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This article considers the problem of designing a two-
level network where the upper level consists of a back-
bone ring network connecting the so-called hub nodes,
and the lower level is formed by access ring networks
that connect the non-hub nodes to the hub nodes. There
is a fixed cost for each type of link, and a facility open-
ing cost associated to each hub. The number of nodes in
each access ring is bounded, and the number of access
rings connected to a hub is limited to κ , thus resulting
in a ring/ κ-rings topology. The aim is to decide the hubs
to open and to design the backbone and access rings
to minimize the installation cost. We propose a math-
ematical model, give valid inequalities, and describe a
branch-and-cut algorithm to solve the problem. Compu-
tational results show the algorithm is able to find optimal
solutions on instances involving up to 40 nodes within a
reasonable time. © 2016 Wiley Periodicals, Inc. NETWORKS,
Vol. 68(2), 130–140 2016
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1. INTRODUCTION

This article shows the results of our research on the prob-
lem of designing a two-level network in which both the
upper level network, that connects the hubs, and the lower
level networks that connect user nodes to hubs, are rings.
Rings are common structures in telecommunication net-
works as they provide survivability against single edge/node
failures. Synchronous digital hierarchy (SDH), synchronous
optical network (SONET), and wavelength-division multi-
plexing systems and Resilient Packet Rings are often con-
figured in self-healing rings. Large networks use hierarchy
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to connect rings at different levels. Rings are also common
in transportation applications where vehicles start and end
their trips at a depot. Multi-echelon distribution systems,
as in multimodal networks and city logistics, involve the
design of rings at different levels of a transportation network
where intermediate facilities are used for storage and transfer
activities (see, e.g., [6]). In our study, we use the telecommu-
nications terminology and refer to the upper level network as
backbone and to the lower level networks as access networks.

In our problem, we are given an undirected graph, costs of
installing hubs at nodes, and costs of installing both back-
bone and access edges. The problem requires selecting a
subset of nodes as hubs, connecting the hubs with a ring
network, and connecting the remaining nodes to hubs with
rings. We impose that an access ring may contain at most q
nodes (including its hub). At least one and at most κ access
rings can be adjacent to a hub. The aim is to minimize the
total cost of installing hubs and backbone and access edges.

Klincewicz [17] uses the notation “backbone struc-
ture/access structure” to specify the structure of a two-level
network. For instance, in a “fully connected/ring network,”
the backbone network is a complete graph on the hubs, and the
access networks are rings, each visiting a subset of users and
one hub. With this notation, a solution to our problem is called
a “ring/ κ-rings” network, and the problem is named ring/
κ-rings network design problem. Figure 1 shows a ring/3-
rings optimal solution network for an instance with 20 nodes
where the number of nodes in each access network is lim-
ited to 5. The solid lines represent the backbone network and
the dashed lines represent the access networks. The nodes in
the backbone network are the hubs. In this solution, one of
the hubs has three access networks (the maximum allowed),
while the other hubs have only one access network. Figure
2 shows the optimal solution for the same instance when the
required network structure is ring/2-ring, that is, when at most
two access ring per hub are permitted. The optimal solution
of the ring/1-ring problem is depicted in Figure 3.

Even though hierarchical networks are common in many
applications, there are few studies on related problems where
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FIG. 1. A ring/3-rings solution example (cost: 1,501). [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]

FIG. 2. A ring/2-rings solution example (cost: 1,502). [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]

the networks are rings in both levels. Most of the studies that
consider survivability are on the design of a single layer net-
work (see, e.g., [13, 15, 16, 22, 23, 29, 31]). Fortz and Labbé
[7] and Fortz et al. [8–10] study the problems of designing
rings of bounded size. Labbé et al. [18] consider the problem
of simultaneously locating plants and designing rings that
connect customers to those plants. The number of customers
that a plant can serve is limited. Magnanti and Raghavan
[21] and Balakrishnan et al. [1, 2] consider more general sur-
vivability requirements. Klincewicz [17] reviews combined
hub location and network design problems. Gourdin et al.
[12] survey the studies on location problems encountered in

FIG. 3. A ring/1-ring solution example (cost: 1,713). [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]

telecommunications network design. Soriano et al. [28] pro-
vide an overview of design and dimensioning problems in
survivable SDH/SONET networks. Contreras and Fernández
[5] review studies on combined location and network design
problems.

Labbé et al. [19] study the design of a ring/star network
and propose a branch-and-cut algorithm. Baldacci et al. [3]
study a generalization where the backbone network allows m
rings instead of one. Lee and Koh [20] study the ring/chain
network design problem with dual homing for a given ring
backbone. They show that the problem related with the design
of access networks is NP-hard, give a formulation and a
tabu search algorithm. Thomadsen and Stidsen [30] study the
ring/1-ring network design problem with an objective func-
tion that includes the cost for installing edges and also savings
obtained by handling communication demands within access
rings. Due to the complexity introduced by the savings in
the objective function, they propose to solve the problem in
two steps. They describe a branch-and-price algorithm for
the optimal design of the access rings in the first step. The
design of the backbone ring is modeled as a Generalized Trav-
eling Salesman Problem in the second step. While the first
step is deeply investigated in [30], the second step is omit-
ted. Our approach to the ring/1-ring network design problem
tackles the two steps simultaneously, as an integrated prob-
lem, although without considering savings in the objective
function. Rodríguez-Martín et al. [25] propose a branch-and-
cut algorithm for several two-level network design problems
with survivability requirements in both levels. Two of these
problems are ring/two-edge connected network design and
ring/ring network design problems. However, the ring/ring
problem in [25] differs from the ring/1-ring problem stud-
ied here (i.e., the ring/ κ-rings where κ = 1) since in the
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former not all nodes must be necessarily on an access net-
work, giving rise to optimal solutions with hubs without any
adjacent access network. Carroll and McGarraghy [4] pro-
pose to decompose the problems of designing the rings in
different levels. Shi and Fonseka [26] study the design of hier-
archical self healing rings and propose a heuristic. Proestki
and Sinclair [24] and Shi and Fonseka [27] propose heuris-
tic algorithms for the problem with dual homing. Fouilhoux
et al. [11] and Karasan et al. [14] study the design of two
level networks with single and dual homing and a survivable
backbone network.

In this article, we generalize the ring/ring network design
problem by allowing multiple rings at each hub. We present
a formulation and valid inequalities to strengthen it. We pro-
pose a branch-and-cut algorithm to solve this problem and
analyze the results of our computational experiments.

The remainder of the article is organized as follows. We
present our formulation in Section 2. In Section 3, we derive
several families of valid inequalities to strengthen the formu-
lation. We explain the details of our branch-and-cut algorithm
in Section 4, and present our computational results in Section
5. Finally, the article ends with conclusions in Section 6.

2. FORMULATION

We first define the problem formally and then present the
formulation. Let V = {0, 1, . . . , n − 1} be the set of nodes.
Node 0 is the root node and a hub is already installed at this
node. Let E = {{i, j} : i, j ∈ V , i < j} be the set of edges. We
assume that all edges are potential links for a solution. Let
G = (V , E) be an undirected graph with no multiple edges
allowed. We denote with fj the fixed cost of installing a hub
at node j ∈ V , and with be and ae the costs of installing a
backbone link and an access link on edge e ∈ E, respectively.

The aim of our problem is to find a subset of nodes of V on
which hubs are installed, to connect these hubs with backbone
edges that form a ring, to assign each non-hub node to a hub
node, and to connect the nodes that are assigned to the same
hub with access rings. Each access ring must contain at most
q nodes, and each hub must be adjacent to at least one and
to at most κ access rings. We would like to choose the hubs
and the backbone and access rings in such a way that the total
design cost is minimized.

Let K = {1, . . . , κ}. The decision variables in our formu-
lation are the following. The variable zij takes value 1 if node
i ∈ V is assigned to hub j ∈ V , and 0 otherwise. If zjj = 1
then node j is a hub itself. For i �= j and k ∈ K , wk

ij is equal
to 1 if node i is assigned to the k th ring adjacent to hub
node j, and 0 otherwise. For i ∈ V , wk

ii is 1 if the k th ring
adjacent to node i is used, and 0 otherwise. With these defini-
tions, we have that zij = ∑

k∈K wk
ij for all i, j ∈ V , i) =j, and

zjj = maxk∈K wk
jj for all j ∈ V . Note that the latter enforces at

least one access ring for each hub. Regarding the edge design
variables, we define xe to be 1 if edge e ∈ E is used in an
access network and 0 otherwise, and ye to be 1 if edge e is
used in the backbone network and 0 otherwise.

We also use the following notation. For S ⊆ V , δ(S) is
the set of edges with one endpoint in S, and E(S) is the set
of edges with both endpoints in set S. When S is a singleton,
that is, S = {i}, we use δ(i) instead of δ({i}). For brevity, we
write x(E′) = ∑

e∈E′ xe and y(E′) = ∑
e∈E′ ye for all E′ ⊆ E,

and z(S : T) instead of
∑

i∈S,j∈T zij for all S, T ⊆ V .
The ring/ κ-ring network design problem can be modeled

as follows:

min
∑
i∈V

fizii +
∑
e∈E

aexe +
∑
e∈E

beye (1)

s.t. z(i : V) = 1 ∀i ∈ V , (2)∑
i∈V

wk
ij ≤ q wk

jj ∀j ∈ V , k ∈ K , (3)

zij =
∑
k∈K

wk
ij ∀i ∈ V , j ∈ V \ {i} , (4)

zjj = w1
jj ≥ · · · ≥ wκ

jj j ∈ V , (5)

z00 = 1, (6)

x(δ(i)) = 2
∑
k∈K

wk
ii + 2z(i : V \ {i}) ∀i ∈ V , (7)

y(δ(i)) = 2zii ∀i ∈ V , (8)

zij + y{i,j} ≤ zjj ∀i, j ∈ V : {i, j} ∈ E, (9)

zji + y{i,j} ≤ zii ∀i, j ∈ V : {i, j} ∈ E, (10)

y(δ(S)) ≥ 2z(i : S) ∀S ⊆ V \ {0} , i ∈ S, (11)

x(δ(S)) ≥ 2z(i : V \ S) ∀S ⊂ V , i ∈ S, (12)

x{i,j} + wk
ii′ + wk′

jj′ ≤ 2 ∀ {i, j} ∈ E, i′, j′ ∈ V and

k, k′ ∈ K : (i′ �= j′) or (i′ = j′, i′ �= i, j′ �= j, k �= k′),
(13)

x{i,j} + zii + z(j : V \ {i}) ≤ 2 ∀ {i, j} ∈ E, (14)

x{i,j} + z(i : V \ {j}) + zjj ≤ 2 ∀ {i, j} ∈ E, (15)

wk
ij ∈ {0, 1} ∀i, j ∈ V , k ∈ K , (16)

xe, ye ∈ {0, 1} ∀e ∈ E, (17)

zij ∈ {0, 1} ∀i, j ∈ V . (18)

The objective function (1) is the sum of the cost of locating
hubs and the cost of installing access and backbone edges.
Constraints (2) ensure that each node is either a hub or it is
assigned to another hub node. Constraints (3) are capacity
constraints that limit the number of nodes on each access
ring to q. They also ensure that no node is assigned to a non
existing ring. Constraints (4) and (5) relate the variables z and
w. If a node is assigned to a hub different than itself, then it
is assigned to exactly one of the rings adjacent to that hub.
If there is a ring adjacent to a node, then the node is a hub.
Note that constraints (5) force the assignment of consecutive
labels (1 to κ) to the rings adjacent to a hub, thus breaking
some symmetries. They also make sure that each hub has at
least one access ring adjacent to it. Constraint (6) forces the
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root node to be a hub. Constraints (7) and (8) are degree con-
straints. The number of access edges adjacent to a node is
two if the node is assigned to another hub. If the node is a
hub itself, then it is twice the number of rings adjacent to it.
The number of backbone links adjacent to a node is two if the
node is a hub and it is zero otherwise. If an edge is used in the
backbone network then constraints (9) and (10) ensure that
both endpoints should be hubs. Otherwise, one endpoint can
be assigned to the other only if the latter is a hub. Constraints
(11) impose the 2-edge connectedness of the backbone net-
work. If node i ∈ S is a hub or if it is assigned to a hub node
in set S, then there exists at least one hub in set S and the con-
straint asks for at least two backbone edges on the cut δ(S)

since the root is in V \S. Similarly, constraints (12) ensure the
2-edge connectedness of the access networks. If node i ∈ S is
allocated to a hub node in V \ S then there should be at least
two access links between S and V \ S. By imposing 2-edge
connectedness together with the degree constraints, we make
sure that the networks are rings. Constraints (13)–(15) ensure
that if the access link {i, j} is used then i and j are allocated to
the same ring adjacent to the same hub. Finally, constraints
(16)–(18) are variable restrictions.

3. VALID INEQUALITIES

Let X be the feasible set of model (2)–(18). In this section,
we propose several families of valid inequalities for X that
generalize other inequalities given in Rodríguez-Martín et al.
[25] for the ring/ring network design problem.

The valid inequalities of the first family guarantee that an
access edge cannot be used if its endpoints are in two different
rings.

Theorem 1. Let {i, j} ∈ E and Kl ⊆ K for all l ∈ V \ {i, j}.
The inequality

x{i,j} ≤
∑

l∈V\{i,j}

⎛
⎝∑

k∈Kl

wk
il +

∑
k∈K\Kl

wk
jl

⎞
⎠ + zij + zji (19)

is valid for X . In addition, these inequalities dominate
constraints (13), and constraints (14) and (15) are special
cases.

Proof. Suppose that
∑

l∈V\{i,j}(
∑

k∈Kl
wk

il+
∑

k∈K\Kl
wk

jl)+
zij + zji = 0. We prove that x{i,j} = 0 in the three possible
cases:

1. zii = 1. In this case, as zji = 0, we know that j is not
assigned to hub i and so we cannot use edge {i, j}.

2. zjj = 1. Similar to the previous case.
3. zii = zjj = 0. Then, there exists l ∈ V \ {i, j} such that∑

k∈K\Kl
wk

il = 1 and l′ ∈ V\{i, j} such that
∑

k∈Kl′ wk
jl′ =

1. If l and l′ are different, then nodes i and j are assigned
to different hubs and edge {i, j} cannot be used. If l and
l′ are the same, then i and j are assigned to two different
rings adjacent to node l and again we cannot use edge
{i, j}.

This proves the validity of the inequality.
Next, we prove that inequality (19) is stronger than (13).

To see this, we first rewrite (13) for i′, j′ ∈ V , k, k′ ∈ K such
that i′ �= j′, or i′ = j′, i′ �= i, j′ �= j, and k �= k′, as

x{i,j} ≤ z(i : V \ {
i′
}
) +

∑
k̂∈K\{k}

wk̂
ii′

+ z(j : V \ {
j′
}
) +

∑
k̂∈K\{k′}

wk̂
jj′ . (20)

Now, consider inequality (19) for Ki′ = K \ {k}, Kj′ = {
k′}

and Kl = K for l ∈ V \ {
i, j, i′j′

}
. We obtain

x{i,j} ≤ z(i : V \ {
i, j, i′, j′

}
) +

∑
k̂∈K\{k}

wk̂
ii′

+ wk
ji′ + wk′

ij′ +
∑

k̂∈K\{k′}
wk̂

jj′ + zij + zji. (21)

Now as

z(i : V \ {
i, j, i′, j′

}
) ≤ z(i : V \ {

i′, j′, j
}
),

wk
ji′ +

∑
k̂∈K\{k′}

wk̂
jj′ + zji ≤ z(j : V \ {

j′
}
) +

∑
k̂∈K\{k′}

wk̂
jj′ ,

∑
k̂∈K\{k}

wk̂
ii′ + wk′

ij′ + zij ≤
∑

k̂∈K\{k}
wk̂

ii′ + zij′ + zij,

the right-hand side of (21) is not more than the right-hand side
of (20). Hence inequalities (19) dominate constraints (13).

Finally, we prove that constraints (14) and (15) are special
cases of inequalities (19). Let {i, j} ∈ E. Using constraints
(2) for nodes i and j, constraint (14) can be rewritten as

x{i,j} ≤ z(i : V \ {i, j}) + zij + zji.

This is inequality (19) for Kl = K for all l ∈ V \ {i, j}. The
proof for constraints (15) can be done similarly. ■

The second family of valid inequalities strengthens the
connectivity constraints (12) for the access networks.

Theorem 2. Let S ⊂ V be a non-empty set. Let
(S1, . . . , Sm1) be a partition of S × K and (T1, . . . , Tm2) be
a partition of (V \S)×K. Consider i1, . . . , im2 distinct nodes
in S and j1, . . . , jm1 distinct nodes in V \ S. The inequality

x(δ(S)) ≥ 2

⎛
⎝ m2∑

l=1

∑
(u,k)∈Tl

wk
ilu +

m1∑
l=1

∑
(u,k)∈Sl

wk
jlu

⎞
⎠ (22)

is valid for X . Inequality (22) with m2 = 1 and i1 = i
dominates constraint (12) for any i in S.

Proof. As nodes i1, . . . , im2 and j1, . . . , jm1 are all dis-
tinct and sets S1, . . . , Sm1 and T1, . . . , Tm2 are all disjoint,∑m2

l=1

∑
(u,k)∈Tl

wk
ilu

+ ∑m1

l=1

∑
(u,k)∈Sl

wk
jlu

is a lower bound
on the number of rings that cross the cut δ(S). As each ring
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uses at least two edges in δ(S), the inequality is satisfied by
all feasible solutions.

If we let m2 = 1 and i1 = i, then inequality (22) becomes

x(δ(S)) ≥ 2

⎛
⎝ ∑

u∈V\S

∑
k∈K

wk
iu +

m1∑
l=1

∑
(u,k)∈Sl

wk
jlu

⎞
⎠ .

The right-hand side of this inequality is equal to 2(z(i :
V \ S) + ∑m1

l=1

∑
(u,k)∈Sl

wk
jlu

) and is greater than or equal
to 2z(i : V \ S). Hence these inequalities dominate con-
straints (12). ■

Finally, the third family of inequalities exploits the capac-
ity limitation as it is done in the vehicle routing problem.

Theorem 3. Consider a nonempty set S ⊂ V, a partition
(S1, . . . , Sm) of S×K and distinct nodes j1, . . . , jm be in V \S.
Inequalities

x(δ(S)) ≥ 2

(⌈ |S|
q − 1

⌉
−

∑
i∈S

zii

−
∑
i∈S

∑
k∈K

wk
ii +

m∑
l=1

∑
(u,k)∈Sl

wk
jlu

⎞
⎠ (23)

and

x(δ(S)) ≥ 2

(⌈ |S|
q − 1

⌉
−

∑
i∈S zii

q − 1
− 1

−
∑
i∈S

∑
k∈K

wk
ii +

m∑
l=1

∑
(u,k)∈Sl

wk
jlu

⎞
⎠ (24)

are valid.

Proof. When there are
∑

i∈S zii hubs in set S, we need

at least
⌈ |S|−∑

i∈S zii

q−1

⌉
rings to cover the nodes in set S. As

there are
∑

i∈S

∑
k∈K wk

ii rings adjacent to hubs in set S, the

remaining
⌈ |S|−∑

i∈S zii

q−1

⌉
− ∑

i∈S

∑
k∈K wk

ii rings are adjacent

to hubs in set V \S. There are also at least
∑m

l=1
∑

(u,k)∈Sl
wk

jlu
distinct rings adjacent to hubs in set S serving nodes in V \S.

Hence overall at least 2
( ⌈ |S|−∑

i∈S zii

q−1

⌉
− ∑

i∈S

∑
k∈K wk

ii +∑m
l=1

∑
(u,k)∈Sl

wk
jlu

)
access edges cross the cut δ(S). Finally,⌈ |S|−∑

i∈S zii

q−1

⌉
≥

⌈ |S|
q−1

⌉
−

⌈∑
i∈S zii

q−1

⌉
≥

⌈ |S|
q−1

⌉
− ∑

i∈S zii.

Also,
⌈ |S|

q−1

⌉
−

⌈∑
i∈S zii

q−1

⌉
≥

⌈ |S|
q−1

⌉
−

∑
i∈S zii

q−1 − 1. ■

4. BRANCH-AND-CUT ALGORITHM

As the formulation we presented for the ring/κ-rings
problem involves an exponential number of constraints, we
propose a branch-and-cut algorithm to solve it. In addi-
tion, we strengthen the Mixed Integer Programming (MIP)
model with the valid inequalities presented in the previous

section. The branch-and-cut approach for integer program-
ming problems combines a branch-and-bound method for
exploring a decision tree and a cutting plane method for com-
puting bounds. At each node of the search tree, the cutting
plane method improves a linear relaxation of the problem.
When this is not further possible, the branch-and-bound algo-
rithm proceeds. We outline next the main ingredients of the
algorithm.

4.1. Initialization

To start the optimization, we initialize the linear program
(LP) model by removing the exponential number of con-
straints (11) and (12) and the dominated constraints (13),
and relaxing the integrality constraints on the variables of
the original formulation. We keep constraints (14) and (15)
for computational reasons, as they speed up the conver-
gence of the method. Hence, the initial LP model is (1)–(10),
(14)–(15), and the continuous relaxation of (16)–(18).

4.2. Cutting Plane Phase

Given an optimal LP solution (x∗, y∗, z∗, w∗) of the relaxed
ring/ κ-rings problem, the separation routines for constraints
(19), (11), and (12) are applied, in this sequence. The cut-
ting plane phase is performed each time an integer solution
is found, to check whether it is feasible, and each 10 branch-
and-cut nodes. Moreover, the number of violated cuts of each
family added to the model is limited to 20, and the total num-
ber of cuts added in each cut generation step is limited to 75.
These limits are set to improve the general performance of
the algorithm, both in terms of consumed memory (size of the
subproblems) and time (computational cost of the separation
procedures).

Inequalities (19) can be separated in polynomial time, as
stated in the following result.

Proposition 1. Inequalities (19) can be separated in
O(n3κ) time.

Proof. It suffices to observe that for a given edge {i, j} ∈
E, the right-hand side of inequality (19) is minimized by

letting Kl =
{

k ∈ K : w∗k
il ≤ w∗k

jl

}
for all l ∈ V \ {i, j} . ■

The subtour elimination constraints for the Traveling
Salesman Problem (TSP) can be separated in polynomial
time by solving a max-flow/min-cut problem on an appro-
priately defined support graph. We follow the same idea to
devise exact separation procedures for inequalities (11) and
(12). The detailed algorithms are given in [25].

Finally, constraints (22), (23), and (24) are not directly
separated, but their violation is checked each time a violated
inequality (12) is found. More precisely, for a given S ⊂ V ,
the violation test for (22) is done by checking whether

x∗(δ(S)) < 2
∑
k∈K

⎛
⎝ ∑

u∈V\S

max
i∈S

w∗k
iu +

∑
u∈S

max
j∈V\S

w∗k
ju

⎞
⎠ .
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TABLE 1. Results for the ring/1-ring network design problem

Class I Class II

fj n q opt %-gap cpu nodes nCuts opt %-gap cpu nodes nCuts

[1, 500] 15 �3n/4� 910 0.00 0.37 0 122 1,462 0.00 0.25 0 158
�n/2� 913 0.25 0.36 7 127 1,466 0.59 0.20 8 144
�n/4� 1,105 4.90 1.33 60 349 1,792 0.85 2.15 7 393

20 �3n/4� 1,216 0.29 0.78 9 213 1,323 1.14 0.97 7 315
�n/2� 1,216 1.15 0.14 12 98 1,323 0.98 2.68 92 516
�n/4� 1,359 4.13 6.72 205 715 1,713 6.04 102.95 753 2,314

30 �3n/4� 979 0.00 0.75 0 260 1,321 0.45 1.11 5 362
�n/2� 979 0.06 1.06 18 284 1,336 0.11 2.20 4 330
�n/4� 1,139 3.60 58.06 863 1,431 1,653 6.89 490.37 1,208 6,137

40 �3n/4� 737 0.77 2.42 33 409 1,435 0.79 15.29 145 1,184
�n/2� 737 0.77 3.26 29 285 1,438 0.20 2.98 7 478
�n/4� 852 2.67 2,668.97 7,122 6,658 1,715 5.28 2,994.88 2,318 11,122

[500, 1000] 15 �3n/4� 2,591 0.00 0.11 0 59 2,752 0.00 0.03 0 40
�n/2� 2,591 0.00 0.09 0 76 2,752 0.00 0.02 0 48
�n/4� 3,284 0.38 0.30 3 263 3,581 3.93 2.59 52 660

20 �3n/4� 2,706 0.00 0.20 0 122 2,762 0.00 0.14 0 73
�n/2� 2,706 0.16 0.44 6 178 2,806 1.22 5.09 201 750
�n/4� 3,497 0.97 10.81 139 881 3,775 2.67 49.84 485 2,264

30 �3n/4� 2,560 0.00 0.47 0 129 2,735 0.00 0.83 0 349
�n/2� 2,560 0.00 0.25 0 129 2,763 0.37 7.60 101 840
�n/4� 3,262 5.33 70.64 725 2,261 3,564 5.54 446.88 924 5,917

40 �3n/4� 2,464 0.01 1.59 4 306 2,518 0.89 6.60 130 792
�n/2� 2,464 0.02 1.68 4 297 2,536 1.03 103.13 849 2,582
�n/4� 3,207 1.79 513.66 2,118 3,853 3,400 3.54 4,227.63 4,676 11,049

[1200, 1700] 15 �3n/4� 4,510 0.00 0.27 0 140 5,062 0.04 0.23 3 137
�n/2� 4,513 0.07 0.28 5 133 5,066 0.08 0.20 5 140
�n/4� 5,905 5.13 8.17 178 1,241 6,592 0.20 0.90 9 386

20 �3n/4� 4,816 0.00 1.90 0 227 4,923 0.34 1.11 12 405
�n/2� 4,816 0.00 0.27 0 96 4,923 0.26 2.57 72 700
�n/4� 6,159 0.91 15.90 383 1,102 6,513 1.57 133.10 1,157 2,342

30 �3n/4� 4,579 0.00 0.51 0 226 4,677 0.35 1.59 26 408
�n/2� 4,579 0.22 1.36 41 328 4,682 0.92 4.01 105 831
�n/4� 5,939 0.44 79.26 1,106 1,707 6,215 2.39 1,337.43 2,685 7,260

40 �3n/4� 4,337 0.14 1.92 37 427 5,035 0.23 13.43 110 1,050
�n/2� 4,337 0.14 4.45 64 361 5,038 0.08 2.31 6 486
�n/4� 5,652 0.41 2,692.14 8,169 6,377 6,515 1.39 2,573.95 2,842 11,007

If so, we have found a violated constraint (22) for the given
implicit partition.

Similarly, for a given S ⊂ V , the violation tests for (23)
and (24) consist in checking, respectively, whether

x∗(δ(S)) < 2
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4.3. Branching Strategy

To select the candidate variables for branching, we pri-
oritize the set of variables zii. The reason is that setting
zii = 0 or zii = 1 fixes several other variables to 0 and 1
as well. Among the candidate variables, we branch on the
one whose value in the linear relaxation solution is furthest
from being an integer, that is, is closest to 0.5. We branch on
the other variables only when all variables zii’s are integer,
and in that case we use the strong branching rule incorporated
in CPLEX to select the next branch-and-bound tree node to
explore.

5. COMPUTATIONAL RESULTS

The branch-and-cut algorithm was implemented in
C++ and run on a personal computer with an Intel Core i7
CPU at 3.4 GHz and 16 GB of RAM. We used CPLEX 12.5 as
mixed integer linear programming solver, keeping the default
settings except for the branching rule.
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TABLE 2. Results for the ring/2-rings network design problem

Class I Class II

fj n q opt %-gap cpu nodes nCuts opt %-gap cpu nodes nCuts

[1, 500] 15 �3n/4� 910 0.00 0.25 0 97 1,462 0.00 0.17 0 45
�n/2� 913 0.00 0.19 0 77 1,466 0.00 1.64 0 137
�n/4� 963 3.76 1.84 79 239 1,538 2.59 2.07 35 230

20 �3n/4� 1,216 1.18 0.34 24 129 1,323 1.35 0.95 28 202
�n/2� 1,216 0.00 0.70 0 162 1,323 1.03 1.47 10 214
�n/4� 1,301 4.53 42.59 594 1,272 1,502 5.72 104.12 1,533 1,807

30 �3n/4� 979 0.00 0.36 0 44 1,321 0.58 1.23 6 221
�n/2� 979 0.00 0.55 0 100 1,336 1.62 7.86 91 588
�n/4� 1,026 3.45 680.43 4,888 2,881 1,480 6.43 (0.46) t.l. 16,583 7,701

40 �3n/4� 737 0.81 2.07 32 326 1,435 1.39 175.49 2,213 1,817
�n/2� 737 0.81 6.16 79 436 1,438 0.66 83.57 400 1,975
�n/4� 758 2.94 470.20 1,593 2,817 1,655 10.55 (8.16) t.l. 2,514 14,870

[500, 1000] 15 �3n/4� 2,591 0.00 0.08 0 25 2,752 0.00 0.06 0 27
�n/2� 2,591 0.00 0.06 0 25 2,752 0.00 0.05 0 18
�n/4� 2,721 2.61 4.59 277 412 2,799 0.32 0.33 12 106

20 �3n/4� 2,706 0.46 0.27 18 84 2,762 0.00 0.14 0 30
�n/2� 2,706 0.14 0.72 12 158 2,806 1.56 4.91 205 431
�n/4� 2,799 2.22 11.89 272 606 2,959 3.04 114.41 2,204 1,674

30 �3n/4� 2,560 0.00 0.73 0 97 2,735 0.00 0.87 0 201
�n/2� 2,560 0.00 0.59 0 86 2,763 0.54 21.42 226 1,026
�n/4� 2,581 0.35 31.22 244 976 2,929 3.97 (1.37) t.l. 13,333 7,646

40 �3n/4� 2,464 0.04 5.82 50 330 2,518 1.06 132.82 1,333 1,694
�n/2� 2,464 0.03 5.01 20 317 2,536 1.04 175.14 1,581 1,546
�n/4� 2,519 1.50 386.91 1,558 2,733 2,744 6.15 (4.38) t.l. 5,001 11,717

[1200, 1700] 15 �3n/4� 4,510 0.00 0.19 0 85 5,062 0.00 1.42 0 38
�n/2� 4,513 0.00 1.50 0 80 5,066 0.08 0.30 9 79
�n/4� 4,563 0.76 1.83 81 291 5,138 0.65 1.76 44 289

20 �3n/4� 4,816 0.30 0.25 23 100 4,923 0.35 1.51 17 219
�n/2� 4,816 0.28 0.30 16 152 4,923 0.39 1.89 41 300
�n/4� 4,901 0.99 9.72 161 847 5,102 1.68 201.83 2,300 2,703

30 �3n/4� 4,579 0.00 0.34 0 40 4,677 0.38 7.69 188 531
�n/2� 4,579 0.00 0.41 0 65 4,682 0.02 1.87 4 307
�n/4� 4,626 0.77 896.48 6,724 3,469 4,849 1.54 868.75 3,552 4,478

40 �3n/4� 4,337 0.14 2.11 39 297 5,035 0.39 239.49 2,307 2,032
�n/2� 4,337 0.16 18.16 141 686 5,038 0.19 88.17 487 2,077
�n/4� 4,358 0.52 1,035.02 2,901 3,912 5,171 2.02 (0.61) t.l. 8,394 12,056

We tested the algorithm on two data sets used in [25]
consisting of 36 instances each, with a number of nodes
ranging from 15 to 40. In the Class I instances, edge costs
cij are randomly generated in [1, 100]. In the instances of
the Class II node coordinates are randomly generated in
[0, 100] × [0, 100], and the edge costs cij are computed as
the Euclidean distance between the points i and j. In both
types of instances, we define the access and backbone link
costs as ae = ce and be = 4ce, respectively. That is, the cost
of installing a backbone link is four times higher than the
cost of installing an access link on the same edge. The hub
capacity q takes values in {�3n/4� , �n/2� , �n/4�}, thus going
from a lax to a tight value. For each combination of num-
ber of nodes and capacity, we tried three different settings
for the hub fixed costs, randomly generating fj in [1, 500],
[500, 1000] or [1200, 1700].

Tables 1–2, and 3 show the results of our experiments
with the branch-and-cut algorithm for the three particular
cases of the ring/ κ-ring problem where κ = 1, κ = 2,
and κ = 3, respectively. For each instance, we report in the

different columns the range for the hub fixed costs (fj), the
number of nodes (n), the hub capacity (q), the optimal value
(opt), the duality gap, that is, the percentage gap between the
optimal value and the lower bound at the end of the root node
(%-gap), the total computation time in seconds (cpu), the
number of nodes explored in the branch-and-cut tree (nodes),
and the total number of cuts generated (nCuts). We imposed
a time limit of two hours. If the time limit is reached before
proving optimality, we write “t.l.” in column cpu, use the
objective function value of the best solution found instead
of the optimal value to compute the duality gap, and report
in brackets the percentage gap between the value of the best
solution found and the lower bound at the end of the 2 hours.

All the instances in Table 1 are solved to optimality within
the time limit. The instances of Class II, with Euclidean dis-
tances, seem to be more difficult. In fact, 11 out of the 36
instances of Class I are solved without branching (i.e., at the
root node of the branch-and-cut tree), while that figure goes
down to 5 for Class II. The hardest instances are those with 40
nodes and the tightest capacity (q = �n/4�). When looking
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TABLE 3. Results for the ring/3-rings network design problem

Class I instances Class II instances

fj n q opt %-gap cpu nodes nCuts opt %-gap cpu nodes nCuts

[1, 500] 15 �3n/4� 910 0.00 0.28 0 97 1,462 0.00 0.33 0 80
�n/2� 913 0.30 0.33 5 89 1,466 0.00 0.30 0 80
�n/4� 963 4.09 5.09 113 612 1,538 1.97 7.83 97 649

20 �3n/4� 1,216 0.33 0.36 4 103 1,323 1.25 2.95 17 216
�n/2� 1,216 0.19 0.75 4 169 1,323 1.68 4.96 105 515
�n/4� 1,301 4.79 260.23 1,755 3,607 1,501 7.85 382.97 3,357 3,574

30 �3n/4� 979 0.00 0.34 0 52 1,321 1.74 4.09 47 395
�n/2� 979 0.10 2.45 24 417 1,336 0.85 45.15 174 1,764
�n/4� 1,026 3.16 1,852.54 5,730 5,875 1,463 6.25 (0.77) t.l. 7,127 11,939

40 �3n/4� 737 0.86 3.23 59 530 1,435 1.39 468.02 2,279 2,957
�n/2� 737 0.85 4.85 53 364 1,438 0.83 83.60 532 992
�n/4� 772 4.72 (3.51) t.l. 3,531 10,421 1,798 18.88 (17.47) t.l. 1,202 16,913

[500, 1000] 15 �3n/4� 2,591 0.00 0.11 0 25 2,752 0.00 0.11 0 27
�n/2� 2,591 0.00 0.12 0 27 2,752 0.00 0.05 0 36
�n/4� 2,721 2.69 10.34 325 610 2,799 0.29 2.89 18 50

20 �3n/4� 2,706 0.14 0.33 11 88 2,762 0.00 0.09 0 35
�n/2� 2,706 0.00 0.42 0 142 2,806 1.55 10.76 294 713
�n/4� 2,799 2.56 81.96 1,375 1,502 2,959 3.36 1,111.90 6,693 4,617

30 �3n/4� 2,560 0.00 0.81 0 101 2,735 0.00 0.72 0 150
�n/2� 2,560 0.00 0.59 0 97 2,763 0.54 20.98 269 1,020
�n/4� 2,581 0.36 151.49 271 3,543 2,939 4.17 (2.27) t.l. 7,858 10,062

40 �3n/4� 2,464 0.04 2.98 6 173 2,518 1.06 60.64 745 1,512
�n/2� 2,464 0.08 4.57 28 310 2,536 1.06 221.83 1,384 2,722
�n/4� 2,519 1.54 (0.88) t.l. 5,995 9,261 2,815 8.59 (7.46) t.l. 1,897 14,232

[1200, 1700] 15 �3n/4� 4,510 0.00 0.22 0 86 5,062 0.00 0.19 0 76
�n/2� 4,513 0.12 0.33 14 82 5,066 0.09 0.28 7 92
�n/4� 4,563 0.78 2.89 101 499 5,138 0.94 2.39 51 323

20 �3n/4� 4,816 0.06 0.53 4 160 4,923 0.39 2.07 18 317
�n/2� 4,816 0.09 1.31 7 258 4,923 0.45 5.83 113 713
�n/4� 4,901 1.15 38.42 327 1,637 5,101 1.98 2,491.74 12,669 6,599

30 �3n/4� 4,579 0.00 0.94 0 143 4,677 0.38 8.89 198 643
�n/2� 4,579 0.00 0.64 0 121 4,682 0.00 1.92 0 360
�n/4� 4,626 0.80 3,199.47 9,375 6,484 4,852 2.00 (0.61) t.l. 11,722 10,474

40 �3n/4� 4,337 0.14 6.52 85 627 5,035 0.40 745.83 5,178 2,605
�n/2� 4,337 0.15 7.33 75 743 5,038 0.15 38.84 167 1,518
�n/4� 4,358 0.52 (0.12) t.l. 7,425 7,274 5,151 1.39 (0.42) t.l. 7,745 11,406

at a given node size, it is also clear that the instances with
the most restrictive capacity are the hardest ones. In fact,
the duality gaps are usually below 1% for the instances with
larger capacities, and the computation times are also much
smaller. Regarding the fixed costs for hubs, the duality gaps
tend to decrease as they increase, this being more noticeable
in Class II.

Table 2 shows the results for the ring/2-rings problem.
In this case, the branch-and-cut algorithm fails to solve five
instances of Class II within the time limit of 2 hours. They are
all cases with 30 and 40 nodes and with the tightest capacity.
On the contrary, the algorithm finds the optimal solution of
all the instances with random distances (Class I). A total of
13 instances out of 36 in Class I and 7 in Class II are solved
at the root node, and the duality gaps are again usually below
or around 1% except when the capacity is the tightest.

The results for the ring/3-rings problem are given in Table
3. The algorithm does not manage to prove optimality on the
three instances of Class I with 40 nodes and q = �n/4�, and
on the six instances of Class II with that capacity and 30 and

TABLE 4. Average number of cuts added when solving the ring/2-rings
problem

fj (11) (12) (19) (22) (23)

Class I [1, 500] 11.17 37.25 621.67 37.25 7.67
[500, 1000] 1.42 26.17 428.83 26.17 4.83
[1200, 1700] 10.92 56.75 699.75 56.75 11.17

Class II [1, 500] 190.17 186.17 1,872.58 186.17 48.83
[500, 1000] 70.50 261.08 1,511.67 261.08 72.00
[1200, 1700] 39.33 219.50 1,559.67 219.50 54.42

40 nodes. However, optimal solutions are obtained for all the
other instances in few minutes. It is interesting to observe
that, on our test bed, the optimal solutions of the ring/3-rings
problem coincide in most of cases with the optimal solutions
of the ring/2-rings problem. The exceptions are two instances
of Class II with n = 20 and the tightest capacity.

Table 4 shows the average number of cuts of each type gen-
erated during the computation for the problems with κ = 2.
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TABLE 5. Performance of the basics and complete branch-and-cut algorithms on the ring/2-rings problem

basic1 B&C basic2 B&C basic3 B&C Complete B&C

fj n q %-gap cpu %-gap cpu %-gap cpu %-gap cpu

Class I [1, 500] 15 �3n/4� 0.98 4.48 0.00 0.20 0.00 0.25 0.00 0.25
�n/2� 1.44 6.08 0.00 0.34 0.00 0.20 0.00 0.19
�n/4� 5.01 150.12 3.76 2.78 3.76 4.99 3.76 1.84

20 �3n/4� 1.39 22.74 1.18 0.37 1.18 0.28 1.18 0.34
�n/2� 0.32 15.87 0.11 0.23 0.00 0.67 0.00 0.70
�n/4� 5.01 1,042.98 4.53 72.54 4.53 55.55 4.53 42.59

[500, 1000] 15 �3n/4� 0.00 2.87 0.00 0.09 0.00 0.11 0.00 0.08
�n/2� 0.00 3.67 0.00 0.06 0.00 0.08 0.00 0.06
�n/4� 3.12 249.24 2.78 5.34 2.61 4.65 2.61 4.59

20 �3n/4� 0.50 14.54 0.46 0.28 0.46 0.25 0.46 0.27
�n/2� 0.30 12.98 0.21 0.44 0.14 0.72 0.14 0.72
�n/4� 2.82 341.35 2.22 4.37 2.22 11.62 2.22 11.89

[1200, 1700] 15 �3n/4� 0.19 5.57 0.00 0.20 0.00 0.22 0.00 0.19
�n/2� 0.10 8.83 0.06 0.27 0.00 2.22 0.00 1.50
�n/4� 1.11 44.01 0.76 1.54 0.76 1.90 0.76 1.83

20 �3n/4� 0.32 25.19 0.30 0.28 0.30 0.37 0.30 0.25
�n/2� 0.29 18.6 0.28 0.42 0.28 0.31 0.28 0.30
�n/4� 1.01 1,248.91 1.01 6.04 0.99 9.42 0.99 9.72

Class II [1, 500] 15 �3n/4� 0.00 2.89 0.00 0.11 0.00 1.44 0.00 0.17
�n/2� 0.85 4.59 0.24 0.36 0.24 0.36 0.00 1.64
�n/4� 2.59 25.83 2.59 1.06 2.59 2.57 2.59 2.07

20 �3n/4� 1.65 15.85 1.47 1.97 1.40 1.44 1.35 0.95
�n/2� 1.80 29.92 1.57 1.47 1.22 2.31 1.03 1.47
�n/4� 16.75 (13.18) t.l. 10.48 (0.92) t.l. 10.38 2,505.27 5.72 104.12

[500, 1000] 15 �3n/4� 0.00 1.42 0.00 0.05 0.00 0.05 0.00 0.06
�n/2� 0.00 1.08 0.00 0.05 0.00 0.06 0.00 0.05
�n/4� 0.32 6.46 0.32 1.48 0.32 0.31 0.32 0.33

20 �3n/4� 0.00 21.79 0.00 0.08 0.00 0.19 0.00 0.14
�n/2� 1.56 97.97 1.56 5.48 1.56 4.96 1.56 4.91
�n/4� 5.92 (3.10) t.l. 5.05 991.20 5.00 520.06 3.04 114.41

[1200, 1700] 15 �3n/4� 0.00 6.66 0.00 0.16 0.00 0.16 0.00 1.42
�n/2� 0.27 4.27 0.16 0.25 0.15 0.25 0.08 0.30
�n/4� 0.81 53.74 0.65 1.00 0.65 1.95 0.65 1.76

20 �3n/4� 0.48 19.84 0.38 0.81 0.36 0.78 0.35 1.51
�n/2� 0.50 73.35 0.46 2.57 0.46 1.39 0.39 1.89
�n/4� 3.54 (1.61) t.l. 3.04 1,143.64 3.03 548.80 1.68 201.83

We tested several different orders for adding violated con-
straints (12), (22), (23), and (24) to the model, as they are
all found in the separation routine for (12). We eventually
decided not to use inequalities (24) in the final version of
the branch-and-cut algorithm, as they did not seem to add
anything computationally with respect to constraints (23),
independently of their order, on our instances, and chose to
add (23), (12), and (22) in that sequence. For each hub fixed
cost setting, we report in a single line the data correspond-
ing to the 12 instances with that setting. The largest number
of violated cuts generated corresponds to the valid inequal-
ities (19). This may be explained by the fact that they are
separated at the beginning of the cutting plane phase and that
they replace constraints (13), which are necessary to define
the problem. In the second place come inequalities (12) and
(22). Their numbers coincide because we check the violation
of constraints (22) inside the separation routine for (12), as
said before, and we are certain to find a violated constraint
of the first type when the latter is violated. However, this
does not happen with constraints (23). Violated cuts of type

(11) appear too, mainly in the first nodes of the branch-and-
cut. Note also that the number of violated cuts found when
solving the instances of Class II is larger than the number
of violated cuts generated when solving instances of Class
I. This again indicates the greater difficulty of the instances
with Euclidean distances.

Finally, to evaluate the effect of the valid inequalities used
in our branch-and-cut approach, we performed an experiment
consisting of comparing the complete algorithm described
in Section 4 with three other versions of it. The first ver-
sion (basic1 B&C) is a basic algorithm that uses only the
constraints (1)–(18) in the model. All constraints are incor-
porated to the initial LP, except the connectedness constrains
(11) and (12) which are separated. In the second version
(basic2 B&C), constraints (13) are removed from the initial
LP, and instead the stronger constraints (19) are separated.
The third version of the algorithm (basic3 B&C) incorpo-
rates the violation checking test for the valid inequalities
(22). Table 5 displays the results obtained for the small-
est instances, those with 15 and 20 nodes, when solving
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the ring/2-rings problem. We report, for each algorithm, the
gap of the linear programming relaxation at the end of the
root node and the total computing time. It is clear from the
results that the separation of the valid inequalities presented in
Section 3 not only reduces the gap, but significantly reduces
the computation times. In fact, the first basic branch-and-cut
algorithm is unable to solve three of the instances with 20
nodes within the time limit of 2 hours, and takes substan-
tially more time to solve each of the other instances than the
complete branch-and-cut algorithm.

6. CONCLUSIONS

In this article, we addressed a two-level network design
problem with ring topology in both levels of the network.
This structure ensures network survivability, understood as
protection against single-edge failures. We imposed that there
is at least one and at most κ access ring networks adjacent
to each hub. The number of nodes in each access ring is also
limited. Solving this complex optimization problem implies
to chose the location of the hubs, to decide on the assignment
of the other nodes to the hubs, and to design the backbone
and access rings.

We present a mathematical model and valid inequalities
for the problem. Some of the inequalities generalize others
given in the literature for related problems. We describe an
exact branch-and-cut algorithm, and we show computational
results on two classes of instances with up to 40 nodes and
different features. The proposed algorithm is able to solve to
optimality most of the instances in less than 15 min, which is
a quite reasonable time.

The formulation and valid inequalities presented here may
also be used for problems where rings are used for rout-
ing vehicles. We are interested, as future work, in extending
these results to solve problems with multiple depots, cus-
tomers with arbitrary demands, and vehicles with different
capacities.
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