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a b s t r a c t 

We consider jointly replenishing multiple firms that operate under an EOQ like environment in a de- 

centralized, non-cooperative setting. Each firm’s demand rate and inventory holding cost rate are private 

information. We are interested in finding a mechanism that would determine the joint replenishment fre- 

quency and allocate the joint ordering costs to these firms based on their reported stand-alone replenish- 

ment frequencies (if they were to order independently). We first provide an impossibility result showing 

that there is no direct mechanism that simultaneously achieves efficiency, incentive compatibility, indi- 

vidual rationality and budget-balance. We then propose a general, two-parameter mechanism in which 

one parameter is used to determine the joint replenishment frequency, another is used to allocate the 

order costs based on firms’ reports. We show that efficiency cannot be achieved in this two-parameter 

mechanism unless the parameter governing the cost allocation is zero. When the two parameters are 

same (a single parameter mechanism), we find the equilibrium share levels and corresponding total cost. 

We finally investigate the effect of this parameter on equilibrium behavior. We show that properly ad- 

justing this parameter leads to mechanisms that are better than other mechanisms suggested earlier in 

the literature in terms of fairness and efficiency. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

The classical Economic Order Quantity (EOQ) model is a well-

known and studied model in inventory management literature. The

core of this model is the trade-off between inventory holding costs

and setup costs associated with production, transportation or pro-

curement. In the simplest form of the model, a firm faces deter-

ministic demand with a constant rate, pays a setup cost for each

replenishment order and incurs inventory holding costs for each

unit of inventory it carries per unit of time. Minimizing setup and

inventory holding costs gives the famous formula for the optimal

order quantity. Since the first study ( Harris, 1913 ), there has been

a vast amount of literature on EOQ model, its extensions and the

more general lot sizing problem. The interested reader is referred

to Jans and Degraeve (2008) for a recent review. 

A major cost saving opportunity in this setting is to consolidate

orders for different items (or locations). By carefully coordinating
∗ Corresponding author. Fax: +90 312 266 4054. 
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0377-2217/© 2016 Elsevier B.V. All rights reserved. 
he replenishment of multiple items that may incur a joint setup,

ne can exploit the economies of scale of ordering jointly and re-

uce setup costs, inventories or both. This problem is known as

oint Replenishment Problem (JRP) and there is a growing litera-

ure in this area since 1960s. See Khouja and Goyal (2008) and

ksoy and Erengüç (1988) for two important reviews of research

n this problem. The basic assumption in this literature is that

he items or locations that are replenished jointly are also con-

rolled centrally. However, this may not be always true. With in-

ense and increasing pressure to reduce costs, independent, and

ometimes competing firms may also be interested in jointly re-

lenishing their inventories. For example, recently, BMW started an

uto-parts purchasing partnership with one of its main competi-

ors, Daimler, to procure more than 10 parts together and looking

or ways to expand this partnership. BMW hoped to generate cost

avings of around 100 million Euros annually through this ven-

ure ( Gilbert, 2010 ). The advent of the Internet and B2B exchanges

ade collaborative purchasing and replenishment easier than ever

nd led to large scale and successful purchasing consortiums or

roups. A recent review article states that collaboration is one of

he most important trends and research opportunities in supply

hain management ( Speranza, 2016 ). 

http://dx.doi.org/10.1016/j.ejor.2016.11.029
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.1. Related work 

Decentralized joint replenishment has attracted attention in

iterature only recently and studies until now investigate how

he total savings (or total costs) should be allocated among par-

icipants using cooperative game theory. Meca, Timmer, Garcia-

urado, and Borm (2004) propose a coordination scheme where

he players only share their independent order frequencies prior

o joint replenishment. Their allocation mechanism distributes the

otal setup cost among the players in proportion to the square of

heir order frequencies. They show that this allocation is in the

ore of the game. Fiestras-Janeiro, García-Jurado, Meca, and Mos-

uera (2015) study the case where the warehouse space for each

layer is limited, but the inventory holding costs are negligible.

immer, Chessa, and Boucherie (2013) extend the work of Meca

t al. (2004) for stochastic demand and suggest two coordination

trategies. 

When minor setup costs associated with each ordered item are

lso present, it may not be optimal to order every item with ev-

ry replenishment. In fact, the structure of optimal policy is not

nown. For this problem, Hartman and Dror (2007) show that the

ame with a specific group of items has a core, whenever these

tems need to be ordered together on the same schedule to min-

mize total costs. Anily and Haviv (2007) focus on near optimal

ower-of-two policies for this problem, and show the existence

nd example of a core allocation. Zhang (2009) generalizes these

esults for the case of a sub-modular joint setup cost function

nd orders passing through a warehouse that may carry inventory.

inner (2007) uses bargaining models to study the collaboration

etween firms in a similar joint replenishment setting. For a re-

ent review of research that uses cooperative game theory in in-

entory theory, see Fiestras-Janeiro, Garcia-Jurado, Meca, and Mos-

uera (2011) . 

In this paper, we follow a non-cooperative approach for

he joint replenishment problem. Bauso, Giarre, and Presenti

2008) consider a periodic inventory model where each firm needs

o determine the order quantities in each period to satisfy its de-

and. The demand in each period is different but known in ad-

ance. The fixed order cost is shared among multiple firms that

rder in the same period. They show the existence of pure strat-

gy Nash equilibria and propose a consensus protocol that reaches

o one of these equilibria. In Meca, Garcia-Jurado, and Borm (2003) ,

ach firm reports an order frequency (that may be different from

ts true order frequency) and the joint order frequency is deter-

ined to minimize the total joint costs based on these reports.

ach firm incurs holding cost individually and pays a share of the

oint replenishment cost in proportion to the squares of reported

rder frequencies. It is shown that this rule entails significant mis-

eporting and inefficiency. It is shown that the game has multiple

quilibria, in one of which none of the firms participate in joint re-

lenishment. If the firms are sufficiently homogeneous, there also

xists a (unique) “constructive equilibrium”, i.e., an equilibrium in

hich all firms participate in joint replenishment. 

Körpeo ̆glu, Ş en, and Güler (2012) follow a more direct ap-

roach using a two stage game. They assume that there is an in-

ermediary that coordinates the replenishment activity. In Stage 1,

ach firm decides whether to participate in joint replenishment

y agreeing to pay a minimum contribution or to replenish inde-

endently. In Stage 2, each participating firm submits a contribu-

ion to the intermediary. Then, the intermediary determines the

inimum cycle time that can be financed with these contribu-

ions. It is shown that all firms participate in equilibrium and only

hose firms with the highest adjusted demand rates pay more than

he minimum contribution. Körpeo ̆glu, Ş en, and Güler (2013) study

he private information version of the game in Körpeo ̆glu et al.

2012) . It is shown that the privacy of information eliminates
ree-riding but contributions are not as high yielding higher

ggregate costs. 

.2. Contributions 

In this paper, we study the mechanism design problem for the

oint replenishment of decentralized firms which have private in-

ormation about their demand rates and inventory holding cost

ates. We first study a direct mechanism where each firm reports

ts independent frequency and a joint replenishment frequency and

he allocation of the joint order costs between the firms are de-

ided based on these reports. We show that a direct mechanism

hich satisfies the efficiency, incentive compatibility and individ-

al rationality constraints cannot satisfy the budget-balance con-

traint, i.e., a truth telling direct mechanism cannot finance the

oint replenishment for efficient cycle times. Next, we generalize

he mechanism suggested by Meca et al. (2003) . While the mech-

nism in Meca et al. (2003) determines the joint order frequency

nd the order cost allocation both based on the squares of the re-

orted stand-alone order frequencies, we use a general formulation

n which two separate parameters govern these decisions. For this

wo-parameter mechanism, we show that the joint frequency is al-

ays lower than the efficient frequency unless the order cost is al-

ocated uniformly. We then study the one-parameter mechanism,

here these two parameters are equal to each other. We find the

onditions necessary for a constructive equilibrium and character-

ze this equilibrium. We also provide necessary conditions for con-

exity at the equilibrium point. We analyze the comparative statics

f the one-parameter model and show that using smaller values of

his single parameter leads to better mechanisms in terms of fair-

ess and efficiency. 

. The model and preliminaries 

We consider a stylized EOQ environment with a set of firms

 = { 1 , ..., n } . Demand rate for firm i is constant and determinis-

ic at β i per unit of time. Inventory holding cost per unit time for

rm i is γ i per unit. We denote the adjusted demand rate of firm

 as αi = γi βi . We assume that adjusted demand rates are strictly

ositive, αi > 0 for all i ∈ N to rule out trivial replenishment envi-

onments where either the demand rate or the holding cost rate is

ero. Major ordering cost is fixed at κ per order regardless of order

ize. Minor ordering costs (ordering costs associated with firms in-

luded in an order) are assumed to be zero. We assume that the

utside supplier that replenishes the orders has infinite capacity.

he firms aim to minimize their long-run average costs over time

nd backorders are not allowed. 

In any setting, the objective is to minimize the total cost rate,

enoted by C , i.e., the sum of replenishment cost rate ( R ) and hold-

ng cost rate ( H ): C = R + H. The decision variable can be taken as

rder cycle time, t , or order frequency, f = 1 /t (number of orders

er time unit). We take frequency as the decision variable in the

equel. 

Vectors are denoted by lower-case letters in bold typeface. For

n endogenous variable X , by X a 
M 

we refer to the value of X when

he set of firms is M and replenishment operations are governed

y a ∈ { c , d , 2 p , 1 p }, where c stands for centralized, d stands

or decentralized (or independent) replenishment, 2 p stands for

wo-parameter mechanism and 1 p stands for the single-parameter

echanism. For instance, C c 
M 

is the total cost of the firms in M

hen replenishment is centralized. When the set M is a singleton,

.g., M = { i } , we use X a 
i 

instead of X a { i } . Exceptions to this notation

re used for f i , the optimal frequency of the decentralized replen-

shment for firm i and for f ∗ , the optimal frequency of centralized

eplenishment. 
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2.1. Independent (decentralized) replenishment 

When the replenishment of the items is controlled by firms op-

erating independently, the problem is the well-known EOQ model.

Firm i ’s total cost rate ( C i ) is the sum of replenishment cost rate

( R i ) and the holding cost rate ( H i ) can be found: 

 i ( f ) = R i ( f ) + H i ( f ) = κ f + 

αi 

2 f 
. (1)

It can be easily found that firm i ’s optimal frequency is f i =√ 

αi / 2 κ ( Zipkin, 20 0 0 , Ch. 3). With this frequency, optimal replen-

ishment cost rate and optimal inventory holding cost rate are equal

at R d 
i 

= H 

d 
i 

= κ f i . The aggregate total cost rate for all firms under

independent replenishment is therefore C d 
N 

= 

∑ 

i ∈ N 2 κ f i . 

2.2. Centralized joint replenishment 

When all firms cooperate, they order with a joint order fre-

quency to achieve the efficiency. Meca et al. (2004) show that

when there are no minor setup costs, it is optimal for all firms

to be replenished in each cycle and this leads to a common order

frequency. Denoting the joint order frequency by f , the total cost

under cooperation is given by 

 N ( f ) = R N ( f ) + H N ( f ) = κ f + 

∑ 

i ∈ N αi 

2 f 
= κ f + κ

∑ 

i ∈ N f 2 
i 

f 
. 

Using the first order condition, we obtain the efficient frequency

as f ∗ = 

(
f 2 1 + ... + f 2 n 

)1 / 2 
. The efficient total cost is then C c 

N 
= 2 κ f ∗. 

We use the proportional rule of Meca et al. (2004) which sim-

ply allocates the order costs based on the proportion of adjusted

demand rate of firm i to the sum of adjusted demand rates. This

rule is in the core of the cooperative game. With this propor-

tional rule, the cost share of firm i is αi / ( α1 + · · · + αn ) . Since,

f 2 
i 

= αi / (2 κ) , we can rewrite the cost share as f 2 
i 
/ 
(

f 2 
1 

+ · · · + f 2 n 

)
.

Thus the cost of firm i under cooperation is given by 

 

c 
i = 

2 κ f 2 
i √ 

f 2 
1 

+ · · · + f 2 n 

. 

3. Mechanism design for the joint replenishment problem 

We consider the design of a mechanism for the joint replen-

ishment problem. A mechanism is a specification of how economic

decisions should be taken for a set of players who are privately

informed about their preferences based on the messages they pro-

vide to an intermediary. Mechanism design problem usually con-

sists of three steps. In step 1, the mechanism is designed. In step

2, the players accept or reject the mechanism. If a firm rejects the

mechanism, it gets an exogenously specified reservation utility. In

step 3, the players play the game specified by the mechanism and

economic outcomes and payoffs for each player are determined. A

mechanism is efficient if it maximizes the sum of player’s payoffs.

A truth-telling strategy is a strategy in which the player reports

true information about his preference, regardless of the value of his

preference. A mechanism is incentive compatible if for any player,

truth-telling is a dominant-strategy. A mechanism is individually

rational if for any player the mechanism leads to a payoff that is

at least as much as his reservation utility. A direct mechanism is

a mechanism where each player sends a message regarding his

preference. 

We consider designing a mechanism for the joint replenishment

problem. We assume that each firm’s adjusted demand rate, αi 

for firm i , is observable, but not verifiable. Each firm’s adjusted

demand rate, or consequently, its optimal independent order fre-

quency f i (since f i = 

√ 

αi 
2 κ and κ is common knowledge) can be
onsidered as its type . We assume that the types are independent

raws. In addition to the firms in N = { 1 , . . . , n } , we introduce the

layer n + 1 that will be responsible for the replenishment. The

echanism will select an outcome or a joint frequency f as a re-

ult of the players’ reports of their types. Each firm’s utility can be

epresented in the quasi-linear form as follows: 

 i ( f, f i , p i ) = −κ
f 2 
i 

f 
− p i , (2)

here the first term is the firm i ’s value for alternative f or its in-

entory holding cost rate. The second term is the payment by the

rm to the mechanism. The player n + 1 ’s utility can also be rep-

esented in quasi-linear form: 

 n +1 ( f, p n +1 ) = −κ f − p n +1 , (3)

here the first term is the replenishment costs incurred and the

econd term is the payment of player n + 1 . Each firm’s reservation

tility is equal to its independent optimal cost rate, C d 
i 

= 2 κ f i for

rm i . Player n + 1 ’s reservation utility is zero. 

We consider a direct mechanism, therefore firms report their

ndependent replenishment frequencies. In this case, a mechanism

ill be defined by an outcome rule which specifies the joint re-

lenishment frequency and a payment rule which specifies the pay-

ents by each player as a function of the reported independent

eplenishment frequencies. An efficient mechanism for this prob-

em should select the optimal frequency of the centralized problem

f ∗ = 

(
f 2 
1 

+ · · · + f 2 n 

)1 / 2 
as the joint replenishment frequency lead-

ng to total costs that is equal to the total costs for the centralized

roblem, i.e., 2 κ f ∗ . A common requirement for a mechanism in this

etting is budget-balance . This condition requires that the sum of

ayments from firms in N through the mechanism should finance

he joint setup or ordering cost incurred by player n + 1 . The main

uestion in mechanism design is whether there is a direct mech-

nism for the joint replenishment problem that is efficient, incen-

ive compatible, individually rational and budget-balanced. The an-

wer to this question is unfortunately negative which follows from

yerson and Satterthwaite (1983) who show that the there are no

echanisms that satisfy these four properties simultaneously for

ilateral trading and Williams (1999) which generalizes this result

or multi-firm general settings where the firms have quasi-linear

tilities. 

Given this impossibility result for direct mechanisms, we will

evisit the mechanism suggested by Meca et al. (2003) for com-

etitive environments and explore its generalizations. According to

his mechanism, each firm i reports its optimal independent fre-

uency ˆ s i (which can be different from the true optimal indepen-

ent frequency f i ) without knowing the choices of other firms. Let

ˆ 
 = ( ̂ s 1 , ̂  s 2 , . . . , ̂  s n ) be the vector of reported optimal independent

requencies. If only one firm has chosen a positive ˆ s i in this step,

hen all firms order alone and incur their stand-alone optimal cost

ate. Otherwise, all firms that reported a positive independent fre-

uency order jointly. In this case, the joint frequency is selected

s 
√ ∑ 

j∈ N ˆ s 2 
j 

(i.e., outcome rule). These firms incur inventory hold-

ng costs based on this joint frequency. The joint setup costs are

llocated to these firms based on the proportional rule that Meca

t al. (2003) suggest for the cooperative setting. Namely, firm i is

llocated ˆ s 2 
i 
/ 
∑ 

j∈ N ˆ s 2 
j 

of the joint replenishment costs. As a result,

 firm i that reports a positive independent frequency gets a total

ost 

1 

2 

αi 

√ ∑ 

j∈ N 
ˆ s 2 

j 
+ 

κ ˆ s 2 
i 

√ ∑ 

j∈ N ˆ s 2 
j ∑ 

j∈ N ˆ s 2 
j 

= 

κ f 2 
i √ ∑ 

j∈ N ˆ s 2 
j 

+ 

κ ˆ s 2 
i 

√ ∑ 

j∈ N ˆ s 2 
j ∑ 

j∈ N ˆ s 2 
j 

, (4)

here the first term is the incurred inventory holding costs and

he second term is the allocation of the joint order costs. Finally,
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ll firms that reported ˆ s i = 0 in the first step order alone. In most

f their analysis, Meca et al. (2003) focus on constructive equilibria

here ˆ s i > 0 for all i ∈ N . Since firms with ˆ s i = 0 do not partici-

ate in joint replenishment, in the absence of minor setup costs,

ny equilibrium that is not constructive will clearly suffer from in-

fficiency. Meca et al. (2003) show that this mechanism can en-

ail significant misreporting and lead to inefficient joint decisions.

herefore, in the next two sections, we study generalizations of

his mechanism. 

. Two-parameter mechanisms 

In the previous section we showed that there is no truth-telling

irect mechanism that can achieve efficiency, individual rationality

nd budget-balance simultaneously. In this section we consider a

eneral class of mechanisms and investigate their ability to reach

n efficient and fair outcome. We again assume that adjusted de-

and rates, thus independent frequencies are observable by all

rms, but not verifiable. We assume that each firm reports a fre-

uency denoted by ˆ s i for firm i and a mechanism determines the

oint order frequency and the allocation of the setup cost based

n these reports. We consider a two-parameter mechanism where

ne parameter ( ξ ) governs the joint order frequency decision and

nother parameter ( θ ) governs the allocation decision. In partic-

lar, the joint frequency under the two parameter mechanism is

( ̂ s 
ξ
1 

+ · · · + ̂  s 
ξ
n ) 

1 /ξ , and replenishment setup cost share of firm i is

ˆ  θ
i 
/ ( ̂ s θ

1 
+ · · · + ̂  s θn ) . Since we allocate all of the setup cost using the

arameter ξ , the budget-balance condition is trivially satisfied for

his mechanism. 

Using these values we can easily find the total cost rate C 
2 p 
i 

for

rm i as 

 

2 p 
i 

( ̂ s ) = κ f 2 i 

( ∑ 

j∈ N 
ˆ s 
ξ
j 

) − 1 
ξ

+ 

κ ˆ s θ
i 

(∑ 

j∈ N ˆ s 
ξ
j 

) 1 
ξ

∑ 

j∈ N ˆ s θ
j 

. (5) 

he first term on the right hand side of (5) is the average inven-

ory holding cost. The second term is the time averaged order cost

hat is allocated to firm i . Note that the cost of firm i depends on

ts reported frequency as well as its rivals’. Therefore, we have a

on-cooperative game where each firm’s strategy is its reported

requency and we can use Nash equilibrium as a solution concept. 

In order to find the best response correspondence of firm i to

he strategies of other firms, we obtain the first order condition.

enoting the equilibrium strategy vector as s = (s 1 , .., s n ) , the first

rder condition at the equilibrium is given by: 

∂C 2 p 
i 

( ̂ s ) 

∂ ̂  s i 

∣∣∣∣
ˆ s = s 

= −κ f 2 i s 
ξ−1 

i 

( ∑ 

j∈ N 
s 
ξ
j 

) − 1 
ξ
−1 

−κθs 2 θ−1 
i 

( ∑ 

j∈ N 
s 
ξ
j 

) 

1 
ξ
( ∑ 

j∈ N 
s θj 

) −2 

+ κθs θ−1 
i 

( ∑ 

j∈ N 
s 
ξ
j 

) 

1 
ξ
( ∑ 

j∈ N 
s θj 

) −1 

+ κs 
θ+ ξ−1 

i 

( ∑ 

j∈ N 
s 
ξ
j 

) 

1 
ξ
−1 ( ∑ 

j∈ N 
s θj 

) −1 

= 0 . 

e can simplify this equation by multiplying by

−1 s 1 −θ
i 

( 
∑ 

j∈ N s θj ) 
2 ( 

∑ 

j∈ N s 
ξ
j 
) 

1 − 1 
ξ which yields 
f 2 i s 
ξ−θ
i 

( ∑ 

j∈ N 
s θj 

) 2 ( ∑ 

j∈ N 
s 
ξ
j 

) − 2 
ξ

= θ

( ∑ 

j∈ N 
s θj 

) ( ∑ 

j∈ N 
s 
ξ
j 

) 

+ s 
ξ
i 

( ∑ 

j∈ N 
s θj 

) 

− θs θi 

( ∑ 

j∈ N 
s 
ξ
j 

) 

. 

y rearranging the terms, we obtain 

f 2 i = θs 
θ−ξ
i 

( ∑ 

j∈ N 
s θj 

) −1 ( ∑ 

j∈ N 
s 
ξ
j 

) 

2+ ξ
ξ

+ s θi 

( ∑ 

j∈ N 
s θj 

) −1 ( ∑ 

j∈ N 
s 
ξ
j 

) 

2 
ξ

− θs 
2 θ−ξ
i 

( ∑ 

j∈ N 
s 
ξ
j 

) 

2+ ξ
ξ

( ∑ 

j∈ N 
s θj 

) −2 

. (6) 

his implicit function gives the equilibrium reported frequencies

 i , but no further simplification is possible and a closed form so-

ution for the equilibrium is not available. However, we can deter-

ine the performance (with respect to its ability to reach the effi-

ient solution) of the two-parameter mechanism by the following

roposition. 

roposition 1. The ratio of the efficient frequency and the equilib-

ium frequency under the two-parameter mechanism is given by: 

 

 

 

( 
∑ 

i ∈ N f 2 
i 
) 1 / 2 (∑ 

i ∈ N s 
ξ
i 

)1 /ξ

⎞ 

⎟ ⎠ 

2 

= 1 + 

( ∑ 

i ∈ N 
s θi 

) −2 

θ

×
( 

2 

∑ 

i � = j 
s θi s 

θ
j + 

∑ 

i � = j 
s 
θ+ ξ
i 

s 
θ−ξ
j 

+ 

∑ 

i � = j, j � = k 
s θi s 

ξ
j 
s 
θ−ξ
k 

) 

. (7) 

Since we are interested in only constructive equilibria where s i 
 0 for all i ∈ N , Proposition 1 shows that unless θ = 0 , the ef-

cient joint frequency is always larger than the joint frequency in

he constructive equilibrium (if it exists) which in turn implies that

ooperative solutions would give smaller costs for all firms. This is

ormally given in the following corollary. 

orollary 1. For the two-parameter mechanisms, the joint frequency

n a constructive equilibrium is always less than the efficient fre-

uency unless the order cost allocation parameter θ = 0 , i.e., the order

ost is allocated uniformly. 

However, θ = 0 is only a necessary condition for efficiency.

here is no guarantee that an equilibrium under a uniform cost

llocation exists. Next, we present an example with ξ = 2 where

he equilibrium does not exist in general. 

 special case: (ξ, θ) = (2 , 0) 

We consider a two-parameter mechanism with joint frequency

arameter as (ξ = 2) and sharing parameter as (θ = 0) which cor-

esponds to a uniform sharing (replenishment cost share of firm

 = 1 /n ). This is an important special case since on one hand effi-

iency can be obtained only if θ = 0 as shown in Corollary 1 and

n the other hand ξ = 2 leads to efficient joint replenishment

requency if the firms were to report their true stand-alone

requencies. 
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In this case, the payoff for firm i is: 

 

2 p 
i 

( ̂ s ) = 

1 

n 

κ

( ∑ 

j∈ N 
ˆ s 2 j 

) 

1 
2 

+ κ f 2 i 

( ∑ 

j∈ N 
ˆ s 2 j 

) − 1 
2 

= 

κ

n 

⎛ 

⎝ 

( ∑ 

j∈ N 
ˆ s 2 j 

) 

1 
2 

+ n f 2 i 

( ∑ 

j∈ N 
ˆ s 2 j 

) − 1 
2 

⎞ 

⎠ . 

First order condition for optimal response is: 

∂C 1 p 
i 

( ̂ s ) 

∂ ̂  s i 

∣∣∣∣
ˆ s = s 

= 

κs i 
n 

⎛ 

⎝ 

( ∑ 

j∈ N 
s 2 j 

) − 1 
2 

− n f 2 i 

( ∑ 

j∈ N 
s 2 j 

) − 3 
2 

⎞ 

⎠ 

= 

κs i 
n 

( ∑ 

j∈ N 
s 2 j 

) − 3 
2 
( 

s 2 i + 

∑ 

j � = i 
s 2 j − n f 2 i 

) 

= 0 . 

We obtain the best responses as s 2 
i 

= n f 2 
i 

− ∑ 

j � = i s 2 j and derive the

equilibrium frequency as ∑ 

j∈ N 
s 2 j = n 

∑ 

j∈ N 
f 2 j − (n − 1) 

∑ 

j∈ N 
s 2 j 

⇒ 

∑ 

j∈ N 
s 2 j = 

∑ 

j∈ N 
f 2 j 

⇒ 

√ ∑ 

j∈ N 
s 2 

j 
= 

√ ∑ 

j∈ N 
f 2 

j 

⇒ f ξ = f ∗, 

which is equal to the cooperative joint frequency. However, note

that the best responses are s 2 
i 

= n f 2 
i 

− ∑ 

j � = i s 2 j which leads to f i =√ ∑ 

j∈ N s 2 j /n . Therefore in order to have an equilibrium, all firms

should have the same stand-alone frequency. Otherwise, there is

no constructive equilibrium and each firm replenishes indepen-

dently. 

Since further analysis of the two-parameter mechanisms is not

tractable, in the next section, we explore one parameter mecha-

nisms in detail. 

5. One-parameter mechanisms 

In this section, we consider a single parameter mechanism

where we set the value of the parameters for determining the

joint order frequency and allocating the ordering costs equal to

each other. This is done primarily due to the fact that the analysis

of two-parameter mechanisms is intractable. The one-parameter

mechanisms admit an easier mathematical and numerical analy-

sis. In addition, the only mechanism in the literature, the mech-

anism suggested in Meca et al. (2003) is a special version of the

one-parameter policy where the single parameter takes on the

value 2. 

When we assume that θ = ξ , the resulting cost function for a

given vector of reports ˆ s is 

 

1 p 
i 

( ̂ s ) = κ f 2 i 

( ∑ 

j∈ N 
ˆ s 
ξ
j 

) − 1 
ξ

+ κ ˆ s 
ξ
i 

( ∑ 

j∈ N 
ˆ s 
ξ
j 

) 

1 
ξ
−1 

. 

In this case, Eq. (6) simplifies to 

f 2 i = ξ

( ∑ 

j∈ N 
s 
ξ
j 

) 

2 
ξ

+ s 
ξ
i 
(1 − ξ ) 

( ∑ 

j∈ N 
s 
ξ
j 

) 

2 
ξ
−1 

, (8)
nd (7) can be written as 

 

 

 

( 
∑ 

i ∈ N f 2 
i 
) 1 / 2 (∑ 

i ∈ N s 
ξ
i 

)1 /ξ

⎞ 

⎟ ⎠ 

2 

 1 + 

( ∑ 

i ∈ N 
s 
ξ
i 

) −2 

ξ

( 

2 

∑ 

i � = j 
s 
ξ
i 

s 
ξ
j 
+(n − 1) 

∑ 

i ∈ N 
s 

2 ξ
i 

+2(n − 2) 
∑ 

i � = j 
s 
ξ
i 

s 
ξ
j 

)

 1 + 

( ∑ 

i ∈ N 
s 
ξ
i 

) −2 

ξ (n − 1) 

( ∑ 

i ∈ N 
s 

2 ξ
i 

+ 2 

∑ 

i, j∈ N,i � = j 
s 
ξ
i 

s 
ξ
j 

) 

 1 + ξ (n − 1) . (9)

Denoting the joint frequency in equilibrium f ξ = ( 
∑ 

i ∈ N s 
ξ
i 
) 1 /ξ ,

e obtain 

f ∗
f ξ

= 

√ 

ξ (n − 1) + 1 , (10)

hich shows that the deviation of the equilibrium joint frequency

rom the efficient joint frequency depends only on the parameter

and n . In particular, f ∗ > f ξ for all ξ > 0 and f ∗ / f ξ is an increasing

unction of ξ . This means that the one parameter mechanisms are

ever perfectly efficient in general, but their efficiency improves as

gets smaller. 

In order to further characterize the equilibrium, we first obtain

he best response function for firm i . The expression in (9) can be

ritten as: ∑ 

j∈ N f 2 
j 

ξ (n − 1) + 1 

) ξ
2 

= 

∑ 

j∈ N 
s 
ξ
j 
. (11)

herefore, the best response of firm i is given by 

 

ξ
i 

= 

( ∑ 

j∈ N f 2 
j 

ξ (n − 1) + 1 

) ξ
2 

−
∑ 

j∈ N\ { i } 
s 
ξ
j 
, for i = 1 , . . . , n. (12)

Clearly, there can be equilibria in which a firm reports 0 and

tays out of the joint replenishment. As is stated before and also

n Meca et al. (2003) , when one or more firms stay out of the joint

eplenishment, we are sure that the total costs will be higher than

he optimal centralized costs (since there are only major setup

osts). Therefore and since our focus is efficiency, we are mainly

nterested in constructive equilibria where each firm reports a pos-

tive frequency. 

We can use the best response functions (11) in (8) and re–

rrange the terms to get the following equality for the equilibrium

eports: 

 

ξ
i 

= 

ξ
∑ 

j∈ N f 2 
j 

− ( (n − 1) ξ + 1 ) f 2 i 

( (n − 1) ξ + 1 ) (ξ − 1) 

( ∑ 

j∈ N f 2 
j 

(n − 1) ξ + 1 

)ξ/ 2 −1 

. (13)

f ξ > 1, the argument in (13) is positive if and only if ξ
∑ 

j∈ N f 2 
j 

−
((n − 1) ξ + 1) f 2 

i 
> 0 . On the other hand, if ξ < 1, the argument

n (13) is positive if and only if ξ
∑ 

j∈ N f 2 
j 

− ((n − 1) ξ + 1) f 2 
i 

< 0 .

ince these conditions have to be satisfied for all firms, we can

ormalize these conditions in the following proposition. 

roposition 2. The necessary condition for a constructive equilibrium

or the one-parameter mechanism is given by 

max j∈ N f 2 
j ∑ 

j∈ N f 2 
j 

< 

ξ

(n − 1) ξ + 1 

, 

f ξ > 1, and 
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p i 
min j∈ N f 2 
j ∑ 

j∈ N f 2 
j 

> 

ξ

(n − 1) ξ + 1 

, 

f ξ < 1 . 

Proposition 2 shows that the constructive equilibrium can ex-

st only if firms’ stand-alone optimal frequencies are close to each

ther. Note that these conditions are only necessary conditions. In

rder to show that the solution in (13) is in fact the equilibrium,

e need to show that the payoff function is convex. We provide

he conditions for this in the following proposition. 

roposition 3. The cost function is convex at (13) and the solution

n (13) is a Nash equilibrium if and only if ∑ 

j∈ N 
f 2 j − (ξ − 2) ( (n − 1) ξ + 1 ) f 2 i ≥ 0 , for all i = 1 , . . . , n. (14) 

A consequence of this result is that for ξ > 3, we do not have

onvexity at the equilibrium point regardless of the frequency dis-

ribution and for ξ ≤ 2 we always have convexity. Therefore, when

≤ 2, we can state the conditions in Proposition 2 also as suffi-

ient conditions for constructive equilibrium. 

We are now ready to express the costs incurred by each firm in

quilibrium under the single parameter joint replenishment mech-

nism. The cost of firm i in equilibrium can be found by using the

quilibrium reports s = (s 1 , .., s n ) as follows: 

 

1 p 
i 

(s ) = κ f 2 i 

( ∑ 

j∈ N 
s 
ξ
j 

) − 1 
ξ

+ κs 
ξ
i 

( ∑ 

j∈ N 
s 
ξ
j 

) 

1 
ξ
−1 

. 

In equilibrium, using (11) and (13) : 

 

1 p 
i 

(s ) = κ f 2 i 

( ∑ 

j∈ N f 2 
j 

(n − 1) ξ + 1 

)− 1 
2 

+ κ
ξ

∑ 

j∈ N f 2 
j 

− ( (n − 1) ξ + 1 ) f 2 i 

( (n − 1) ξ + 1 ) (ξ − 1) 

( ∑ 

j∈ N f 2 
j 

(n − 1) ξ + 1 

)− 1 
2 

. 

aking the terms to ( 

∑ 

j∈ N f 2 j 

(n −1) ξ+1 
) −

1 
2 parenthesis and rearranging the

erms gives the equilibrium cost of firm i as: 

 

1 p 
i 

(s ) = κ

(
ξ

∑ 

j∈ N f 2 
j 

+ (ξ − 2) ( (n − 1) ξ + 1 ) f 2 i 

( (n − 1) ξ + 1 ) (ξ − 1) 

)

×
( ∑ 

j∈ N f 2 
j 

(n − 1) ξ + 1 

)− 1 
2 

. 

umming over all the firms, we obtain the total cost as 

 

1 p 
N 

(s ) = 

∑ 

j∈ N 
C 1 p 

j 
(s ) 

= κ

(
ξn + (ξ − 2) ( (n − 1) ξ + 1 ) 

ξ − 1 

)( ∑ 

j∈ N f 2 
j 

ξ (n − 1) + 1 

) 1 
2 

, 

nd the cost ratio of firm i is given by 

C 1 p 
i 

(s ) 

C 1 p 
N 

(s ) 
= κ

(
ξ

∑ 

j∈ N f 2 
j 

+ (ξ − 2) ( (n − 1) ξ + 1 ) f 2 i 

ξn + (ξ − 2) ( (n − 1) ξ + 1 ) 

)( ∑ 

j∈ N 
f 2 j 

) −1 

. 

 special case: ξ = 2 

A special case of our one-parameter mechanisms is the mecha-

ism used in Meca et al. (2003) where the parameter is ξ = 2 . We

evisit this mechanism as this is the only mechanism suggested in
he literature and we would like pose this as a benchmark for dif-

erent values of ξ . 

In this case, the necessary and sufficient condition for a con-

tructive equilibrium given in Proposition 2 simplifies to 

f 2 i ≤ 2 

2 n − 3 

∑ 

j � = i 
f 2 j , for all i = 1 , 2 , . . . , n, 

s is also shown in Theorem 2 of Meca et al. (2003) . The equilib-

ium joint frequency simplifies to: 

f ξ = 

1 √ 

2 n − 1 

f ∗ < f ∗. 

ince f ξ < f ∗ , clearly this mechanism is inefficient and will lead to

otal cost more than the optimal centralized total costs. 

The cost of firm i in this case is: 

 

1 p 
i 

= κ

(
2 

∑ 

j∈ N f 2 
j 

( 2(n − 1) + 1 ) 

)( ∑ 

j∈ N f 2 
j 

2(n − 1) + 1 

)− 1 
2 

= 2 κ

( ∑ 

j∈ N f 2 
j 

2(n − 1) + 1 

) 1 
2 

, 

hich shows that each firm has the same cost under joint replen-

shment regardless of their stand–alone frequencies or adjusted de-

and rates. This result shows that in addition to being inefficient,

he mechanism in Meca et al. (2003) is also not desirable in terms

f fairness. 

mpact of ξ and comparative statics 

We now investigate how the equilibrium behavior and effi-

iency change as a function of ξ and stand-alone frequencies. For

his purpose we obtain the comparative statics for the game. 

First remember that Eq. (10) states f ∗
f ξ

= 

√ 

ξ (n − 1) + 1 , and

herefore we know that the efficiency of the one parameter mech-

nism improves as ξ gets smaller. One can also derive an expres-

ion for the difference between reported frequencies of two firms

 , k with f i > f k as follows: 

 

ξ
i 

− s 
ξ
k 

= 

f 2 
k 

− f 2 
i 

(ξ − 1) 

( ∑ 

j∈ N f 2 
j 

(n − 1) ξ + 1 

)ξ/ 2 −1 

, (15) 

hich shows that for ξ > 1, we have s i < s k . Therefore, the firm

ith higher stand–alone frequency reports a lower frequency than

 firm with lower stand-alone frequency. For ξ < 1, the firm with

igher stand-alone frequency reports a higher frequency. A simi-

ar expression can be derived for equilibrium cost of two firms as

ollows: 

 

1 p 
i 

− C 1 p 
k 

= κ

(
(ξ − 2)( f 2 

i 
− f 2 

k 
) 

(ξ − 1) 

)( ∑ 

j∈ N f 2 
j 

(n − 1) ξ + 1 

)− 1 
2 

. (16) 

q. (16) can be used to show that for 1 < ξ < 2, C 
1 p 
i 

< C 
1 p 

k 
, i.e.,

he firm with higher stand-alone frequency has a lower equilib-

ium cost. For ξ < 1 or ξ > 2, the reverse is true and we have

 

1 p 
i 

> C 
1 p 

k 
. Therefore, from a fairness perspective, mechanisms with

< 1 or ξ > 2 are preferable to those with 1 < ξ < 2. 

It is also important to understand how a firm’s equilibrium fre-

uency report changes as its own true stand-alone frequency or

ts competitor’s stand-alone frequency changes. We can derive the

artial derivative of the equilibrium reported frequency of firm i , s 
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Fig. 1. Reported Frequencies and Equilibrium Joint frequency as a function of ξ for ( f 1 , f 2 , f 3 ) = (0 . 95 , 1 , 1 . 05) . 
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with respect to its own stand-alone frequency f i as follows: 

∂s i 
∂ f i 

= 

f i s i 
ξ

×
(

(ξ 2 − 2 ( (n − 1) ξ + 1 ) ) 
∑ 

j∈ N f 2 
j 

− (ξ − 2) ( (n − 1) ξ + 1 ) f 2 i 
) 

ξ
∑ 

j∈ N f 2 
j 

− ( (n − 1) ξ + 1 ) f 2 i 

)

×
( ∑ 

j∈ N 
f 2 j 

) −1 

. (17)

Similarly, the partial derivative with respect to a rival firm k ’s true

frequency is 

∂s i 
∂ f k 

= 

f k s i 
ξ

(
ξ 2 

∑ 

j∈ N f 2 
j 

− (ξ − 2) ( (n − 1) ξ + 1 ) f 2 i 

ξ
∑ 

j∈ N f 2 
j 

− ( (n − 1) ξ + 1 ) f 2 i 

)( ∑ 

j∈ N 
f 2 j 

) −1 

.

(18

Corresponding changes in equilibrium costs are given by the

following 

∂C 1 p 
i 

∂ f i 

= κ f i 

(
(ξ + 2(ξ − 2) ( (n − 1) ξ + 1 ) ) 

∑ 

j∈ N f 
2 
j 

− (ξ − 2) ( (n − 1) ξ + 1 ) f 2 i 

( (n − 1) ξ + 1 ) 
1 / 2 

(ξ − 1) 

)

×
( ∑ 

j∈ N 
f 2 j 

) − 3 
2 

, (19

∂C 1 p 
i 

∂ f k 
= κ f k 

(
ξ

∑ 

j∈ N f 2 
j 

− (ξ − 2) ( (n − 1) ξ + 1 ) f 2 i 

( (n − 1) ξ + 1 ) 
1 / 2 

(ξ − 1) 

)( ∑ 

j∈ N 
f 2 j 

) − 3 
2 

.

(20)

One can also consider the effect of an additional firm, firm

n + 1 , entering the joint replenishment, on the reported frequency

of firm i . For brevity, we only consider the difference of the ξ th 

power of the reported frequencies. 

s 
ξ
i 
(N ∪ { n + 1 } ) − s 

ξ
i 
(N) 

= 

ξ ( 
∑ 

j∈ N f 2 
j 

+ f 2 n +1 ) − ( nξ + 1 ) f 2 i 

( nξ + 1 ) (ξ − 1) 

(∑ 

j∈ N f 2 
j 

+ f 2 n +1 

nξ + 1 

)ξ/ 2 −1 

−
ξ

∑ 

j∈ N f 2 
j 

− ( (n − 1) ξ + 1 ) f 2 i 

( (n − 1) ξ + 1 ) (ξ − 1) 

( ∑ 

j∈ N f 2 
j 

(n − 1) ξ + 1 

)ξ/ 2 −1 

. (21)
orrespondingly, the change in equilibrium costs can be shown as

ollows 

 

1 p 
i 

(N ∪ { n + 1 } ) − C 1 p 
i 

(N) 

 κ

(
ξ ( 

∑ 

j∈ N f 2 
j 

+ f 2 n +1 ) + (ξ − 2) ( nξ + 1 ) f 2 i 

( nξ + 1 ) 
1 / 2 

(ξ − 1) 

)( ∑ 

j∈ N 
f 2 j + f 2 n +1 

) − 1
2

−κ

(
ξ

∑ 

j∈ N f 2 
j 

+ (ξ − 2) ( (n − 1) ξ + 1 ) f 2 i 

( (n − 1) ξ + 1 ) 
1 / 2 

(ξ − 1) 

)( ∑ 

j∈ N 
f 2 j 

) − 1 
2 

. (22

t is interesting to note that the expression in (22) can take pos-

tive or negative values meaning that adding a new firm to the

oint replenishment program does not necessarily decrease an ex-

sting firm’s total costs in a one-parameter mechanism. For ex-

mple, this may happen when the new firm’s standalone fre-

uency is low and ξ is less than 1. In this case, expecting that

he new firm will report a considerable frequency, existing firms

ecrease their reported frequencies resulting in lower joint fre-

uency and higher total costs for all firms. In situations like

hese, it may be useful to reveal some information regarding the

ew entry’s characteristics such that incumbent firms determine

heir reported frequencies accordingly and benefit from the new

ntry. 

umerical examples 

We demonstrate some of the sensitivity results for the one-

arameter mechanisms using numerical examples in this section.

irst, we demonstrate the effect of ξ on equilibrium reported

requencies, joint frequency, individual costs and total costs in a

est problem with three firms with ( f 1 , f 2 , f 3 ) = (0 . 95 , 1 , 1 . 05) in

igs. 1 and 2 as ξ varies between 0 and 3. Note that the efficient

oint frequency for this problem is f ∗ = 1 . 733 . Fig. 1 shows the

quilibrium frequency reports and resulting joint frequency as a

unction of ξ . Notice that we have a region of ξ for which there is

o constructive equilibrium. 

Corresponding costs (as a percentage of total efficient costs) for

ach firm and total costs are shown in Fig. 2 . Since the equilib-

ium joint frequency approaches the efficient joint frequency as ξ
ets smaller, total costs also approaches to the efficient total costs

n this direction. Also notice that left plot of Fig. 2 confirms our

nalytical finding in (16) . In the first region of ξ which contains
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Fig. 2. Equilibrium individual costs and total cost as a percentage of efficient cost as a function of ξ for ( f 1 , f 2 , f 3 ) = (0 . 95 , 1 , 1 . 05) . 

Fig. 3. Reported frequencies as a function of ξ for ( f 1 , f 2 , f 3 ) = (0 . 9 , 1 , 1 . 1) and ( f 1 , f 2 , f 3 ) = (1 , 1 . 05 , 1 . 1) . 

Fig. 4. Equilibrium firms costs as a percentage of efficient cost as a function of ξ for ( f 1 , f 2 , f 3 ) = (0 . 9 , 1 , 1 . 1) and ( f 1 , f 2 , f 3 ) = (1 , 1 . 05 , 1 . 1) . 
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onstructive equilibrium ( ξ < 1), the equilibrium cost of a higher

tand–alone frequency (or higher adjusted demand rate) firm is al-

ays larger than the equilibrium cost of a firm with a lower stand–

lone frequency. This simple sense of “fairness” is not guaranteed

n the second region ( ξ > 1). 

Based on Eqs. (10) , (15) , and (16) , and Figs. 1 and 2 , using

= 2 (as in Meca et al., 2003 ) is not desirable from an efficiency

nd fairness perspective. One needs to have ξ < 1 for fairness. In

ddition, Proposition 2 and Eq. (15) implies that lower values of

should be preferred for efficiency and to ensure a constructive

quilibrium. The only downside of using very small values of ξ
eem to be the fact that the differences between reported frequen-

ies are indistinguishable. 

Figs. 3 –5 show equilibrium reported frequencies, individual firm

osts and total costs, respectively, for two other test problems:
( f 1 , f 2 , f 3 ) = (0 . 9 , 1 , 1 . 1) and ( f 1 , f 2 , f 3 ) = (1 , 1 . 05 , 1 . 1) . The re-

ults are similar to the results for the first problem, except that

he region for which no constructive equilibrium can be obtained

xpands (shrinks) as stand-alone frequencies get closer to (further

way from) each other. 

In Fig. 6 , we compute the comparative statics given in (17) and

18) for the effects of own and rival’s true replenishment fre-

uency on a firm’s reported frequency for the test problem with

( f 1 , f 2 , f 3 ) = (0 . 95 , 1 , 1 . 05) . Fig. 6 shows that when ξ < 1, the

rm should report higher frequencies as its true frequency in-

reases. This is in contrast to the second region of constructive

quilibrium, where the firm report lower frequency as its true

requency increases. For the same problem, the comparative stat-

cs given in (19) and (20) are shown in Fig. 7 . Fig. 7 shows that

quilibrium cost for a firm is increasing in its own frequency and
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Fig. 5. Equilibrium total cost as a percentage of efficient cost as a function of ξ for for ( f 1 , f 2 , f 3 ) = (0 . 9 , 1 , 1 . 1) and ( f 1 , f 2 , f 3 ) = (1 , 1 . 05 , 1 . 1) . 

Fig. 6. Rate of change of firm 1’s equilibrium reports with f 1 and f 2 as a function of ξ for ( f 1 , f 2 , f 3 ) = (0 . 95 , 1 , 1 . 05) . 

Fig. 7. Rate of change of firm 1’s cost with f 1 and f 2 as a function of ξ for ( f 1 , f 2 , f 3 ) = (0 . 95 , 1 , 1 . 05) . 
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decreasing in its rival’s frequency when ξ < 1 and and the signs

are reversed when ξ > 1. The results in Figs. 6 and 7 confirm

that using ξ < 1 leads to a more desirable mechanism in terms of

fairness. 

6. Conclusion 

In this paper, we consider jointly replenishing multiple, decen-

tralized firms under an EOQ like environment. We assume that the

adjusted demand rates are observable, but not verifiable and there-

fore investigate the use of direct and indirect mechanisms to de-

termine a joint replenishment frequency and allocate setup costs.

First, we show that there is no direct mechanism that is efficient,
ncentive compatible, individually rational, and budget-balanced.

ence, we explore specific mechanisms and investigate their abil-

ty to reach efficient and fair outcomes. In particular, we first study

wo-parameter mechanisms in which one parameter governs the

oint frequency decision and the other governs the setup cost allo-

ation. We show that it is not possible to achieve efficiency unless

he setup costs are allocated uniformly. When these two param-

ters are equal, we derive conditions for the constructive equilib-

ium and characterize the equilibrium and comparative statics. We

how that mechanisms with smaller values of this single param-

ter lead to more efficient outcomes and are more defendable in

erms of fairness. 
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ppendix 

roof of Proposition 1 

Summing (6) over all i ∈ N yields: 

 

i ∈ N 
f 2 i = 

( ∑ 

i ∈ N 
s θi 

) −1 ( ∑ 
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ξ
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) 2 /ξ( 
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ξ
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θ−ξ
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i 
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i ∈ N 
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ξ
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) −1 
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⎞ 
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i ∈ N 
s 
ξ
i 
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θ

( 

2 

∑ 
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θ
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∑ 
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j 
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ξ
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θ−ξ
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+ 1 

) 

. 

Dividing both sides by ( 
∑ 

i ∈ N s 
ξ
i 
) 2 /ξ leads to the desired result.

roof of Proposition 3 

For the single parameter case the second derivative of the pay-

ff function is as follows: 

∂ 2 C 1 p 
i 

( ̂ s ) 

∂ ̂  s 2 
i 

∣∣∣∣
ˆ s = s 
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Factoring the expression, we obtain 
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For convexity, the argument above should be non-negative. Us-

ng this, we get the following condition: 
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Using (11) and (13) in the inequality, we get 
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Simplifying the terms yields 

(ξ − 1) 

(
( (n − 1) ξ + 1 ) f 2 i 

− ∑ 

j∈ N f 2 
j 

( (n − 1) ξ + 1 ) (ξ − 1) 

)

×
(

(2 ξ − 1) ( (n − 1) ξ + 1 ) f 2 i 
− ξ 2 

∑ 

j∈ N f 2 
j 

( (n − 1) ξ + 1 ) (ξ − 1) 

)

≥ f 2 i 

(
(ξ + 1) ( (n − 1) ξ + 1 ) f 2 i 

− (3 ξ − 1) 
∑ 

j∈ N f 2 
j 

( (n − 1) ξ + 1 ) (ξ − 1) 

)
. 

Next, we consider the cases for ξ > 1 and ξ < 1 separately

ince the equilibrium conditions for both cases are different. For
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ξ > 1 the condition is: ( 
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) 

.

Denote E = ( (n − 1) ξ + 1 ) f 2 i 
and F = 

∑ 

j∈ N f 2 
j 

and the condition

simplifies to: 

( E − F ) 
(
(2 ξ − 1) E − ξ 2 F 

)
≥ E ( (ξ + 1) E − (3 ξ − 1) F ) 

⇒ (2 ξ − 1) E 2 − ξ 2 EF − (2 ξ − 1) EF + ξ 2 F 2 

≥ (ξ + 1) E 2 − (3 ξ − 1) EF 

⇒ (ξ − 2) E 2 − (ξ 2 − ξ ) EF + ξ 2 F 2 ≥ 0 

⇒ (ξF − (ξ − 2) E)(ξF − E) ≥ 0 . 

By Proposition 2 , ξF − E > 0 . Thus we must have: 

ξ
∑ 

j∈ N 
f 2 j − (ξ − 2) ( (n − 1) ξ + 1 ) f 2 i ≥ 0 . 

For ξ < 1, 

( E − F ) 
(
(2 ξ − 1) E − ξ 2 F 
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≤ E ( (ξ + 1) E − (3 ξ − 1) F ) 

⇒ (2 ξ − 1) E 2 − ξ 2 EF − (2 ξ − 1) EF + ξ 2 F 2 

≤ (ξ + 1) E 2 − (3 ξ − 1) EF 

⇒ (ξ − 2) E 2 − (ξ 2 − ξ ) EF + ξ 2 F 2 ≤ 0 

⇒ (ξF − (ξ − 2) E)(ξF − E) ≤ 0 . 

Again by Proposition 2 , ξF − E < 0 . Thus we must have: 

ξ
∑ 

j∈ N 
f 2 j − (ξ − 2) ( (n − 1) ξ + 1 ) f 2 i ≥ 0 , 

which is same as what get for ξ > 1. �
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