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h i g h l i g h t s

• The Generalized Second Price Auction is commonly used by search engines.
• The Generalized Second Price Auction is shown to be optimal for the sale of a good.
• The result is based on linear programming duality and submodular minimization.
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a b s t r a c t

We prove that a variant of the second price auction for the sale of a single good through a Bayesian
incentive compatible mechanism that maximizes expected revenue of the seller is optimal when the type
space is discrete. Moreover, we show that this variant is related to the widely used generalized second
price auction mechanism in keyword-auctions for advertising, thus providing a theoretical justification
for a practical tool.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

A common tool used by search engines for online keyword
advertising is the generalized second price (GSP) auction, the
properties of which have been analyzed by Edelman et al. (2007).
In the simplest version of GSP, a bidder in the ith position would
pay the bid of the bidder in the (i+1)-th position plus a surcharge.
The GSP mechanism generates billions of dollars of revenues for
internet companies as documented in Edelman et al. (2007).

In a seemingly unrelated line of work, and as a culmination of
fifteen years of research Vohra (2012, 2011) established the dis-
crete types analogs of the celebrated optimal auction results by
Myerson (1981) for an expected revenue maximizing seller using
well-known tools from linear programming duality and submodu-
lar optimization.
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The purpose of this note is to show that a variant of the second
price auction is optimal when the type space is discrete by making
precise a statement by Vohra in Vohra (2012) which advocates
a possible implementation of an optimal auction in a Myerson
frameworkwith discrete valuations of buyers for the sale of a single
good, and to connect this thread to the popular GSP mechanism.
More precisely, the claim was as follows (see p. 296 of Vohra,
2012):

....This is not the only implementation. There are other
implementations that achieve the same interim allocation
probabilities and expected payments. One of these is a second
price auction with reserve. That is, the highest bidder wins, but
pays the larger of the second highest bid and the reserve. In the
event the highest bid does not exceed the reserve, the seller
withholds the good.

We show that one should exercise some care in using this state-
ment as it requires an alteration. We shall do so by first sum-
marizing briefly the result of Vohra (2012), and then examining
the above statement. Using the modern tools of Vohra (2012) that
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are becoming the new standard in the profession we establish a
suitable adjustment of the claim, namely a scheme called the ‘‘dis-
crete second price auction’’, a version of which is precisely the GSP
mechanism. Thus, our work provides an easy to follow theoreti-
cal justification to the optimality of the generalized second price
auction. We also develop a quantization of valuations that makes a
(true) second price auction implementation possible in a discrete
type space framework in the limit.

Our result is also closely related to Harris and Raviv (1981)
which considered the design of an optimal auction for discrete
type spaces (an equally spaced set of types) with two bidders
and a revenue maximizing seller. It turns out that the optimal
mechanism they obtain is also a discrete second price auction
(or a generalized second price auction). Using the tools of the
present paper, we also arrive at a multiple bidder version of their
result obtained using a different method for two bidders. The fact
that discrete types affect the insights obtained in continuous type
spaces was also the central point of Lovejoy (2006) more recently,
where similar observations were made in a more involved setting
of optimal mechanism design with quasi-linear utilities, utilizing
the concept of supermodularity.

2. The setting

We use exactly the setting of Vohra (2012, 2011), and sketch
only the main ideas. For the details, the reader is referred to these
two sources.

A risk neutral seller with a single good is facing n risk neutral
buyers that have non-negative private valuation for the good.
These private valuations will be addressed as ‘‘agents’ types’’ and
valuation of the seller is assumed to be equal to 0. We define
T = {1, 2, . . . ,m} as the type spacewhose discrete formwill allow
the use of linear programming. The probability that an agent is of
type t is commonly known, and is denoted by ft > 0 for all t ∈ T .
The Revelation Principle allows to focus on directmechanisms only
(see e.g., Myerson, 1981).

We use t ∈ T n to denote a profile vector. The symbols a and
p are defined to be allocation and payment rule, respectively. The
symmetry assumption allows focusing on one agent, say agent 1.
We use ai(i, t−1) for the allocation to agent 1, and pi(i, t−1) is the
payment done by agent 1 when she reports her type as i ∈ T and
all other agents report t−1. We use π(t−1) for the probability of
agents having types that give rise to the profile t−1. The number of
agents with type i in profile t is shown by ni(t). Interim (expected)
allocation and payment are denoted accordingly when all agents
other than agent 1 report their type truthfully:

A(i) =


t−1∈Tn−1

ai(i, t−1)π(t−1),

P(i) =


t−1∈Tn−1

pi(i, t−1)π(t−1).

The objective of the problem is to maximize the seller’s expected
revenue, and we face the following optimization problem:

max
P,A,a


i∈T

fiP(i)

s.t. iA(i) − P(i) ≥ iA(j) − P(j) ∀i, j ∈ T (1)
iA(i) − P(i) ≥ 0 ∀i ∈ T (2)

A(i) =


t−1∈Tn−1

ai(i, t−1)π(t−1) ∀i ∈ T (3)
i∈T

ni(t)ai(t) ≤ 1 ∀t ∈ T n (4)

ai(t) ≥ 0 ∀i ∈ T , ∀t ∈ T n. (5)
Obviously, constraints (4) and (5) ensure that only one good is al-
located for each profile and no agent receives a negative amount
while constraint (3) only relates interim allocation variables to
allocation rule variables. Constraint (2) expresses individual ratio-
nality, and constraint (1) is the Bayes–Nash Incentive Compatibil-
ity (BNIC) constraint. It is clear that we are only interested in the
mechanisms in which the optimal strategy is to report truthfully.

3. The solution

Consider the system of constraints (1) and (2). The following is
well-known:

Theorem 1. System (1) is feasible if and only if interim allocations
are monotonic. That is, if i ≤ j, then A(i) ≤ A(j).

Then, to maximize expected revenue one sets each P(i) to its
upper bound which is equal to

i
k=1 kA(k) − kA(k− 1) (the upper

bound is calculated using the result of the above theorem). Define
ν(i) = i − 1−F(i)

fi
. If the hazard function is monotone then ν(i) is

non-decreasing in i. Now the formulation is:

max
A,a


i∈T

fiν(i)A(i)

s.t. 0 ≤ A(1) ≤ · · · ≤ A(m)

A(i) =


t−1∈Tn−1

ai(i, t−1)π(t−1) ∀i ∈ T (3)
i∈T

ni(t)ai(t) ≤ 1 ∀t ∈ T n (4)

ai(t) ≥ 0 ∀i ∈ T , ∀t ∈ T n. (5)

At this point, one takes out ai(t) variables in order to end up with
a polymatroid optimization problem as a result of the following
theorem.

Theorem 2 (Border’s Theorem). The expected allocation A(i) is
feasible if and only if

n

i∈S

fiA(i) ≤ 1 −


i∉S

fi

n

∀S ⊆ T .

Using this theorem the reduced formulation becomes:

max
A


i∈T

fiν(i)A(i)

s.t. 0 ≤ A(1) ≤ · · · ≤ A(m)

n

i∈S

fiA(i) ≤ 1 −


i∉S

fi

n

∀S ⊆ T .

Then, defining the function G(S) which is nondecreasing, non-
negative and submodular, and setting xi = fiA(i) for all i ∈ T we
get the problem

max
A


i∈T

ν(i)xi (OPTb)

s.t. 0 ≤
x1
f1

≤ · · · ≤
xm
fm


i∈S

xi ≤ G(S) =

1 −


i∉S

fi

n

n
∀S ⊆ T .

Ignoring the monotonicity constraint, this becomes a polymatroid
optimization problem which is solved optimally by the Greedy
Algorithm. Under the monotone ν(i) function assumption, the
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optimal solution is as follows: when i∗ is the lowest type such that
ν(i∗) ≥ 0:

A(i) =


F(i)n − F(i − 1)n

fin
if i ≥ i∗

0 otherwise.

It is easy to check that this solution for A(i) satisfies themonotonic-
ity constraint. Therefore it is optimal for OPTb.

4. Optimal payment rule

As quoted in the introduction, the second price auction is said to
achieve the same interim allocation and expected payment values
as the optimal solution of OPTb. However, we shall see below that
this is not the case. Recall the optimal solution for the expected
payments:

P(i) =

i
k=1

kA(k) − kA(k − 1) = iA(i) −

i
k=1

A(k − 1).

Denote the underlying payment rule by pi(i, t−1) which is the
payment that agent 1 makes when he reports i and others report
t−1. It is easily verified that the following setting is consistent with
the expected payments, i.e., defining the payment rule

pi(i, t−1) = iai(i, t−1) −

i
k=1

ak−1(k − 1, t−1), (6)

and taking its expectation we find exactly the P(i) as given above.
Consider now the allocation rule in which we allocate the good

to the highest bidder if he is above the reserve price i∗. Vohra
asserts correctly that this allocation rule is consistent with the
optimal interim allocations. However, when we use this allocation
rule to find the optimal price rule from (6), we find a payment
scheme different from the second price auction.

Example 1. We have two agents and our type set is T =

{1, 2, . . . , 10}. Consider the allocation rulewhere the reserve price
is 6. Then we can calculate the payment of winner in profile (8, 2)
as 6 since the winner would not change if he bid 7 or 6. However,
for the profile (8, 6) payment is different from the second price
auction:

p8(8, 6) = 8 · a8(8, 6) − a7(7, 6) − a6(6, 6)
= 8 − 1 − 0.5 = 6.5.

We call our mechanism the ‘‘discrete second price auction’’
(DSP) where the second highest bid is defined as s = maxk∈t−1 k.
The resulting formulae are:

a∗

i (i, t
−1) =


1

ni(t)
if i ≥ max

k∈t−1
k ≥ i∗

0 otherwise

p∗

i (i, t
−1) =



i
ni(t)

if i = max
k∈t−1

k ≥ i∗

s +
ns(t−1)

ns(t−1) + 1
if i > s = max

k∈t−1
k ≥ i∗

i∗ if i ≥ i∗ > max
k∈t−1

k

0 otherwise.

The DSP auction scheme is akin to the Generalized Second
Price (GSP) auction scheme used in keyword auctions for web
advertising (Edelman et al., 2007). In the simplest GSP auction, an
advertiser in position i pays a price per click equal to the bid of an
advertiser in position (i+ 1) plus a minimum increment (typically
$0.01).

Actually, the difference between the second price and the
discrete second price auctions is a result of the assumption that the
type set is discrete. The second price auction defined in Myerson
does not have to deal with the case where some agents share the
good because this case has zero probability when the type set is
continuous. However, we have this case with positive probability,
and the seller can improve his expected revenue by exploiting the
sole winner. After all, the sole winner does not share the goodwith
the second highest bidders. Note also that as the number of the
agents who are willing to pay the second highest bid increases,
payment of the sole winner increases, and converges to the type
just above the second highest bid.

A similar mechanism is contained in Theorem 2 of Harris and
Raviv (1981) for the case of two bidders, although the notation is
slightly different, and a different methodology is used. However,
taking the increment between two consecutive valuations in
Theorem 2 of Harris and Raviv (1981) equal to one, we find
exactly the result above. We generalize this result below to fit the
valuations representation in Harris and Raviv (1981). We note that
Lovejoy (2006) also obtained the same result as a special case of a
more general result (see Corollary 5 and the ensuing discussion in
Lovejoy, 2006).

Now consider a slightly different settingwherewe allow buyers
to make bids only in the multiples of q where 0 < q < 1 as in
Harris and Raviv (1981). Again we will work on a finite set so we
set M as the highest bid such that M = m · q. Our type set is the
same as before, namely T = {1, 2, . . . ,m}, however this time, type
i actually refers to a bid equal to i · q, i.e., the type space can be
considered as {q, 2q, . . . ,mq}. We will have the following changes
in the formulation:

max
P,A,a

q

i∈T

fiP(i)

s.t. qiA(i) − qP(i) ≥ qiA(j) − qP(j) ∀i, j ∈ T (1)
qiA(i) − qP(i) ≥ 0 ∀i ∈ T (2)

A(i) =


t−1∈Tn−1

ai(i, t−1)π(t−1) ∀i ∈ T (3)
i∈T

ni(t)ai(t) ≤ 1 ∀t ∈ T n (4)

ai(t) ≥ 0 ∀i ∈ T , ∀t ∈ T n. (5)

In the constraints (1) and (2), q cancels out, and since it is a
scalar we can also remove it from the objective. Under the same
assumptions on the probability mass f , the optimal solution will
be almost identical to the one given above, with a slight difference
in the payment rule:

pi(i, t−1) =



q ·
i

ni(t)
if i = max

k∈t−1
k ≥ i∗

q · s + q ·
ns(t−1)

ns(t−1) + 1
if i > s = max

k∈t−1
k ≥ i∗

q · i∗ if i ≥ i∗ > max
k∈t−1

k

0 otherwise.

Next we show that taking the limit of this payment rule as q
approaches to 0 will give us the second price auction. Before that
we need to rewrite the payment rule in a different way since as
q changes our type set will also change. Take a j value which is a
multiple of q and less than M so that buyers can have it as their
bid. Then there exists a type j′ ∈ T such that j = j′ · q: (define s and
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i∗ in the same way). The payment rule is now

pj′(j′, t−1)

=



q ·
j
q

·
1

nj′(t)
if j′ = max

k∈t−1
k ≥ i∗

q ·
s
q

+ q ·
ns′(t−1)

ns′(t−1) + 1
if j′ > s′ = max

k∈t−1
k ≥ i∗

q ·
i∗

q
if j′ ≥ i∗

′

> max
k∈t−1

k

0 otherwise.

As q tends to 0, the type set should also change in order to satisfy
j = j′ · q for any positive j ≤ M . Clearly, the only point that made
our optimal payment rule different from the second price auction
now vanished. Then one can assert that the optimal solution
obtained using linear programming is fully consistent with the
results ofMyerson. The result given above is thus a simplemultiple
agent version of Theorem 2 of Harris and Raviv (1981) for two
bidders.
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