to memory problems in two

nstances. 

For Network D, (WMN1) computed a better solution in one in-

tance and the model with valid inequalities returned a better so-

ution in another instance. In the remaining four instances, where

oth alternatives returned the same best feasible solutions, the

alid inequalities improved the upper bound and the optimality

ap in only one instance. 

Note that the best feasible solution obtained using the valid

nequalities was at least as good as that obtained from the orig-

nal model on 25 out of the 26 instances. Moreover, these valid

nequalities usually improved the solution times and decreased

he memory requirements. 3 Therefore, we decided to incorpo-

ate these valid inequalities into (WMN1) in our subsequent

xperiments. Henceforth, this optimization model will be denoted

y 

WMN1 ′ ). 

.3. Three-stage heuristic method 

In this section, we present our results obtained by using the

hree-stage heuristic, denoted by (3S), outlined in Section 4 on

ach of the four networks. 

We report our results for Networks A and B in Table 11 , which

s comprised of three sets of columns. The first set of columns

eports the details of the instance. The second set of columns

resents the optimal solution, and the CPU time of (WMN1 ′ ). The

ast set of columns is devoted to the three-stage heuristic and

resents the service level of the heuristic solution, the gap of

he heuristic solution, the upper bound (UB) given by the optimal

alue of the first stage model (WMN-S1), CPU time of Stage 1, and

he total CPU time. The gap of the heuristic solution is calculated

s the difference between the optimal solution and the heuristic

olution divided by the latter. 

(WMN1 ′ ) could solve all instances of Network A to optimality

ithin 20 min of CPU time. The three-stage heuristic approach, on

he other hand, took less than 4 min on each of the eight instances.

ote that the computational effort for each of the second and the

hird stages was quite negligible. On five instances (indicated by

oldface entries in Table 11 ), the solution computed by the heuris-

ic approach matched the optimal solution of (WMN1 ′ ). On the re-

aining three instances, the service level of the optimal solution

as at most 7% higher than the service level of the heuristic solu-

ion. Therefore, the performance of (3S) on this network was quite

atisfactory. 

(WMN1 ′ ) solved all instances of Network B to optimality, but

he solution time varied from 5 min to 42 min on these instances.

he three-stage heuristic approach, on the other hand, took less

han 17 s on each of the four instances. The heuristic solutions

atched the optimal solutions in two instances (indicated by bold-

ace entries in Table 11 ) and the service level of the optimal solu-

ion was at most 6% higher than the service level of the heuristic

olution on the remaining instances. 

Table 11 also reveals that the upper bounds obtained from the

ptimal value of (WMN-S1) are indeed quite tight on all instances

f Network A and Network B. For each network, the upper bound

s tighter for larger values of T . It follows that, on each of these

nstances, (WMN-S1) yields a reasonably good upper bound with

elatively little computational effort. 
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Table 8 

Outcomes of (AUX) and Algorithm 1 . 

Network (AUX) Algorithm 1 

Label | N | | E | Optimal value Time Time |S| | S 1 | | S 2 | | S 3 | | S 4 | | S 5 | 
A 30 98 2 3 1 242 98 144 – – –

B 27 162 4 4 3 1184 162 641 355 26 –

C 49 168 3 11 9 2716 168 2436 112 – –

D 37 254 5 28 20 14982 254 3281 7650 3652 145 

Table 9 

Model comparisons. 

(WMN0) with valid inequality (30) (WMN1) 

Network G T Best feasible Best bound Gap (% ) Time Best feasible Best bound Gap (% ) Time 

A 3 64 0 .9375 1 .9386 106 .78 720 0 0 1 .0135 1 .0135 0 .00 27321 

128 0 .9375 2 .0590 119 .63 720 0 0 1 .0938 1 .0938 0 .00 2161 

A 4 64 1 .1250 2 .0352 80 .91 720 0 0 1 .2500 1 .2500 0 .00 565 

128 1 .2500 2 .7336 118 .69 720 0 0 1 .3125 1 .3125 0 .00 248 

A 5 64 1 .4063 3 .2268 129 .46 720 0 0 1 .50 0 0 1 .50 0 0 0 .00 1142 

128 1 .4803 3 .5228 137 .98 720 0 0 1 .5938 1 .6071 0 .84 720 0 0 

A 6 64 1 .50 0 0 3 .8569 157 .13 720 0 0 1 .7500 1 .7500 0 .00 4186 

128 1 .50 0 0 3 .8668 157 .79 720 0 0 1 .8750 1 .8750 0 .00 698 

B 2 64 1 .50 0 0 1 .8462 23 .08 720 0 0 1 .6071 1 .6071 0 .00 15051 

128 1 .5789 2 .9464 86 .61 720 0 0 1 .6723 1 .6723 0 .00 4342 

B 3 64 1 .8750 3 .7855 101 .89 720 0 0 2 .4265 2 .50 0 0 3 .03 720 0 0 

128 1 .8750 5 .7340 205 .82 720 0 0 2 .6250 2 .6471 0 .84 720 0 0 

C 4 64 0 .7955 4 .0320 406 .88 720 0 0 1 .1538 1 .2416 7 .60 720 0 0 

128 0 .9375 4 .3076 359 .48 720 0 0 1 .2054 1 .2500 3 .70 720 0 0 

C 5 64 0 .9375 4 .5174 381 .85 720 0 0 1 .2500 1 .6705 33 .64 720 0 0 

128 0 .9375 4 .8660 419 .04 720 0 0 1 .2500 1 .6427 31 .42 720 0 0 

C 6 64 1 .0714 5 .2941 394 .12 720 0 0 1 .2500 2 .6032 108 .25 720 0 0 

128 0 .9375 5 .6803 505 .90 720 0 0 1 .4063 2 .7273 93 .94 720 0 0 

C 7 64 1 .0714 5 .9186 452 .40 720 0 0 1 .2500 3 .5154 181 .23 57087* 

128 1 .1250 6 .5868 485 .49 720 0 0 1 .5625 3 .7804 141 .95 62227* 

D 3 64 0 .7721 3 .9682 413 .97 720 0 0 1 .1719 1 .2629 7 .77 720 0 0 

128 0 .8750 4 .5925 424 .85 720 0 0 1 .2500 1 .30 0 0 4 .00 720 0 0 

D 4 64 0 .9375 4 .3766 366 .84 720 0 0 1 .50 0 0 1 .5694 4 .62 720 0 0 

128 0 .9375 4 .9775 430 .93 720 0 0 1 .5625 1 .5892 1 .71 720 0 0 

D 5 64 1 .2500 4 .6229 269 .83 720 0 0 1 .8750 1 .8750 0 .00 66596 

128 1 .1719 7 .4584 536 .45 720 0 0 1 .8750 1 .9383 3 .38 720 0 0 

Table 10 

Computational results with and without valid inequalities. 

(WMN1) (WMN1) with valid inequality (44) 

Network G T Best feasible Best bound Gap (%) Time Best feasible Best bound Gap (%) Time 

A 3 64 1 .0135 1 .0135 0 .00 27321 1 .0135 1 .0135 0 .00 54 

128 1 .0938 1 .0938 0 .00 2161 1 .0938 1 .0938 0 .00 48 

A 4 64 1 .2500 1 .2500 0 .00 565 1 .2500 1 .2500 0 .00 290 

128 1 .3125 1 .3125 0 .00 248 1 .3125 1 .3125 0 .00 181 

A 5 64 1 .50 0 0 1 .50 0 0 0 .00 1142 1 .50 0 0 1 .50 0 0 0 .00 888 

128 1 .5938 1 .6071 0 .84 720 0 0 1 .5938 1 .5938 0 .00 960 

A 6 64 1 .7500 1 .7500 0 .00 4186 1 .7500 1 .7500 0 .00 908 

128 1 .8750 1 .8750 0 .00 698 1 .8750 1 .8750 0 .00 1145 

B 2 64 1 .6071 1 .6071 0 .00 15051 1 .6071 1 .6071 0 .00 1933 

128 1 .6723 1 .6723 0 .00 4342 1 .6723 1 .6723 0 .00 416 

B 3 64 2 .4265 2 .50 0 0 3 .03 720 0 0 2 .4265 2 .4265 0 .00 2525 

128 2 .6250 2 .6471 0 .84 720 0 0 2 .6250 2 .6250 0 .00 329 

C 4 64 1 .1538 1 .2416 7 .60 720 0 0 1 .1538 1 .1976 3 .79 720 0 0 

128 1 .2054 1 .2500 3 .70 720 0 0 1 .2054 1 .2327 2 .27 720 0 0 

C 5 64 1 .2500 1 .6705 33 .64 720 0 0 1 .2500 1 .9169 53 .35 720 0 0 

128 1 .2500 1 .6427 31 .42 720 0 0 1 .2500 1 .6637 33 .10 720 0 0 

C 6 64 1 .2500 2 .6032 108 .25 720 0 0 1 .2500 3 .2791 162 .33 720 0 0 

128 1 .4063 2 .7273 93 .94 720 0 0 1 .5625 3 .0744 96 .76 720 0 0 

C 7 64 1 .2500 3 .5154 181 .23 57087* 1 .6667 3 .6123 116 .74 720 0 0 

128 1 .5625 3 .7804 141 .95 62227* 1 .8750 3 .4742 85 .29 720 0 0 

D 3 64 1 .1719 1 .2629 7 .77 720 0 0 1 .1786 1 .2234 3 .80 720 0 0 

128 1 .2500 1 .30 0 0 4 .00 720 0 0 1 .2500 1 .2710 1 .68 720 0 0 

D 4 64 1 .50 0 0 1 .5694 4 .62 720 0 0 1 .50 0 0 1 .5711 4 .74 720 0 0 

128 1 .5625 1 .5892 1 .71 720 0 0 1 .5625 1 .6088 2 .96 720 0 0 

D 5 64 1 .8750 1 .8750 0 .00 66596 1 .7647 2 .1281 20 .59 720 0 0 

128 1 .8750 1 .9383 3 .38 720 0 0 1 .8750 1 .9709 5 .11 720 0 0 
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Table 11 

Computational results on Networks A and B. 

(WMN1 ′ ) (3S) 

Network G T Solution Time Solution Gap (% ) UB Time (WMN-S1) Time (Total) 

A 3 64 1 .0135 54 0 .9868 2 .71 1 .1707 12 13 

128 1 .0938 48 1 .0795 1 .32 13 

A 4 64 1 .2500 290 1 .1719 6 .66 1 .3953 50 51 

128 1 .3125 181 1 .3125 0 .00 51 

A 5 64 1 .50 0 0 888 1 .50 0 0 0 .00 1 .7021 71 71 

128 1 .5938 960 1 .5938 0 .00 71 

A 6 64 1 .7500 908 1 .7500 0 .00 1 .9592 188 188 

128 1 .8750 1145 1 .8750 0 .00 188 

B 2 64 1 .6071 1933 1 .5203 5 .71 1 .7518 5 5 

128 1 .6723 416 1 .6667 0 .34 6 

B 3 64 2 .4265 2525 2 .4265 0 .00 2 .7907 13 17 

128 2 .6250 329 2 .6250 0 .00 16 

Table 12 

Computational results on Networks C and D. 

Best in Table 10 (3S) 

Network G T Best feasible Best bound Solution Gap (%) UB Time (WMN-S1) Time (Total) 

C 4 64 1 .1538 1 .1976 1 .1538 3 .80 1 .2917 4092 4094 

128 1 .2054 1 .2327 1 .1932 3 .31 4095 

C 5 64 1 .2500 1 .6705 1 .2500 33 .64 1 .9355 ∗ 7200* 7206 

128 1 .2500 1 .6427 1 .3393 22 .65 7202 

C 6 64 1 .2500 2 .6032 1 .50 0 0 73 .55 3 .0573 ∗ 7200* 7204 

128 1 .5625 2 .7273 1 .6544 64 .85 7205 

C 7 64 1 .6667 3 .5154 1 .6667 110 .92 3 .6244 ∗ 7200* 7207 

128 1 .8750 3 .4742 1 .8750 43 .74 7204 

D 3 64 1 .1786 1 .2234 1 .1250 8 .75 1 .3355 953 962 

128 1 .2500 1 .2710 1 .2260 3 .67 963 

D 4 64 1 .50 0 0 1 .5694 1 .50 0 0 4 .62 1 .6696 4482 4486 

128 1 .5625 1 .5892 1 .5625 1 .71 4487 

D 5 64 1 .8750 1 .8750 1 .8750 0 .00 1 .9955 6533 6544 

128 1 .8750 1 .9383 1 .8750 3 .38 6544 
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In Table 12 , we report the results of (3S) for Networks C and D.

he organization of this table is similar to that of Table 11 . Note

hat we do not have the optimal solution in most of these in-

tances. Therefore, in the second set of columns in Table 12 , we

eport, for each instance, the best feasible solution and the best

pper bound presented in Table 10 . The gap calculations are also

ifferent for the same reason. In the calculation of the gap for

he heuristic solution, we substitute the optimal solution with the

inimum of the best bound from Table 10 and the upper bound

btained by (WMN-S1). It follows that the computed gap is, in fact,

n upper bound on the true gap. Note that (WMN-S1) was solved

nder a CPU time limit of 2 h. 

Under a time limit of 20 h, (WMN1) and (WMN1 ′ ) could not

olve any instance of Network C to optimality and terminated with

arge optimality gaps, especially for larger number of gateways.

n the other hand, while the first stage model (WMN-S1) was

olved to optimality for G = 4 within the 2-h time limit, the solver

topped with large optimality gaps for G ∈ {5, 6, 7} due to the

ime limit. For these instances, given the best feasible solution of

he first stage model (WMN-S1) under the time limit, we contin-

ed with the second and the third stages of (3S) accordingly. The

pper bounds for these instances, which are indicated by aster-

sks, are the best bounds obtained by (WMN-S1) within the time

imit. 

The solution computed by our three-stage heuristic (3S) out-

erformed the best solution computed by (WMN1) and (WMN1 ′ )
n 20 h on three out of eight instances of Network C, and matched

t on four instances. These instances are indicated by boldface en-

ries in Table 12 . In the remaining instance with four gateways and

 = 128 , the heuristic solution was slightly worse than this solu-
ion. It is again worth noticing that the second and the third stages

ould be performed very quickly on each instance. 

As for the gaps for Network C, we observe two different cases.

or the instances with G = 4 , the optimality gaps are small for

oth (WMN1) and (WMN1 ′ ), and (WMN-S1) is solved to opti-

ality. Therefore, the upper bounds on the optimal service lev-

ls are fairly tight and the computed gaps for the heuristic so-

ution are therefore similar to those of Networks A and B. For

he instances with G ∈ {5, 6, 7}, however, the solver terminated

ith fairly large optimality gaps due to the time limit for each

f the three models (WMN1), (WMN1 ′ ), and (WMN-S1). Conse-

uently, the upper bounds on these instances are rather loose and

he computed gaps for the heuristic solutions are therefore fairly

arge. In an attempt to obtain more accurate gap values, we solved

WMN-S1) without any time limit and obtained the upper bounds

.4861, 1.7844, and 2.0021 for the instances with G = 5 , G = 6 ,

nd G = 7 , respectively. The corresponding CPU times were 11,571,

9,142, and 132,155 s. Note that the resulting upper bounds from

he optimal values of (WMN-S1) are considerably tighter than the

nes presented in Table 12 . We report the more accurate gaps for

he same heuristic solutions using the tighter upper bounds in

able 13 . 

Table 13 reveals that the optimal solutions on these instances

ere at most around 20% larger than the heuristic solutions on

ach of these instances. We again remark that these gaps consti-

ute an upper bound on the true gaps as we employ the upper

ounds for the optimal solutions instead of the optimal solutions

n their calculation. 

The best bounds obtained from Table 10 on the instances of

etwork D were fairly tight. Therefore, (WMN-S1) could not im-
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Table 13 

More accurate gaps for the heuristic solutions on Network C. 

(3S) 

G T Solution UB Gap (%) 

5 64 1 .2500 1 .4861 18 .89 

128 1 .3393 10 .96 

6 64 1 .50 0 0 1 .7844 18 .96 

128 1 .6544 7 .86 

7 64 1 .6667 2 .0021 20 .12 

128 1 .8750 6 .78 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 14 

Comparison of (2S) and (3S). 

(2S) (3S) 

Network G T Solution Time Solution Time Improvement (%) 

A 3 64 0 .9122 7217* 0 .9868 13 8 .18 

128 0 .9375 7217* 1 .0795 13 15 .15 

A 4 64 1 .0714 7226* 1 .1719 51 9 .38 

128 1 .1250 7226* 1 .3125 51 16 .67 

A 5 64 1 .4063 2409 1 .50 0 0 71 6 .66 

128 1 .4583 7263* 1 .5938 71 9 .29 

A 6 64 1 .50 0 0 7258* 1 .7500 188 16 .67 

128 1 .6875 4243 1 .8750 188 11 .11 

B 2 64 1 .50 0 0 7205* 1 .5203 5 1 .35 

128 1 .50 0 0 7205* 1 .6667 6 11 .11 

B 3 64 1 .8750 7210* 2 .4265 17 29 .41 

128 1 .8750 7210* 2 .6250 16 40 .00 

C 4 64 1 .0417 8163* 1 .1538 4094 10 .76 

128 1 .0714 8163* 1 .1932 4095 11 .37 

C 5 64 1 .1538 7972* 1 .2500 7206* 8 .34 

128 1 .2500 7972* 1 .3393 7202* 7 .14 

C 6 64 1 .2500 7733* 1 .50 0 0 7204* 20 .00 

128 1 .5625 7733* 1 .6544 7205* 5 .88 

C 7 64 1 .2500 8736* 1 .6667 7207* 33 .34 

128 1 .5625 8736* 1 .8750 7204* 20 .00 

D 3 64 1 .0714 7231* 1 .1250 962 5 .00 

128 1 .0227 7231* 1 .2260 963 19 .88 

D 4 64 1 .1250 7287* 1 .50 0 0 4486 33 .33 

128 1 .0417 7287* 1 .5625 4487 50 .00 

D 5 64 1 .4063 7264* 1 .8750 6544 33 .33 

128 1 .1458 7264* 1 .8750 6544 63 .64 
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prove the upper bounds. However, even though (3S) was com-

pleted in less than 2 h on all six instances, it computed solutions

that matched the best solution in four of those instances indicated

by boldface entries. On this network, the computed gaps of the

heuristic solution are below 9% for the instances with T = 64 , and

below 4% for the instances with T = 128 . 

Considering the instances for which we have an optimal solu-

tion, Tables 11 and 12 reveal that the gaps of the heuristic solution

are below 7%. We believe that not having an optimal solution is

mainly responsible for the larger computed gaps presented for the

other instances. 

5.3.1. Comparison with the heuristic method in [12] 

In our earlier paper [12] , we proposed a two-stage heuris-

tic method. In this section, we compare the performance of the

heuristic approach (3S) with the heuristic proposed in [12] , hence-

forth referred to as (2S). 

Similar to (3S) presented in this work, gateway locations are de-

termined in the first stage of (2S). However, a different approach is

adopted for the selection of gateway nodes. In the first stage of

(2S), wireless links are viewed as wired links of capacity c . Next,

gateway nodes are selected so as to minimize the total traffic flow

on the wired links of the network under the assumption that the

demand of each node is satisfied (i.e., service level is equal to one).

For this purpose, the following optimization model, denoted by

(G1), is employed: 

min 

∑ 

(i, j) ∈ E 
f i j 

subject to (7), (8), (10), (11), (18), (19), (21), (22), (24) , and 

f i j ≤ cz i j , (i, j) ∈ E, ∑ 

(h,i ) ∈ E 
f hi + 

∑ 

(i, j) ∈ E 
f i j ≤ c, i ∈ { 1 , . . . , N} , 

w = 1 . 

In the second stage of (2S), the gateway locations obtained from

(G1) are fixed and the optimization model (WMN0) with the valid

inequality (30) is solved accordingly. 

In Table 14 , we compare the heuristic approaches (2S) and (3S)

in terms of the solution quality and computation time. This table

is organized as follows: The first set of columns reports the de-

tails of the instance. In the second and the third set of columns,

we present the heuristic solutions and total solution times in sec-

onds obtained from the heuristic methods (2S) and (3S), respec-

tively. We also present the percentage improvements of our new

heuristic (3S) over the previous heuristic (2S) in the third set of

columns, which is computed by the difference between the service

levels of the solutions obtained from (3S) and (2S) divided by the

latter. Note that the second stage of (2S) and the first stage of (3S)

are both solved under a CPU time limit of 2 h. If the solution of

either one is stopped due to the time limit, we indicate that by an

asterisk. 

Table 14 reveals that (3S) computed a better solution than the

previous heuristic (2S) in all twenty-six instances. We remark that
he solutions computed by (3S) are up to 64% better than the solu-

ions obtained by (2S). Furthermore, the total computational effort

equired by (3S) was always smaller than that for (2S). These com-

utational results illustrate that our heuristic approach (3S) consis-

ently outperforms the heuristic (2S) proposed in [12] . 

.3.2. k -opt hill climbing 

Based on our computational experiments and discussions in

ection 5.3 , the first stage model (WMN-S1) can be solved fairly

uickly on smaller instances such as Networks A and B and pro-

ides a reasonably good upper bound on the optimal service level.

n the other hand, for larger instances such as Networks C and

, even solving (WMN-S1) may require a significant computational

ffort. 

In this section, we consider using the 1-opt and 2-opt hill

limbing methods as substitutes for directly solving the first stage

odel (WMN-S1) on Networks C and D. More precisely, for each

umber of gateways, we randomly select 10 different initial gate-

ay sets. Adding the constraint (51) to (WMN-S1) with k = 1 or

 = 2 , we start our 1-opt or 2-opt hill climbing methods, respec-

ively, from those particular sets of gateways. Note that the con-

traint (51) ensures that, at each iteration, the next set of gate-

ays can differ from the current set in at most k nodes. Once

hese methods terminate (i.e., the set of gateway nodes remains

he same in two consecutive iterations), we fix the correspond-

ng gateway locations and continue with the second and the third

tages of our heuristic approach. 

We report our computational results for Networks C and D in

able 15 , which is organized as follows: The first set of columns re-

orts the details of the instance. In the second set of columns, we

resent the heuristic solutions and solution times obtained from

3S) employing (WMN-S1) in the first stage. Here, we again impose

 2-h time limit for solving the first stage model (WMN-S1) and

sterisks indicate the instances where (WMN-S1) was not solved

o optimality. In the third set of columns, under the title ’0-opt’,

e report the best, the worst, and the average service levels for

ach instance obtained from (3S) skipping the first stage and di-
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Table 15 

(WMN-S1) versus k -opt comparisons. 

With (WMN-S1) With (0-opt) With (1-opt) With (2-opt) 

Network G T Solution Time Best Worst Average Best Worst Average Time Best Worst Average Time 

C 4 64 1 .1538 4094 0 .9375 0 .6048 0 .7885 1 .1538 1 .0227 1 .0651 616 1 .0714 1 .0500 1 .0693 7403 

128 1 .1932 4095 1 .0417 0 .6667 0 .8615 1 .1932 1 .1250 1 .1516 625 1 .1932 1 .1250 1 .1646 7406 

C 5 64 1 .2500 7206* 1 .0714 0 .6250 0 .8773 1 .2500 1 .2500 1 .2500 657 1 .2500 1 .2500 1 .2500 12421 

128 1 .3393 7202* 1 .1719 0 .6888 0 .9543 1 .3393 1 .2891 1 .3174 660 1 .3393 1 .3281 1 .3343 12431 

C 6 64 1 .50 0 0 7204* 1 .2500 0 .8036 1 .0319 1 .50 0 0 1 .3235 1 .3881 641 1 .50 0 0 1 .3393 1 .4357 13870 

128 1 .6544 7205* 1 .3393 0 .9375 1 .1235 1 .6544 1 .5625 1 .5809 639 1 .6544 1 .5625 1 .6176 13856 

C 7 64 1 .6667 7207* 1 .3393 0 .9375 1 .1153 1 .7045 1 .5625 1 .6579 778 1 .7045 1 .6667 1 .6818 11095 

128 1 .8750 7204* 1 .5625 1 .0227 1 .2135 1 .8750 1 .8750 1 .8750 768 1 .8750 1 .8750 1 .8750 11054 

D 3 64 1 .1250 962 1 .0227 0 .5288 0 .7990 1 .1538 1 .0714 1 .1258 824 1 .1538 1 .1250 1 .1423 5719 

128 1 .2260 963 1 .0938 0 .5515 0 .8596 1 .2500 1 .1250 1 .2154 828 1 .2500 1 .2260 1 .2404 5718 

D 4 64 1 .50 0 0 4486 1 .2028 0 .5474 0 .9566 1 .50 0 0 1 .4423 1 .4885 1046 1 .50 0 0 1 .50 0 0 1 .50 0 0 19202 

128 1 .5625 4487 1 .2500 0 .5720 1 .0164 1 .5625 1 .5625 1 .5625 1037 1 .5625 1 .5625 1 .5625 19226 

D 5 64 1 .8750 6544 1 .2500 0 .7500 1 .1024 1 .8750 1 .7308 1 .8317 1487 1 .8750 1 .8750 1 .8750 28762 

128 1 .8750 6544 1 .3393 0 .8333 1 .1579 1 .8750 1 .8750 1 .8750 1489 1 .8750 1 .8750 1 .8750 28597 
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m  
ectly employing each one of the ten random gateway sets in the

econd and the third stages. Since the solution times of the second

nd the third stages are negligible, we do not report any solution

imes. In the fourth and the fifth set of columns, for each instance,

e report the best, the worst, and the average service levels ob-

ained from (3S) employing 1-opt and 2-opt, respectively, in the

rst stage along with the total CPU times obtained over the same

en random initial gateway sets. In this study, we do not consider

etworks A and B, for which (WMN-S1) can be solved to optimal-

ty within a short period of time. 

Table 15 reveals that, compared with employing random initial

ateway sets directly in the second stage (i.e., 0-opt), using 1-opt

r 2-opt local search methods in the first stage yields significant

mprovements on the service level of the resulting feasible solu-

ion. More precisely, the improvements vary from 13% to 50% for

est solutions; from 65% to 173% for worst solutions; and from 34%

o 70% for average solutions. These results demonstrate the effec-

iveness of our k -opt hill climbing method. 

The best solution obtained from (3S) employing 1-opt in the

rst stage over 10 random initial gateways matched the solution

btained from (3S) employing (WMN-S1) in the first stage in 11

ut of 14 instances and was strictly better in the remaining in-

tances indicated by boldface entries. Furthermore, the total CPU

ime of (3S) employing 1-opt in the first stage is smaller than the

PU time of (3S) employing (WMN-S1) in the first stage in all of

hese instances. We therefore conclude that using 1-opt from 10

andom initial gateway sets in the first stage is usually much faster

han solving (WMN-S1) and may return solutions that are of simi-

ar or better quality on larger instances. 

Considering the 2-opt hill climbing method, note that its best

olutions matched the best solutions obtained from the 1-opt ap-

roach in thirteen out of fourteen instances and was slightly below

n the remaining instance. This observation suggests that increas-

ng the parameter k in the k -opt hill climbing method does not

ecessarily guarantee a better solution as the local search method

ay get stuck at a local optimal solution. Note, however, that the

verage and the worst-case performances of the 2-opt approach

re always at least as good as the average and the worst-case per-

ormances of the 1-opt approach, respectively, which suggests that

 larger value of k may have the potential to yield better solutions

n average. As expected, this increased performance comes at the

xpense of additional computational effort. Our experiments reveal

hat the additional time required by the 2-opt approach does not

eem to be justified by the quality of the resulting solution on this

ata set. We therefore recommend using the 1-opt approach as a

ompetitive alternative to directly solving (WMN-S1), especially for

arger instances. 

a  
.4. Discussion 

These computational experiments indicate that our optimiza-

ion model (WMN1 ′ ) can be used to obtain an exact solution

or smaller networks in a reasonable amount of time. For larger

etworks, our three-stage heuristic approach can compute optimal

r near-optimal solutions using considerably lower CPU times. Fur-

hermore, for networks where (WMN-S1) is also difficult to solve,

he 1-opt hill climbing method can be used as a stand-alone ap-

roach that completely eliminates the need to solve (WMN-S1).

inally, since the second and the third stages of our heuristic ap-

roach usually require a fairly low computational effort, for these

etworks, the 1-opt hill climbing method can be started from sev-

ral randomly selected initial gateway sets and the best feasible

olution among them can be implemented. 

. Conclusions 

In this paper, we considered planning and operational problems

f WMNs, such as gateway selection, routing, transmission capacity

llocation, and power control, employing the physical interference

odel. 

We proposed two mixed integer linear programming formula-

ions for this problem. The first model is adapted from [12] to the

etting studied in this paper. The alternative formulation is based

n sets of noninterfering links and its size is independent of the

umber of time slots in a frame. We determined not only the nec-

ssary and sufficient conditions in order for a set of links to be

ctivated together in the same time slot but also an appropriate

ower setting for each transmitting node. Consequently, in the al-

ernative formulation, we completely eliminated the power control

nd the interference components from the problem. Our computa-

ional results revealed that the alternative formulation significantly

utperforms the first formulation in terms of the solution quality

nd computation time. 

In the alternative formulation, time slots are allocated to sets of

oninterfering transmissions. The main disadvantage of this formu-

ation is that the set of noninterfering transmissions may get ex-

onentially large with increasing network sizes. In that case, com-

ercial solvers may return large optimality gaps or may terminate

rematurely due to insufficient memory. For such large networks,

e proposed a three-stage heuristic method. In the first stage, by

olving a partially relaxed and simplified version of the alternative

ptimization model, we determine a set of gateways as well as an

pper bound for the service level. In the second stage, we deter-

ine a routing tree for each gateway. The last stage determines the

llocation of time slots to noninterfering transmission sets to form
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these routing trees. For even larger networks, for which it may

take a long time to obtain gateway locations in the first stage, we

proposed a k -opt hill climbing method that can be employed as a

substitute for solving (WMN-S1) in the first stage of our heuristic.

Our computational results illustrate the promising performances of

these heuristic approaches. Furthermore, we observe that our new

heuristic approach significantly outperforms our earlier heuristic

approach proposed in [12] . 

Note that a solution returned by our exact or heuristic ap-

proaches specifies the number of time slots that should be allo-

cated to each noninterfering transmission set in a TDMA frame.

However, the specific assignment of each time slot to a noninter-

fering transmission set has not been addressed in our paper since

this assignment problem has no effect on the service level. On the

other hand, the order in which each time slot is assigned to a non-

interfering transmission set may have an impact on other quality

of service measures such as the total delay of packages in the net-

work. We intend to work in this direction in the near future. 
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