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We focus on the scheduling problem arising in hybrid flexible flow shops which repeatedly produce a set
of multiple part-types and where the transportation of the parts between the machines is performed by a
robot. The cycle time of the cell is affected by the robot move sequence, part/machine assignments and
part sequences. In a hybrid flexible flow shop in which there exist one machine in the first and two
machines in the second stage, the problem of determining the best cycle time is modeled as a traveling
salesman problem. In order to provide a solution methodology for realistic problem instances, a
Simulated Annealing based heuristic is constructed and the problem is solved using two different neigh-
borhood structures. The results are also compared against an effective proposed lower bound value.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The point of origin of this research is the increase in the level of
automation in manufacturing industries. As pointed out by
Kamoun, Hall, and Sriskandarajah (1999), since setup times are
reduced to improve flexibility, material handling time and cost
become bottleneck, and efficient material handling becomes very
important. A robotic cell is a manufacturing cell which consists
of a number of machines and a material handling robot. In such
systems, a part is taken from the input buffer, carried to the related
machine and left to the output buffer after its processing is
completed.

Robots are commonly used in many different cell formations. In
this study, we focus on the robot usage in hybrid flow shops (HFSs).
In a classical flow shop, all jobs are processed by the same set of
machines in a linear fashion, from the first to the last stage and
one machine performs all the processing for each stage. In order
to extend the capacity of a single stage, additional parallel machi-
nes may be purchased. This extension of a flow shop to allow mul-
tiple (usually identical) machines in stages transforms the flow
shop into a HFS (Kurz & As�kın, 2003).

In the literature there are many studies under the interrelated
topics of ‘flow shops with parallel machines’, ‘hybrid flow shops’
and ‘flexible flow shops’. These research fields contain both similar
and different aspects. The studies on hybrid flow shops (HFSs)
usually focus on non-identical jobs and identical parallel machines,
whereas the interest of studies on flow shops with parallel machi-
nes is in the identical job and uniform parallel machine environ-
ment (Dessouky, Dessouky, & Verma, 1998). Hybrid flexible flow
shop problem which is the focus of this study, is obtained from
classical flow shop with parallel machines problem by introducing
a few specific additional assumptions (Nowicki & Smutnicki, 1998).
In hybrid cells, it is possible to produce parts of different types and
a job might skip any number of stages provided it is processed in at
least one of them, whereas, in flexible flow shops, all jobs are pro-
cessed following the same production flow: stage 1,stage 2, . . . ,
stage m (Kurz & As�kın, 2003).

Though the underlying optimization problems in a HFS are chal-
lenging, they have received a lot of attention in the literature due
to the practical relevance of the inherent problems. Vignier,
Billaut, and Proust (2010), Linn and Zhang (1999), Wang (2005)
and Quadt and Kuhn (2007), and more recently Ruiz and
Vazquez-Rodriguez (2010) present reviews on HFS problems.

Under the topics of hybrid flow shops or flexible flow lines there
are many studies considering setup operations which are similar to
the robot operations considered in our study.

Yaurima, Burtseva, and Tchernykh (2009) focus on hybrid flow
shops with unrelated machines and sequence-dependent setup
time. Taking the availability constraints and limited buffers into
account, they present a genetic algorithm. Jabbarizadeh, Zandieh,
and Talebi (2009) also consider sequence-dependent setup times
and machine availability constraints on hybrid flexible flow shops.
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They propose heuristic methods and present computational exper-
iments to evaluate the efficiencies of the algorithms.

Zandieh and Karimi (2011) consider a multi-objective group
scheduling problem in a hybrid flexible flow shop setting with
sequence-dependent setup times by minimizing the total weighted
tardiness and the maximum completion time, simultaneously.
They propose a multi-population genetic algorithm for the prob-
lem and compare it with the multi-objective genetic algorithm
and the non-dominated sorting genetic algorithm.

Sawik (2012) provides mixed-integer programming models for
cyclic or batch scheduling of a flexible flow shop with finite in-
process buffers and continuous or limited machine availability,
and compares the cyclic and batch scheduling modes. The compu-
tational experiments reported in the paper indicate that when
setup times are negligible, cyclic scheduling outperforms batch
scheduling for both continuous and limited machine availability.
Based on these promising results, we also focus on cyclic schedules
in our study.

As manufacturers implement larger and more complex robotic
cells, more challenging optimization problems arise in handling
such systems. To face this challenge, there have been many studies
as early as dating back to late 1970s. We would like to draw the
attention of the interested reader to surveys such as Crama, Kats,
Van de Klundert, and Levner (2000), Lee, Lin, and Ying (2010),
Dawande, Geismar, Sethi, and Sriskandarajah (2005) and Brauner
(2008).

In robotic cells, different types of parts can be processed in lots.
Parts typically differ from each other by having different process-
ing times on a given machine. In multiple part type scheduling, a
Minimal Part Set (MPS), i.e., the smallest possible set of parts hav-
ing the same proportions as the overall production target, is pro-
duced repetitively. During an MPS cycle, all the parts in an MPS
are taken from the input, get processed on appropriate machines
and leave the system in its original starting state. Considering this
cyclic production environment, the objective in multiple part type
scheduling is to minimize the average time to produce one MPS.
Multiple part-type problems are harder than their identical part-
type counter problems even for small number of machines.

Machines in our robotic cell have the ability to handle a mixture
of operations, which is defined as the process flexibility together
with the ability to interchange the ordering of several operations
for each part type, which is defined as the operational flexibility.
Therefore, studies taking these definitions into account also play
an important role in our study.

Gültekin, Aktürk, and Karas�an (2006) consider a robotic cell
scheduling problemwith two machines. Due to tooling constraints,
some operations of identical parts can only be processed on certain
machines. They find the allocation of the flexible operations to the
two machines and the robot move cycle in order to minimize the
cycle time.

The scope in Gültekin, Karas�an, and Aktürk (2009) is an m-
machine flexible robotic manufacturing cell consisting of CNC
machines. Using the advantage of the flexibility of the machines,
the authors define a class of robot move cycles, namely pure cycles,
and prove that, in most of the regions, one of these cycles is
optimal.

Kamalabadi, Gholami, and Mirzaei (2007) consider multiple
part type 3-machine robotic cells possessing operational flexibility
that allow the operations to be performed in any order. They
develop a mathematical model which is based on Petri nets and
then, due to the difficulty of obtaining optimal solutions in reason-
able computational times, they implement the particle swarm
optimization heuristic for solving the problem.

Batur, Karas�an, and Aktürk (2012) focus on the scheduling prob-
lem arising in 2-machine flexible robotic cells which repeatedly
produce a set of multiple part-types. As a result of the flexibility
properties of the system, they try to find the robot move sequence
as well as the processing times of the parts on each machine that
minimize the cycle time.

The study of Elmi and Topalog�lu (2013) is similar to ours. They
deal with using multiple robots in hybrid flow shop robotic cells.
A mixed integer linear programming model minimizing the
makespan is proposed along with a simulated annealing based
heuristic as solution methodologies. Although the cell formation
considered in this study is close to the robotic cell in this study,
our system becomes more complex when taking flexibility and
sequencing of the robots moves into account. Additionally, we
are able to provide a very effective lower bound value for our
problem.

In hybrid flow shop scheduling, there are two inherent prob-
lems that have to be jointly solved, namely, the sequencing of parts
on the stages and the allocation of parts to the different machines
at each stage (Gupta, 1988). Considering these two problems
together with the robotic cells, there are three main problems of
this study; part input sequencing, part/machine allocation for each
stage and the robot move sequencing.

In this study we focus on the scheduling problem observed in
hybrid flexible flow shops where multiple part-types are produced
and the transportation of these parts is performed by the help of a
robot. Such systems necessitate multi-stage environments which
may contain more than one machine and are commonly used in
industries such as food processing, chemical, textile, metallurgical,
printed circuit board and automobile manufacturing. Within our
scope is an in-line robotic cell formation in which the first stage
has only one machine whereas the second stage has two identical
machines.

In the following section, the notation and basic assumptions
pertinent to this study are introduced. Section 3 presents the pro-
posed mathematical model. In Section 4, a simulated annealing
approach is proposed as a solution methodology and two different
neighborhood structures are distinguished. In Section 5 the results
of the heuristic methodology are compared against a proposed
lower bound value. Section 6 summarizes the contributions and
concluding remarks of this study.
2. Notation and assumptions

As is mentioned before, in the literature, there are studies under
the topics of ‘flow shops with parallel machines’, ‘hybrid flow
shops’ and ‘flexible flow shops’. Although there are differences, fol-
lowing characteristics are in common:

(1) The number of processing stages k is at least 2.
(2) Stage k hasmk P 1 machines in parallel and in at least one of

the stages mk > 1.
(3) All jobs are processed following the same production flow:

stage 1,stage 2, . . . , stage m. A job might skip any number
of stages provided it is processed in at least one of them.

In this study we have used the following assumptions which are
also used in the ‘‘standard” form of the HFS problem (Ruiz &
Vazquez-Rodriguez, 2010);

(1) All jobs and machines are available at time zero.
(2) Machines at a given stage are identical.
(3) Any machine can process only one operation at a time and

any job can be processed by only one machine at a time.
(4) Setup times are negligible.
(5) Preemption is not allowed.
(6) The capacity of buffers between stages is unlimited.
(7) Problem data is deterministic and known in advance.
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Throughout the production schedule, parts are taken from the
input buffer, carried to related machine(s) according to the
machine availability and the system conditions, and when their
processing is completed carried to the output buffer by the robot.
All of the parts move on the same direction from the first stage
to the second one, but they do not have to visit both of the stages.
In a 2-stage flexible flow shop, there are three types of parts with
respect to the stages on which they are going to be processed. Parts
are allowed to follow one of the three routes: 1 (just first stage), 2
(just second stage), and 1–2 (both stages). When a part is to be pro-
cessed on the second stage that has two identical machines, the
question is to determine which one of these two machines will
process the part.

In this study, we consider constant travel time robotic cells. In
such cells, the robot moves with varying acceleration and deceler-
ation, and the robot travel-times between pairs of machines are
roughly equal. Two main assumptions related to the robot travel
times between machines, namely, additive travel-time and con-
stant travel time, are both commonly used in industries. However,
constant travel time cells seem to be more appropriate to certain
robotic cell formations (Dawande, Sriskandarajah, & Sethi, 2002).

Fig. 1 depicts the cell under consideration. There are 2 blocks
corresponding to 2 stages, in which the first block has only 1
machine whereas the second one contains 2 machines.

Against this background, the objective is to minimize the long
run average cycle time required for the repetitive production of a
minimal part set. Throughout this study each part in the MPS is
treated independently since two identical parts belonging to the
same part-type might have different allocations. The accompany-
ing notation will be formally defined in the forthcoming sections.

To the best of the authors’ knowledge, the current study is a first
attempt to consider hybrid flexible flow shops in the context of
robotic cells. Considering multiple part-types necessitates different
processing requirements and ultimately makes our problem quite
challenging.
Table 1
Parameters and decision variables used in the mathematical model representation.

Parameters
n Total number of parts to be produced in the MPS
k Number of processing stages
mk Number of machines at stage k
pik Processing times of part-types i to be produced in stage

k; i ¼ 1; . . . ;n; k ¼ 1;2
� Load/unload times of machines by the robot. (Consistent with the

literature we assume that loading/unloading times for all machines
are the same.)

d Time taken by the robot to travel between two machines. (The robot
travel time is assumed to be constant.)

timeiq ;jr Total time needed for the movement prescribed by the robot
activity from where part i is at station q to where part j is at station r
3. Mathematical model

Batur et al. (2012) is a study of close kinship to ours. In their
study, there are two identical machines that could work either in
a flow shop manner or in parallel mode. Each machine has the
capacity to perform all the operations of each part. The model
developed decides for each part whether to distribute its opera-
tions to both machines or whether to handle all the operations in
a single machine. In contrast, within the scope of the current study,
the system works in a hybrid flow shop manner including the
properties of both the flow shop and parallel models, and for each
part, the stage process requirement is known in advance.
Fig. 1. Cell formation. The cell has input and output storages together with the two
stages in which the first stage has only 1 machine and the second one has 2
identical machines.
Respecting these requirements, the decisions of part input
sequences and part assignments to the identical machines on the
stages are made.

This problem is modeled as a special traveling salesman problem
(TSP) in which the distance matrix consists of decision variables as
well as parameters. The proposed model is an adaptation of the
mathematical model given by Batur et al. (2012). A basic definition
used in this formulation is the following one:

Definition 1. The epoch that part i is on station q is identified by
node iq. The input buffer is denoted as station 1, machine in the
first stage is denoted as station 2, first and second machines in the
second stage are denoted as stations 3 and 4, respectively, and the
output buffer is denoted as station 5. During an MPS cycle, the
machines may need to be visited twice, one for loading and one for
unloading of the same part since the robot may perform some
other activities rather than to wait in front of the machine during
the time that the part is being processed. Therefore, stations 6, 7
and 8 are also created as the copies of stations 2, 3 and 4,
respectively, in order to account for any potential cyclic solution.
For q 2 f2;3;4g, we let q0 2 f6;7;8g denote its corresponding copy.

For the TSP formulation, we have an arc set A and a node set N,
which are represented as follows:

N ¼ fiq : q ¼ 1; . . . ;8; i ¼ 1; . . . ;ng;
A ¼ fðiq; jrÞ : iq; jr 2 N andthemovementfromnode iq;

where part i is at station q; to node jr; where part j is at station
r; is possibleg:

The parameters and variables that are used in the mathematical
model representation are given in Table 1. Variables l2iq ; l3iq and
l4iq will take values from the set f0;1; . . . ;ng. When the variable
equals to 0, it means that the corresponding machine is empty at
waitiq ;jr 1, if there exists a potential waiting time for the movement of the
robot from node iq to node jr; and 0, otherwise

Decision variables
yiq ;jr 1, if robot goes from node iq to node jr; and 0, otherwise
p0iq Processing time of part i on station q; q ¼ 2;3;4;6;7;8

siq Time that processing of part i is started on station
q; q ¼ 2;3;4;6;7;8

ciq Time that robot completed the activity related to node
iq; q ¼ 2;3;4;6;7;8

wiq Robot waiting time for part i on station q; q ¼ 2;3;4;6;7;8
v iq Total activity time of the robot in between just after loading the

machine corresponding to station q by part i and arriving in front of
the same machine to unload it, q ¼ 2;3;4;6;7;8

ziq 1, if start time of processing of part i on station q is considered
before its completion time within a cycle; and 0, otherwise.

l2iq Loaded part on station 2, when robot is at node iq; q ¼ 2;3;4;6;7;8

l3iq Loaded part on station 3, when robot is at node iq; q ¼ 2;3;4;6;7;8
l4iq Loaded part on station 4, when robot is at node iq; q ¼ 2;3;4;6;7;8
C Cycle time value
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that moment; whereas its equivalence to any value between 1 and
n means that the machine is loaded with that particular part at
node iq.

The total time spent in going from node iq to node jr is shown by
timeiq ;jr values. For example, a movement from node i1 to node i2
corresponds to the situation that the robot takes a part from the
input buffer (�), carries it to the second station (the first machine
of the first stage) (d) and loads the part (�); making a total of
2�þ d time units. For our problem, related timeiq ;jr values are
shown in Table 2, where the first part corresponds to the states
on which i ¼ j and the second one corresponds to the states on
which i– j. Moreover, the movements with costs marked by X’s
cannot be performed due to the feasibility conditions. Besides,
some movements are unreasonable; for example, a part cannot
be taken from the input buffer and left to the output buffer without
any processing, cannot be taken from the output buffer, or cannot
be left on the input buffer. For example, yi2 i1 necessitates part i to
be taken from station 2 and carried to station 1 which is the input
buffer, however, such a movement cannot be performed.

As can be seen from Table 2, somemovements are considered to
be possible owing to the flexibility property of the system. In flex-
ible flow shop environments, a part is allowed to enter the system
at second stage instead of the first stage. Therefore, the robot
movement from station 1 to stations 3(7) or 4(8) is possible
together with the movement from station 1 to station 2(6). Simi-
larly, any part for which all the processing is completed in the first
stage, can be carried directly to the output buffer, instead of visit-
ing the second stage; which causes the movement from station 2
(6) to station 5 to be also possible.

Waiting time, which occurs when the robot is ready to unload
but when the processing of the loaded part has not been completed
yet, is represented as follows:

wiq ¼ max 0; p0
iq � v iq

n o
; 8 i; q ð1Þ

where i is the loaded part on station q and v iq is the total activity
time of the robot in between just after loading the machine corre-
sponding to station q by part i and arriving in front of the same
machine to unload it.

waitiq ;jr parameters are used to determine for which movements
there is a potential waiting time. Clearly movements correspond-
ing to different types of parts do not necessitate any waiting time
value; so these parameters are defined only for the situations asso-
ciated with the same parts. Waiting is possible for part i among the
movements for which the corresponding cost values are under-
lined in Table 2; so waitiq ;jr equals to 1 for these movements. For
example, the arc from node i2 to node i3 corresponds to unloading
part i from station 2 and loading it onto station 3 and this move-
ment may cause some waiting in front of station 2 until the pro-
cessing of part i is completed.

Now, we proceed with our mathematical model. Our first set of
constraints are the assignment constraints. Eq. (2) guarantees that
when there is an incoming arc to a node, there must also be an out-
going arc from it.X
ðjrÞ: ðjr ;iqÞ2A

yjr ;iq ¼
X

ðjrÞ: ðiq ;jrÞ2A
yiq ;jr ; 8 iq 2 N ð2Þ
Table 2
Total times of movements performed. i and j values denote the nodes.

ðj1Þ ðj2Þ=ðj6Þ ðj3Þ=ðj7Þ ðj4Þ=ðj8Þ ðj5
ði1Þ X 2�þ d 2�þ d 2�þ d X
ði2Þ=ði6Þ X X 2�þ d 2�þ d 2�þ
ði3Þ=ði7Þ d X X X 2�þ
ði4Þ=ði8Þ d X X X 2�þ
ði5Þ d X X X X
Since some nodes are allowed not be visited, the assignment
constraints of a TSP become the following:X
ðjr Þ:ðiq ;jrÞ2A

yiq ;jr 6 1; 8 iq 2 N; and
X

ðjrÞ:ðjr ;iqÞ2A
yjr ;iq 6 1; 8 jr 2 N ð3Þ

We need to ensure that all the parts are going to be taken from
the input buffer and left to the output buffer exactly once. This fact
is guaranteed by Eq. (4).X
ðjrÞ

yi1 ;jr ¼ 1; 8 i and
X
ðjrÞ

yjr ;i5 ¼ 1; 8 i ð4Þ

The considered robotic cell consists of 2-stages and owing to its
flexibility property, a part can be carried from the input buffer to
any of these stages and also to the output buffer from any of the
stages. The following equations enforce only viable movement
options.

yi1 ;i2 þ yi1 ;i6 þ yi1 ;i3 þ yi1 ;i7 þ yi1 ;i4 þ yi1 ;i8 ¼ 1; 8 i

yi2 ;i5 þ yi3 ;i5 þ yi4 ;i5 þ yi6 ;i5 þ yi7 ;i5 þ yi8 ;i5 ¼ 1; 8 i
ð5Þ

Eq. (6) is used to define the movements between the stages. As
it is mentioned before, a job might skip any number of stages pro-
vided it is processed in at least one of them. Following this expla-
nation, not every part has to visit both of the two stages and Eq. (6)
corresponds to this situation.

yi2 ;i3 þ yi2 ;i7 þ yi6 ;i3 þ yi6 ;i7 þ yi2 ;i4 þ yi2 ;i8 þ yi6 ;i4 þ yi6 ;i8 6 1; 8 i ð6Þ
Without loss of generality, the system is assumed to start when

the robot is in front of the input buffer and ready to take part 1, i.e.,
at node 11, as is defined by Eq. (7).

c11 ¼ 0 ð7Þ
Eq. (8) is used in order to calculate the completion times of

nodes, according to the movements, costs and waiting time values,
i.e., the classical Miller-Tucker-Zemlin constraints for TSP (Miller,
Tucker, & Zemlin, 1960).

cjr P ciq þ timeiq ;jr � yiq ;jr �Mð1� yiq ;jr Þ þwaitiq ;jr �wiq 8 iq; jr 2 N

ð8Þ
Another set of equations are the processing time related con-

straints. Eq. (9) indicates that all the processing of any part at
any stage must be completed. Moreover, they force that the pro-
cessing times at stations and their duplicates are identical.

p0
i2
¼ pi1 and p0

i3
þp0

i4
¼ pi2 where p0

i2
¼ p0

i6
;p0

i3
¼ p0

i7
and p0

i4
¼ p0

i8
; 8 i

ð9Þ
Equation set (10) is used to define that when node iq is visited

on any path, a process with a time value of at most the total pro-
cessing time of part i can be performed on station q. Besides, if
node iq is not visited, no process will be performed on the station.

p0
iq 6 pi1 �

X
ðjrÞ:ðiq ;jr Þ2A or iq0 ;jrð Þ2A

ðyiq ;jr þyiq0 ;jr Þ; iq 2N s:t: q¼f2g q0 ¼ f6g

p0
iq 6 pi2 �

X
ðjrÞ:ðiq ;jr Þ2A or ðiq0 ;jrÞ2A

ðyiq ;jr þyiq0 ;jr Þ; iq 2N s:t: q¼f3;4g;q0 ¼ f7;8g

ð10Þ
Þ ðj1Þ ðj2Þ=ðj6Þ ðj3Þ=ðj7Þ ðj4Þ=ðj8Þ ðj5Þ
X X X X X

d d X d d X
d d d X d X
d d d d X X

d d d d X
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siq and ciq variables are defined as the beginning of the processing on
a station and the time that the related movement is performed on a
node, respectively. As is given by Equation set (11), the beginning
time of the processing is calculated according to the time that it
is loaded on the station. Since stations q and q0 are the copies of each
other, this value is represented by either siq or si0q .

siq ¼ siq0 8 iq 2 N; where q¼ 2;3;4

sir P cir �Mð1� yiq; irÞ 8 iq 2 N; where q¼ 1;2;3;4; r– 5; q– r

sir P cir0 �Mð1� yiq; ir0 Þ 8 iq 2 N; where q¼ 1;2;3;4; r– 5; q– r;

q0 – r0; q– r0 ð11Þ
This set of equations shows that if there is an arc from node iq to

node ir or ir0 , meaning that part i is unloaded from station q and
loaded on station r or the copy station r0, then its processing on
machine corresponding to station r or r0 starts at the time when
the part is left on the machine which is equal to the time when
the movement is performed. Since we cannot take any part from
the output buffer, q cannot be equal to station 5.

In order to calculate the waiting time values, ziq variables, which
are defined for all of the nodes, are used. This variable helps us to
understand whether the load or unload of a part is performed
sooner in a given cycle. z values are determined using Equation
set (12).

ciq P siq þ p0
iq �Mð1� ziq Þ; 8 iq 2 N

siq P ciq þ 4�þ 3d�Mziq ; 8 iq 2 N
ð12Þ

In the second situation, throughout a cycle, an already loaded
part needs to be unloaded and loaded again. Thus, in the second
equation of Equation set (12), 4�þ 3d is used to define the mini-
mum time between the machine’s unload and its next loading.

The waiting time value, which is observed when a part’s pro-
cessing is not completed until the robot arrives the machine to
unload it, is calculated using the starting and completion times
(siq and ciq values) together with ziq variables.

wiq P p0
iq � ðciq � siq Þ �Mð1� ziq Þ; 8 iq 2 N

wiq P p0
iq � ðC � siq þ ciq Þ �Mziq ; 8 iq 2 N

ð13Þ

We also have ‘‘loaded parts vs. movements” related constraints.
This set of equations are used in order to identify the parts loaded
on the stations when a movement is performed. Considering the
movement (iq; jr), we have two cases, which are explained as
follows:

� Movement is related to different parts, i.e., i – j, meaning that
part i is loaded on station q and the robot travels to station r
for part j. Such a movement does not cause any difference in
terms of the loaded parts for the machines and the following
equations are used for this type of movements:
�l2iq þm2jr 6 nð1� yiq ;jr Þ; l2iq �m2jr 6 nð1� yiq ;jr Þ ð14Þ

�l3iq þm3jr 6 nð1� yiq ;jr Þ; l3iq �m3jr 6 nð1� yiq ;jr Þ ð15Þ

�l4iq þm4jr 6 nð1� yiq ;jr Þ; l4iq �m4jr 6 nð1� yiq ;jr Þ ð16Þ

� Movement is related to the same part, i.e., i ¼ j, meaning that
part i is taken from station q and carried to station r. Such a
movement needs the following conditions to be met:
– Machine corresponding to the station r needs to be empty at

node iq.
l2iq 6 nð1� yiq ;ir Þ; l3iq 6 nð1� yiq ;ir Þ; or l4iq 6 nð1� yiq ;ir Þ
ð17Þ
– Machine corresponding to the station q will become empty
at node iq.

l2ir 6 nð1� yiq ;ir Þ; l3ir 6 nð1� yiq ;ir Þ; or l4ir 6 nð1� yiq ;ir Þ
ð18Þ

– This type of a movement results with no difference in terms
of the loaded parts for the machines corresponding to the
stations other than q; q0 and r; r0; and Eqs. (14)–(16) are
used for this situation, as in the first case.

Because of the considered cell formation, somemovements may
block some others. For example, part carriage between stations 3
and 4 is not allowed, since all of the processing of any part at
any stage should be completed by only one of the machines at this
stage. Equation set (19) is used to exclude such movements.

yiq ;ir þ yir ;iq þ yiq ;ir0 þ yir ;iq0 þ yiq0 ;ir þ yir0 ;iq þ yiq0 ;ir0 þ yir0 ;iq0 ¼ 0 q; q0; r;

r0 ¼ f3;4;7;8gX
js

ðyjs ;iq þ yjs ;ir Þ 6 1 8 i; q; q0; r; r0 ¼ f3;4;7;8g; q– r; q– r0;

q0 – r; q0 – r0 ð19Þ
It is known that, due to the flexibility property of the system,

when a part does not have any operation to be performed on the
first stage but only on the second stage, it can directly be carried
to the second stage from the input buffer; similarly, when a part
does not have any operation to be performed on the second stage
but only on the first stage, it can directly be carried to the output
buffer from the first stage. This fact is guaranteed by the following
equations:

yi1 ;i2 þ yi1 ;i6 6 pi1 ; 8 i

yi1 ;i2 þ yi1 ;i6 P pi1=M; 8 i

yi3 ;i5 þ yi4 ;i5 þ yi7 ;i5 þ yi8 ;i5 6 pi2 ; 8 i

yi3 ;i5 þ yi4 ;i5 þ yi7 ;i5 þ yi8 ;i5 P pi2=M; 8 i

ð20Þ

The first two equations in set (20) avoid the movement from
input buffer to the stations 2(6) in case the processing time at
the first stage, i.e., pi1 is zero, whereas the same movement is guar-
anteed to occur when it is more than zero. Similarly, the other two
equations avoid the movements from the stations 3(7) or 4(8) to
output buffer if the processing time at the second stage is zero,
and this movement is guaranteed when it is more than zero. For
these four equations in Equation set (20), M represents a large
enough number for which both the values pi1=M and pi2=M are at
most 1. In order to guarantee this fact, M ¼ maxifmaxfpi1 ; pi2gg
can be used.

In our model, the objective is to find the minimum cycle time
value and Eq. (21) is used in order to reach this goal. Using this
constraint, the completion time of the last node, which gives the
completion time of the cycle, is determined.

C P ciq þ yiq ;11 � timeiq ;11 ð21Þ
Against all, we propose the following mixed integer linear pro-

gramming formulation:

min C
Subject to ð2Þ � ð21Þ

We use the following example to describe the proposed math-
ematical model.

Example 1. Assume that we have 3 part to be completed having
the processing values of p11

¼ 17; p21
¼ 20; p31

¼ 0; p12
¼ 30,

p22
¼ 34; p32

¼ 27. � and d are 1 and 2 time units, respectively.



Fig. 2. TSP representation of Example 1. Circles represent the nodes and arcs represent the movements of the robot.
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Optimal tour that correspond to the TSP formulation is given by
Fig. 2. The values written on the arcs represent the travel and
waiting time values between the nodes respectively. For example,
in order to move from node 33 to node 35, a travel of 4 units of time
is needed together with a waiting of 13 units, which gives a total of
17 units of time.

The Gantt-chart of the solution obtained by the model is also
given in Fig. 3. As can be followed from the figure, at time t ¼ 0, 3rd
and 4th stations are loaded whereas the 2nd station is empty, and
robot takes part 1 from the input buffer in order to load it on this
empty station. This movement includes the robot taking the part
from the input buffer (�), traveling to the 2nd station (d) and
loading the part on the station (�), which gives a total of 2�þ d
units of time. Further steps can also be observed in the same
manner. As can be seen from the figure, the cycle is completed at
time t ¼ 77 and at that moment all the stations returns back to
their initial situations at time t ¼ 0.

TSP is a well known NP-Hard problem. The formulation above is
more general than the classical TSP formulation and requires a
great amount of computational effort even if the number of machi-
nes in the cell is small. Nevertheless, it is possible to extend the
model considering a structure with more stages or machines. For
this aim, it will be enough to add machine related decision
variables together with extra constraints defining the possible
movements between the new stations. During our preliminary
computations, we were able to get optimal solutions to instances
Fig. 3. Gantt-chart of Example 1. The first row corresponds t
with very small dimensions. Nonetheless, we opted to provide an
exact solution methodology for our problem for completeness
sake. Consequently, we focussed our attention on heuristic
approaches and composed the Simulated Annealing based algo-
rithm introduced in Section 4.
4. Heuristic algorithm

Simulated Annealing (SA) was introduced by Metropolis,
Rosenbluth, and Resenbluth (1953) and popularized by
Kirkpatrick, Gelatt, and Vecchi (1983) as a competitive method to
solve combinatorial optimization problems (Zegordi, Itoh, &
Enkawa, 1995). It is believed to be a successful metaheuristic when
solving scheduling problems with various objectives like make-
span, flow time, idle time, work-in-process and tardiness, etc.
(Hooda & Dhingra, 2011). Kim, Kim, Jang, and Chen (2002), Low,
Yeh, and Huang (2004), Lee et al. (2010), Behnamian, Zandieh,
and Fatemi Ghomi (2009) and Zhang and Wu (2010) are research-
ers that have utilized SA competitively in their optimization. Our
computational results will attest to this finding as well.

SA starts working with a high temperature. The search travels
from a current solution to one of its neighboring solutions. A
new solution may be accepted even if its objective function value
is worse than that of the previous one depending on a predefined
probability function. The probability function is defined as follows:
o the robot’s movements and the others to the stations.
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PðDEÞ ¼ e�DE=T , where DE indicates the rate of change in the objec-
tive function and T indicates the current temperature. For this con-
trol process, a random value is selected from the interval (0,1); if
this randomly chosen value is less than or equal to the probability
value the new solution is accepted, otherwise it is rejected. Allow-
ing for moves that worsen the objective function values aid in
avoiding getting stuck at local optima. To reach the thermal equi-
librium of SA, the process is repeated L times at each temperature,
where L is a control parameter referred to as the length of the Mar-
kov chain. The search continues until the termination criterion is
reached, decreasing the temperature value according to a predeter-
mined cooling function.

In order to apply SA procedure to a combinatorial optimization
problem, there are some critical decisions to be made. The starting
temperature must be hot enough to allow a move to almost any
neighborhood state. However, if the temperature starts at too high
a value, then the search can move to any neighbor and thus trans-
form the search (at least in the early stages) into a random search.
When deciding on the final temperature, it is typical to let the tem-
perature decrease until it reaches zero. Some implementations
keep decreasing the temperature until some other condition is
met; for example, no change in the best state for a certain period
of time. In our study, these two temperature values are taken from
the paper by Karaog�lan, Altıparmak, Kara, and Dengiz (2011). In
their study, the initial temperature is taken as 665 in which an
inferior solution (inferior by 70% relative to the current solution)
is accepted with a probability of 0.90 and the final temperature
is taken as 0.15 such that a solution which is inferior by 1% relative
to current solution is accepted with a probability of 0.1%. The fol-
lowing equations which are developed according to the previously
defined probability function, are used to determine these values:

Pð70Þ ¼ e�70=T ¼ 0:90 ! lnð0:90Þ ¼ �70=T ! T ¼ �70=lnð0:90Þ
¼ 665

Pð1Þ ¼ e�1=T ¼ 0:001 ! lnð0:001Þ ¼ �1=T ! T ¼ �1=lnð0:001Þ
¼ 0:15 ð22Þ

In the light of the given equations, the termination temperature
value is taken to be 0.15 whereas different probability values are
tested for the starting temperature. In addition to four values
which are determined using Eq. (22) and given in Table 3, the value
100 which is another commonly used initial temperature value in
the literature, is taken into account; i.e., we have used five different
initial temperatures which are 100, 168, 196, 313 and 665.

The way in which we decrement our temperature is critical for
the success of the algorithm. We use a geometric decrement where
T ¼ T � ðDecRatioÞ, where DecRatio < 1. Experience has shown that
DecRatio should be between 0.8 and 0.99, with better results being
found in the higher end of the range. In this study the temperature
decrement is taken as DecRatio ¼ 0:99.

Another crucial decision to make is the number of iterations to
perform at each temperature. A constant number of iterations at each
temperature is a typical scheme. We assumed the iteration number
to be equal to the given number of parts of the considered problem.

For this problem, solutions should provide the part sequences
and the part/machine allocations for stages containing more than
one machine. In order to represent the solution, a vector of length
nþ ðm� nÞ is used, where n is the part number and m is the num-
Table 3
Initial temperature values, which are determined using Eq. (22).

DE (%) Acceptance probability Initial temperature

�60 0.70 168
�70 0.70 196
�70 0.80 313
�70 0.90 665
ber of stages in the cell. This vector composes of mþ 1 segments,
each of length n. The first segment identifies the part sequence
and the remaining m segments identify the machines for each of
the stages, on which these sequenced parts are to be processed.
According to the sequence and allocations identified by this vector
representation, the robot takes the parts from the input buffer,
delivers them to allocated machines and carries them to the output
buffer when their processing is completed.

The quality of a specific solution vector is measured by our
objective function which is the minimization of the cycle time that
passes between the time that the first part is taken from the input
buffer and the time that the last part is left to the output buffer.
Once the sequence and allocations are provided by a solution vec-
tor, calculation of the cycle time can be easily performed.

The initial solution vector of the problem is constructed ran-
domly. Throughout our search, two different neighborhood strate-
gies are used each resulting in n new solutions at each iteration.
The neighbor solution is picked as the best one among these new
solutions and is accepted/rejected according to the previously
defined probability function.

Neighborhood 1. The first neighborhood constructs feasible solu-
tions that can be attained through random swap operations. More
specifically, a random value (r) is selected from the range (0;1) and
the following conditions are checked:

� if r > 0:5 then part sequence of two randomly selected parts are
changed,

� if r � 0:5 then part/machine allocation of a randomly selected
part for the second stage which has two machines, is changed.

Neighborhood 2. In the second neighborhood, in order to get rid
of the randomness of the first neighborhood structure, some com-
ponents of the current solution are maintained while constructing
the new solution. First, the idle time and the waiting time values
pertaining to the current solution are calculated. Analyzing these
two values, the bottleneck parts of the current solution, for which
improvement can be observed, are distinguished. Once the idle and
waiting time values are determined for all the stages and machines
in the cell, a neighbor solution is constructed according to the rules
given below. The flow chart of Neighborhood 2 is depicted in Fig. 4.

Rule 1. If the machine with the largest idle time value (say j) and
the machine with the largest waiting time value in the same stage
(say k) are the same, the following XA value is calculated and a new
solution is obtained by changing the order of the part causing the
largest waiting time (say i) with the part which has the processing
time value closest to the value XA.

Pik processing time of the part causing the largest waiting time
at stage k.
wik largest waiting time value.
XA ¼ Pik �wik ð23Þ
Using this rule, a part which is thought to cause little or no

waiting is swapped with the part with the largest waiting time
value. By escaping the waiting time values which increase the cycle
time value significantly, the cycle time might decrease. Changing
the parts causing waiting times with the parts causing idle times,
it is tried to balance the idle and waiting times throughout the sys-
tem; besides filling the idle time intervals, the waiting times will
decrease, ultimately decreasing the cycle time.

Rule 2. If the machine with the largest idle time value (say j) and
the machine with the largest waiting time value in the same stage
(say k) are different, the following XB value for machine j and XC

value for machine k are calculated. The new solution is obtained
by changing the part/machine allocations of the part causing the



Table 4
Notations used in the algorithm, different from the mathematical model.

V Solution vector
S Event list
S0 Possible event list
Zj Indicates whether part j is in the input buffer or not
mcj Current machine for part j
mnj Next machine for part j
Dm Loaded part on machine m
Qm Priority of machine m, which is determined according to the total

workload of related machine

Fig. 4. Flowchart of Neighborhood 2. The values of XA; XB and XC are calculated using the Eqs. (23) and (24), respectively.
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largest waiting time on machine k with the part on machine j hav-
ing the closest processing time value to the value jXB � XC j.

Pik processing time of the part causing the largest waiting time
at stage k.
bjðkÞ idle time value on machine jðkÞ.

XB ¼ bj

XC ¼ bk þ Pik
ð24Þ

This rule also helps to balance the idle and waiting times in the
system. When the part with the largest waiting time is not
assigned to the related machine, there occurs extra space (which
is equal to the processing time of the part) in addition to the exist-
ing idle time at this machine. If a part of which the processing time
is close enough to the difference between the current idle time
at the machine and the largest idle time is found, then it is
predicted that there may occur an improvement in the cycle time
value.

One of the main steps of the solution procedure is the calcula-
tion of the cycle time value. The notations used in this section
are given in Table 4. Besides, the pseudo-code of the algorithm is
given in Algorithm 1.
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Algorithm 1. Cycle Time Value.

1: Input: V ; �; d; p11; . . . ; pnm.
2: Output: S; C.
3: S ¼ ;,
4: for i ¼ 0; i < n; iþþ do
5: Zi ¼ 1,
6: end for
7: OutputDepot ¼ Pm

i¼1mi þ 1
8: i ¼ Vec½0�
9: S ¼ S [ fig
10: while CycleTimeLoop do
11: while TryAgain do
12: for i ¼ 0; i < ns; iþþ do
13: j ¼ S½i�
14: if Zj ¼ 1 then
15: if Dmnj ¼ 0 then
16: A1 ¼ 1
17: else
18: if Zj ¼ 0 then
19: if mnj ¼ OutputDepot then
20: A2 ¼ 1
21: else
22: if Dmnj ¼ 0 then
23: A3 ¼ 1
24: end if
25: end if
26: end if
27: end if
28: end if
29: if A1 ¼ 1 or A2 ¼ 1 or A3 ¼ 1 and tj 6 t then
30: S0 ¼ S0 [ j
31: end if
32: end for
33: if S0 ¼ ; then
34: for i ¼ 0; i < nS; iþþ do
35: if Zi ¼ 0 and ti < tmin then
36: if mni ¼ OutputDepot or Dmni ¼ 0 then
37: tmin ¼ ti
38: end if
39: end if
40: end for
41: t ¼ tmin

42: TryAgain ¼ true
43: else
44: if nS0 ¼ 1 then
45: j ¼ S0½0�
46: end if
47: else
48: for i ¼ 0, i < ns; iþþ do
49: k ¼ S0½i�
50: if Q ½mnk� < Q then
51: Q ¼ Q ½mnk�
52: j ¼ S0½i�
53: end if
54: end for
55: end if
56: end while
57: if Zj ¼ 1
58: Zj ¼ 0
59: Update (mnj; mcj; t; tj)
60: if j ¼ S½1� then
61: Yj ¼ FirstPart
62: l ¼ lþ 1
63: LSðlÞ ¼ t
64: CTp ¼ LSðl�1Þ � LSðl�2Þ
65: CTc ¼ LSðlÞ � LSðl�1Þ
66: if CTp ¼ CTc then
67: CycleTimeLoop ¼ false
68: else
69: CycleTimeLoop ¼ true
70: end if
71: end if
72: i ¼ Vec½j�
73: S ¼ S [ fjg
74: else
75: if Zj ¼ 0 then
76: if mnj ¼ OutputDepot then
77: Update(mnj; mcj; t; tj)
78: else
79: Dmcj ¼ 0
80: Update(mnj; mcj; t; tj)
81: end if
82: end if
83: end if
84: end while

Algorithm works as follows:

Step 1. All the parts are loaded on the input buffer (line 4).
Step 2. The first part of the solution vector is added to the

event list (line 9).
Step 3. Possible event list is determined according to the parts

in the event list.
If the first part of the event list is in the input buffer (as in line
14) and if the nextmachine for the part is empty, then A1 ¼ 1.
If not,
If the next machine for the part is empty, A3 ¼ 1.

If A1 ¼ 1 or A2 ¼ 1 or A3 ¼ 1 and processing of at least one
part is completed (line 29), related part is added to the
possible event list.

Step 4. When all of the parts in the event list are checked, if
there are no parts in the possible event list (line 33), update
the system time according to the earliest completed part’s
completion time and go to Step 3.
If not,
If there is only one part in the possible event list (line 44),

choose that part.
If not,
If there are more than one parts in the list, choose the part

according to the machine priorities (lines 50–53).
Step 5. If the selected part is in the input buffer (line 57)

corresponding machine and time updates are performed
and the part is carried and loaded on the related machine.
If the chosen part is the first part in the solution vector, the
difference between the times at which this movement is
performed in the last two cycles is calculated and this value
is saved as the current cycle time. In case of equivalence of
the last two cycle time values, the variable CycleTimeLoop is
updated which indicates that the cycle time value is found.
If not,
If the part is going to be carried to the output buffer or

any other machine, the part is unloaded and carried to the
output buffer or corresponding machine, performing the
necessary updates of this movement.
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Step 6. Add the next part of the solution vector to the event list
and go to Step 3 (line 72).

Step 7. When all the parts of the solution vector are taken
from the input buffer exactly once, go to Step 1 and load a
new set of parts on the input buffer. Repeat Step 1 to Step
6 until two successive equal cycle time values are
found which is defined by the variable CycleTimeLoop.
When such two cycles are determined, the corresponding
cycle time value is taken as the final cycle time value of the
problem.
5. Lower bound and performance analysis

In order to evaluate the performance of our SA algorithm, we
propose the following lower bound (L:B:) value for our problem.

Theorem. The following is a lower bound value for the cycle time of
the scheduling problem in constant travel time hybrid flow shop
robotic cells producing multiple part-types:
LowerBoundðL:B:Þ ¼ max
k

�P
jpjk þ nk � ð4�þ 3dÞ

mk
ð25Þ

where pjk; nk; 4�þ 3d and mk define the processing time of part j at
stage k, the number of parts to be processed at stage k, the total time
needed to take a part from the input buffer or any previous stage to
the next stage or the output buffer and number of machines at stage
k, respectively.
Proof. In order to achieve this lower bound value, consider the fol-
lowing smallest possible cell formation in the context of a hybrid
flow shop formation in single stage single machine robotic cells.
Fig. 5. Cycle time for a single stag

Fig. 6. Cycle time for a single stag

Fig. 7. Cycle time for a multi-stag
Case 1. In a single stage single machine system, for which a gant-
chart is given in Fig. 5, the robot takes the part from the input
buffer (�), travels to the machine (d), loads the part (�), waits until
its processing is completed (w1 ¼ p1), takes the part of which the
processing is completed (�), travels to the output buffer (d),
unloads (�) and goes back to the input buffer to take a new part
(d). Total time needed for any part i equals to pi þ 4�þ 3d. This
scheme of movements is the same for all of the parts, thus the
cycle time of this cell equals to

P
iwi þ nð4�þ 3dÞ ¼ P

ipiþ
nð4�þ 3dÞ. In Fig. 5 this time can be traced between the arrows.
Case 2. In the second step, we consider the robotic cell with sin-
gle stage multi-machines, for which a gant-chart is given in
Fig. 6. In this situation, total time needed for each of the parts
is again pi þ 4�þ 3d, but since the robot will perform for more
than one machine instead of working on a single machine, there
will occur idle and waiting times for the machines. In this case,
the total time for any machine j equals toP

ipij þ 4�þ 3dþP
idij, where pij defines the processing time

of part i on machine j and dij defines the idle time value
observed for part i on machine j. Since the idle times change
according to the robot’s movements, when calculating the
lower bound value we take the smallest possible idle time value
which is equal to zero, thus the total time needed for machine j
is at least

P
ipij þ 4�þ 3d. It is obvious that when there are more

than one machine to perform, the best results are obtained
when the machines are equally loaded. Thus, total time needed
for all the parts to be processed equals to

P
j

P
ipij þ nð4�þ 3dÞ

where n is the number of the parts. Allocating this time among
the machines equally, the lower bound of the cycle time value is
found to be ðPj

P
ipij þ nð4�þ 3dÞÞ=m where m is the number

of machines.
Case 3. When there is more than one stage and only one
machine at each of these stages, as can be seen from Fig. 7,
e single machine cell.

e multi-machine cell.

e single machine cell.



Table 5
Parameter values which are constructed according to the observations.

Number of parts 4–5–10–15–20–25–50–100–150
Average processing

times
0–200,0–300,0–500 units of time

Load/unload times 1%, 6%, 10% over the average processing time
values

Travel times 1%, 6%, 10% over the average processing time
values

Initial temperatures 100, 168, 196, 313, 665
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the robot has to deal with more than one machine and this
causes idle times to occur in the system. Similar to Case 2, the
total time needed for each machine equals toP

ipik þ 4�þ 3dþP
idik and taking the total idle time to be zero,

the lower bound for each machine becomes
P

ipik þ 4�þ 3d. In
multi-stage environments, all the parts are processed at all of
the stages and each stage is responsible for its own operations,
therefore there is no processing time sharing between the
machines, instead, the cycle time value is determined according
to the latest completed stage’s completion time value. So, the
lower bound value equals to maxkf

P
ipik þ nð4�þ 3dÞg. Case 4.

Finally, when we consider multi-stage cells with more than
one machine at least one of the stages. It is obvious that this
system is a combination of the two previous cases. Taking the
stages into account one by one, the total time needed for the
stage with a single machine is

P
ipik þ 4�þ 3d, whereas for

the stages with more than one machine it becomes
ðPk

P
ipik þ nð4�þ 3dÞÞ=m. Since we know that in multi-stage

systems, the cycle time is determined according to the latest
completed stage’s completion time value, it can easily be said
. 8. Observations for Neighborhood 1 (random neighborhood). Solutions are group
rpretation of the references to color in this figure legend, the reader is referred to th
that in our system the cycle time will be at least
maxkfð

P
ipik þ nð4�þ 3dÞÞ=mkg, where k defines the stages

and mk defines the number of machines at stages. Since our cell
has the flexibility property which allows some parts not to be
processed on some stages, we use the notation nk to represent
the part number to be processed on stage k, instead of n. Thus,
the lower bound value for this system becomes equal to the
value maxkfð

P
ipik þ nkð4�þ 3dÞÞ=mkg. h

In order to test the algorithms performance, we designed an
extensive experimental setting. Hall, Kamoun, and Sriskandarajah
(1997) consider multiple part-type scheduling problems in robotic
cells and observe that the system returns to its initial state after
one or two MPSs. Similarly, in our study, a cyclic production plan
is obtained after two or three MPSs.

The considered problem has some basic parameters, namely, the
number of parts, the average processing time, the load/unload time,
the travel time, the number of stages and the number of machines at
each of these stages. In this study, we focus on 2-stage robotic cells,
at which there is only 1 machine in the first stage and 2 machines in
the second one. In Table 5, the remaining factors which affect the
complexity of the problems along with their associated levels are
given. These levels are constructed according to the observations
obtained throughout the preliminary trials of the proposed algo-
rithm. According to the given parameters, we produced 10 instances
for each type of problem classes and obtained a total of 360
instances. We execute the algorithm for 5 times for each of these
instances and take the best result into consideration.

The algorithm is executed on Microsoft Visual Studio 2010
using the programming language of C++ on a Pentium V
2.80 GHz. 1 GB computer. We have obtained satisfying solutions
ed according to their values and marked by blue, pink and yellow colors. (For
e web version of this article.)



Fig. 9. Observations for Neighborhood 2 (improved neighborhood). Solutions are grouped according to their values and marked by blue, pink and yellow colors. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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very quickly even for large sized problems. For the largest problem
sizes of 150 parts, the average execution time is observed to be
around 60 min. In order to evaluate the quality of the obtained
solutions, we have compared our method with the proposed lower
bound value using the following equation in order to calculate the
deviation:
Fig. 10. Parameter based results for Neighborhood 1.
% deviation ¼ L:B:� CðAlgorithmÞ
CðAlgorithmÞ � 100 ð26Þ

The results are depicted in Figs. 8 and 9. In Figs. 8 and 9, letters ‘l’,
‘m’ and ‘h’ define low, medium and high parameter levels, respec-
tively. The terms ‘lþ l’, ‘lþm’, etc. given under the heading of
Fig. 11. Parameter based results for Neighborhood 2.
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‘‘Epsilon&Delta” indicate the situations when these two parameters
(load/unload and travel times) are simultaneously considered.

As can be seen from these tables, average deviation values are
observed to be around 3.2% for low levels of processing time values
for both of the two algorithms, whereas it becomes around 3.3% for
medium levels and around 4.6–4.7% for high levels. The increase in
the values arises from the fact that sequencing and scheduling
problem, and also reaching to the defined lower bound value, gets
harder as the difference between the processing time values gets
higher.

Comparisons are performed with respect to different levels of
the previously defined parameter values; problem size, load/
unload and travel times. These observations are given in Figs. 10
and 11. It can be seen from the tables that the two crucial
Fig. 12. Initial temperature based results for Neighborhood 1.
parameters affecting the performances are the load/unload and
travel time values. In cases where the sum of these two parameters
is high, the deviation gets also higher. Considering the two param-
eters individually, the travel time seems to be more important. This
result is also expected since the total number of load/unload move-
ments is independent from the algorithm whereas the travel time
value is not, since throughout the solution procedure, it is aimed to
find the best possible robot move sequence having smallest travel
times.

Neighborhood structures do not make big differences in the
average deviation values. However, especially for the case with
high processing time, high load/unload time and high travel times,
this value seems to be around 0.08%. The reason for the improve-
ment in the deviation values in this case is that the second neigh-
Fig. 13. Initial temperature based results for Neighborhood 2.



Fig. 14. Best cycle time and best neighbor results in terms of iterations for early
temperature values. The horizontal axis represents the temperature values whereas
the vertical corresponds to the cycle times.
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borhood, which is the improved one, takes the processing times
into account more attentively.

Comparing the results obtained for different starting tempera-
tures, it is observed that for high temperatures the deviations are
Fig. 15. Iteration based change points for cycle time values. The horizontal axis repres

Fig. 16. Iteration based change ratios for cycle time values. The horizontal axis repre
improvements.
much more smaller. This is also an expected result as depicted in
Figs. 12 and 13.

It is observed that the results related to the initial temperature
values are not so different. In order to take a closer look on the
improvements obtained with respect to the temperature value, a
randomly chosen instance is solved using the initial temperature
of T ¼ 665, which is the largest value considered, and the ‘best
cycle time’ solutions obtained at each iteration are recorded
together with the ‘best neighbors’ constructed. The results of this
experiment are provided in Appendix A. In Fig. 14, the first part
of the figure given in Appendix A is enlarged in order to see the
high rate of change observed during the earlier stages of the
algorithm.

As can be seen from Fig. 14, in the beginning, the rate of change
over the objective function values is extremely high, whereas in
the later steps no significant difference is observed. Besides, consis-
tent with the SA logic, as the temperature decreases, worse solu-
tions are no longer allowed to be chosen. For example, when the
temperature is around 140.47–125.71, neighbors with the objec-
tive function value of 2750 may be accepted, but when the temper-
ature gets lower even the biggest cycle time solutions are below
the value of 2700.

When we take a closer look on the best solutions obtained
throughout the solution procedure, we observe that the change
ratios over the cycle time values are high in the early iterations
whereas this ratio gets smaller in the later temperatures. This dif-
ference can be followed from the cycle time values given in Fig. 15
together with the ratios given in Fig. 16.
ents the temperature values whereas the vertical corresponds to the cycle times.

sents the temperature values whereas the vertical corresponds to the cycle time
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6. Conclusion

In this study, we focus on the scheduling problem arising in
constant travel time hybrid flexible flow shops in which lots that
contain different types of parts are repeatedly processed and the
transportation of the parts between the machines is performed
by a robot. Consistent with the definition of hybrid flow shops, in
this system there are at least two production stages and more than
one machine for at least one of these stages. Consistent with mul-
tiple part-type scheduling, we minimize the average time to pro-
duce one MPS in a cyclic environment. The challenge is
threefold: (a) determining a part sequence, (b) assigning the parts
to the machines, (c) choosing a robot move sequence. As an addi-
tional challenge, due to the flexibility property of the system, some
parts are allowed not to be processed on some of the stages.

The solution that we look for defines the movements of the
robot exactly, giving the part to be carried/loaded/unloaded
together with the related machine. The problem is first modeled
as a TSP with a distance matrix which contains decision variables
as well as problem parameters. This model is more general than
the classical TSP and requires a great amount of computational
effort even for the small sized problems. Consequently, we focused
our attention on heuristic approaches and proposed an SA based
heuristic algorithm. In order to evaluate our algorithm, we con-
structed a lower bound value which can be used regardless of
the problem parameters, i.e., number of stages/machines/parts,
etc. We solved randomly produced test problems using the con-
structed algorithm, compared the results with this lower bound
value, and concluded that our algorithm is very competitive, pro-
viding results with very small optimality gaps for almost all the
Fig. A.1. Best cycle time and best neighbor results in terms of iterations. The horizontal a
times.
examples in our experimental design. Sensitivity analyzes which
confirmed the robustness of our heuristic methodology are
conducted.

As far as the authors know, this is the first study to consider sin-
gle robot usage and multiple part-type production in hybrid flow
shop scheduling literature. There is a room for improvement and
future research potential of this study. One possible extension
may be to consider a structure with each stage containing at least
two machines. In such a case, the complexity of the problem will
no doubt increase dramatically. Another potential future research
direction is to consider the technological differences between the
machines, studying the non-identical machine case for this prob-
lem. Having non-identical machines at stages, any machine may
not be able to perform all the processing of a part and some specific
operations of the parts will have to be assigned to certain
machines. One may also consider to use more than one robot in
order to decrease the idle time values albeit with increasing the
number of possible movements in the system.
Appendix A. Numerical example for the case of initial
temperature value of 665

In order to see the change on the ‘best cycle time’ and ‘best
neighbor’ results obtained through the iterations of the algorithm,
a randomly chosen instance is solved using the initial temperature
of T ¼ 665, which is the largest value considered. As can be seen
from Fig. A.1, there is a high rate of change during the earlier stages
of the algorithm, whereas it gets smoother as the temperature
decreases.
xis represents the temperature values whereas the vertical corresponds to the cycle
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