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Motivated by the chaos suppression methods based on stabilizing an unstable periodic orbit, we

study the stability of synchronized periodic orbits of coupled map systems when the period of the

orbit is the same as the delay in the information transmission between coupled units. We show that

the stability region of a synchronized periodic orbit is determined by the Floquet multiplier of the

periodic orbit for the uncoupled map, the coupling constant, the smallest and the largest Laplacian

eigenvalue of the adjacency matrix. We prove that the stabilization of an unstable s-periodic orbit

via coupling with delay s is possible only when the Floquet multiplier of the orbit is negative and

the connection structure is not bipartite. For a given coupling structure, it is possible to find the

values of the coupling strength that stabilizes unstable periodic orbits. The most suitable

connection topology for stabilization is found to be the all-to-all coupling. On the other hand, a

negative coupling constant may lead to destabilization of s-periodic orbits that are stable for the

uncoupled map. We provide examples of coupled logistic maps demonstrating the stabilization and

destabilization of synchronized s-periodic orbits as well as chaos suppression via stabilization of a

synchronized s-periodic orbit. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4961707]

An efficient approach in chaos suppression is to stabilize
an unstable periodic orbit of the system via feedback.1 It
is well known that setting a delay in the feedback may
give rise to stabilization of an unstable periodic orbit
with period equal to the delay.2–4 On the other hand,
chaos suppression in a network of coupled systems is an
active research area.5–9 Combining these ideas, one can
aim to find a method for chaos suppression in coupled
systems based on adjusting the coupling delay. Motivated
by this aim, we consider diffusively coupled discrete-time
dynamical systems and perform a linear stability analysis
for a synchronized periodic orbit whose period is equal
to the delay in the information transmission between
coupled units. The linearized dynamics can be decom-
posed into independent modes determined by the
Laplacian eigenvectors of the connection structure. This
implies that the connection structure has an affect on
the stability of such regular behaviors only through its
Laplacian eigenvalues. For a particular case, namely,
Kaneko-type10,11 coupled maps with delay s, stability of
the synchronized s-periodic orbits have been analyzed. A
detailed investigation of the parameter region shows that
the stability region of the synchronized periodic orbit is
determined by the Floquet multiplier of the orbit for the
uncoupled system, the coupling strength of connections,
and the smallest and the largest Laplacian eigenvalues.

The parameter regions are obtained where a synchro-
nized s-periodic orbit is stable. We construct an example
where identical chaotic maps synchronize on a s-periodic
orbit after being coupled with a coupling delay s.

I. INTRODUCTION

Stabilization of unstable periodic orbits of maps appears

in different areas such as delayed feedback chaos control2–4

and chaos suppression in coupled systems.5–9 Combining

ideas from these areas, we aim to investigate stability proper-

ties of a highly regular behavior, namely, a synchronized

periodic orbit, of a coupled map system where the coupling

delay is equal to the period of the orbit. We consider diffu-

sively coupled discrete-time dynamical systems with cou-

pling delay. We show (in Remark 1) that, for such systems,

coupling delay is necessary for stabilization of a synchro-

nized periodic orbit that is unstable for the uncoupled map.

Similarly to the delayed feedback chaos control methods,2–4

we consider periodic orbits whose period is equal to the

delay; this time in the communication between different

units.

It is well-known that scalar discrete-time dynamical

systems

xðtþ 1Þ ¼ f ðxðtÞÞ; x 2 R; t 2 N; (1)

given by the iterations of the map f : R ! R, can have a rich

range of solutions, including periodic orbits cðtÞ ¼ ptðmodsÞ.
We consider networks of n such systems that are evolving
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under pairwise diffusive interactions subject to an information

transmission delay of s 2 N

xi tþ 1ð Þ ¼ f xi tð Þð Þ þ 1

di

Xn

j¼1

aijg xi tð Þ; xj t� sð Þ
� �

;

xi 2 R; i ¼ 1;…; n: (2)

We assume that both f and g are continuously differentiable,

and the interaction function g : R2 ! R satisfies the gener-

alized diffusion condition

gðx; xÞ ¼ 0; 8x 2 R: (3)

The quantity aij � 0 denotes the weight of the coupling

between units i and j, and di ¼
Pn

j¼1 aij denotes the sum of

the weights of the connections to unit i. We assume that the

coupling is symmetric (aij¼ aji 8i; j), the network is con-

nected (otherwise one can consider connected components

separately), and there are no isolated nodes, so that di > 0

8i. A special case of (2) that goes by the name coupled map
lattice12 has been studied by many authors13–17 and is

described by the equations

xi tþ 1ð Þ ¼ f xi tð Þð Þ þ e
di

Xn

j¼1

aijðf ðxjðt� sÞÞ

� f ðxiðtÞÞÞ; i ¼ 1;…; n; (4)

where e is the coupling constant, and the connection weights

are binary, i.e., aij 2 f0; 1g.
A synchronized solution of the coupled system (2) is a

function C : N ! Rn of the form CðtÞ¼ðcðtÞ;cðtÞ;…;cðtÞÞ>,
where c :N!R. We also use the notation ½c� :¼ðc;…;cÞ>
2Rn to denote synchronized states. By (2), all synchronized

solutionsCðtÞ¼ ½cðtÞ� are such that c satisfies

cðtþ 1Þ ¼ f ðcðtÞÞ þ gðcðtÞ; cðt� sÞÞ: (5)

When the delay s is zero, the diffusion condition (3) yields

that CðtÞ ¼ ½cðtÞ� is a synchronized solution of (2) if and

only if cðtÞ satisfies (1). However, the stability of CðtÞ in (2)

may in general be different from the stability of cðtÞ in (1)

and depends not only on the Lyapunov exponent of f but
also on the network topology via the eigenvalues of the

Laplacian matrix.14 On the other hand, when the delay s is

nonzero, cðtÞ is in general no longer a solution of (1), except

in two specific cases: The first case is when cðtÞ is constant
in time; then c is necessarily a fixed point of f – this case has

been extensively studied,18 where the stability region is

found explicitly and the effect of the coupling constant and

the delay is studied analytically. The second case is when

cðtÞ is s-periodic in time so that CðtÞ ¼ ½cðtÞ� is a s-periodic
solution of (2). This latter case forms the subject matter of

the present paper.

We apply a standard linear stability analysis to the system

(2) (in particular to (4)) with a well-known technique of

decomposing a coupled system into independent modes that

correspond different eigenvectors of the Laplacian

matrix.14,19,33 As a result, stability of a s-periodic orbit of (4)
is shown to be equivalent to the Schur stability of certain

polynomials whose coefficients are functions of the Laplacian

eigenvalue k, coupling strength e, and scaled Floquet multi-
plier b, i.e., Floquet multiplier scaled by period s (see Eq.

(18)), of the periodic orbit of the uncoupled map. We investi-

gate these polynomials by means of mathematical analysis

and algorithmic computation of their stability region via the

Bistritz Tabulation method.20 Hence, the following results are

obtained on the stability of CðtÞ as a solution of (4) and on its

stability region in the parameter space ðe; jbjÞ.
• The coupling structure of (4) affects the stability of CðtÞ
only through its largest Laplacian eigenvalue.

• The stability region of CðtÞ shrinks when the largest

Laplacian eigenvalue is increased.
• Unstable periodic orbits with a positive Floquet multiplier

cannot be stabilized, see Theorem 3.
• Unstable periodic orbits cannot be stabilized through a

bipartite coupling, see Theorem 2.
• As s ! 1, the stability region shrinks down to a minimal

region, which is the region for a bipartite coupling.

We note that similar results were obtained in the paper18

for fixed points. A similar negative result mentioned above for

bipartite graphs has already been observed in a numerical

study8 in a continuous-time case. The case of s ! 1 is studied

both for delayed feedback systems in Ref. 21 and in coupled

systems.22,23 In accordance with these references, we prove

that stabilization is not possible when s ! 1. Moreover, for

any connection structure as s ! 1, stability regions coincide

with the stability region of a bipartite graph, which gives a sta-

bility region that is independent from s and is the smallest pos-

sible stability region contained in all other stability regions.

In Section II, we present a stability analysis of the syn-

chronized periodic orbit CðtÞ for the coupled network (2) and

obtain a sufficient condition for the asymptotic stability of

CðtÞ in terms of the Laplacian eigenvalues and the derivatives

of f and g at the periodic points. In Section III, we apply

this condition to the coupled map lattice model (4) and obtain

a sufficient condition for the asymptotic stability of CðtÞ in

terms of the coupling constant, the Laplacian eigenvalues, and

the Floquet multiplier of the periodic orbit cðtÞ of (1). In

Section IV, we discuss the stabilization and destabilization of

CðtÞ and chaos suppression by coupling with delay s.

II. STABILITYANALYSIS OF SYNCHRONIZED
s-PERIODIC ORBITS

Consider the linearization of (2) around a synchronized

s-periodic solution CðtÞ ¼ ½ptðmodsÞ�

ni tþ 1ð Þ ¼ f 0 ptð Þni tð Þ þ
1

di

Xn

j¼1

aijð@1gðpt; ptÞniðtÞ

þ @2g pt; ptð Þnj t� sð ÞÞ
¼ f 0 ptð Þni tð Þ þ @1g pt; ptð Þni tð Þ

þ 1

di

Xn

j¼1

aij@2g pt; ptð Þnj t� sð Þ; (6)

where niðtÞ :¼ xiðtÞ� pt and pt should be understood as

ptðmodsÞ. Here, @1 and @2 denote partial derivatives with
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respect to first and second arguments. We use the fact that

pt ¼ pt�s and di ¼
Pn

j¼1 aij. Let us define the following

parameters:

bk ¼ f 0ðpkÞ and ck ¼ @2gðpk; pkÞ ¼ �@1gðpk; pkÞ; (7)

where the last equality follows from (3). The linear system

(6) can be written in the matrix form as

nðtþ 1Þ ¼ ðbt � ctÞInðtÞ þ ctD
�1Anðt� sÞ; (8)

where n ¼ ðn1;…; nnÞT, I is the identity matrix, A ¼ ½aij�,
and D ¼ diagfd1;…; dng.

The (normalized) graph Laplacian is defined as

L ¼ I � D�1A: (9)

It is known that if the connection matrix A is symmetric,

then the eigenvalues of L are real and the real eigenvectors

of L form a linearly independent set.24 For l ¼ 1;…; n, let
kl and vl be the eigenvalues and the eigenvectors of L,
respectively. Then,

D�1Avl ¼ ðI � LÞvl ¼ ð1� klÞvl; l ¼ 1;…; n: (10)

The minimum Laplacian eigenvalue is always zero, which

corresponds to the Laplacian eigenvector ð1;…; 1Þ. This

corresponds to the so-called longitudinal direction, namely,

a direction that is parallel to the synchronization manifold.

All the other eigenvalues correspond to the transversal direc-

tions. In the sequel, we will study the stability of a synchro-

nized periodic orbit both in longitudinal and transversal

directions, and therefore, stability will be checked for all

Laplacian eigenvalues. Hence, we can decompose the

dynamics of (6) or (8) into Laplacian eigenvectors to obtain

the following s-periodic scalar linear delay difference equa-

tion for each mode l ¼ 1;…; n as:

wlðtþ 1Þ ¼ ðbt � ctÞwlðtÞ þ ctð1� klÞwlðt� sÞ: (11)

This leads to the following system of first order s-periodic
difference equations:

wð0Þ
l ðtþ 1Þ

wð1Þ
l ðtþ 1Þ

wð2Þ
l ðtþ 1Þ

..

.

wðsÞ
l ðtþ 1Þ

2
6666666664

3
7777777775

¼

ðbt � ctÞ 0 � � � 0 ctð1� klÞ
1 0 � � � 0 0

0 . .
. . .

. ..
. ..

.

..

. . .
.

0 ..
.

0 � � � 0 1 0

2
666666664

3
777777775

�

wð0Þ
l ðtÞ

wð1Þ
l ðtÞ

wð2Þ
l ðtÞ
..
.

wðsÞ
l ðtÞ

2
6666666664

3
7777777775

; (12)

where wðkÞ
l ðtÞ :¼ wlðt� kÞ. It is straightforward to check that

the Floquet multipliers of the s-periodic system (12) are the

roots of the following polynomial:

plðsÞ ¼ ssþ1 �
Ys�1

k¼0

ððbk � ckÞsþ ckð1� klÞÞ: (13)

Finally, we have the following theorem for the asymptotic

stability of a synchronized s-periodic orbit.
Theorem 1. A synchronized s-periodic orbit CðtÞ

¼ ½ptðmodsÞ� of (2) is locally asymptotically stable if the
roots of plðsÞ given by (13) are in the open unit disc for all
l ¼ 1;…; n, and unstable if one of the roots of plðsÞ lies out-
side the closed unit disc.

Remark 1. Let us show that delay is necessary for the

system (2) if one wants to stabilize an unstable periodic orbit

via coupling. For s¼ 0, (12) becomes scalar and the Floquet

multipliers of a p-periodic orbit can easily be found as
Qp�1

k¼0

ðbk � ckÞkl, for l ¼ 1;…; n. Note that, for the zero Laplacian

eigenvalue kl ¼ 0, the Floquet multiplier is
Qp�1

k¼0 bk, which
is the Floquet multiplier of the periodic orbit for the

uncoupled map. This implies that periodic orbits that are

unstable for the uncoupled map cannot be stabilized via cou-

pling of form (2) if delay is zero.

III. STABILITYOF THE SYNCHRONIZED s-PERIODIC
ORBITS OF COUPLED MAP LATTICES

In this section, we consider the coupled map lattice

model (4). Applying Theorem 1, we find the set of parame-

ters of (4) for which the asymptotic stability of a synchro-

nized s-periodic orbit is assured.
In this case, the connection matrix is binary and the

eigenvalues kmin ¼ k1 � � � � � kn ¼ kmax of the graph

Laplacian L have the following properties:14,24,25

• The smallest eigenvalue kmin is zero and corresponds to

the eigenvector ð1; 1;…; 1Þ>.
• The largest eigenvalue kmax satisfies

n

n� 1
� kmax � 2:

• kmax ¼ n
n�1

if and only if the connection graph is complete.
• kmax ¼ 2 if and only if the connection graph is bipartite.

For large complete graphs, the largest eigenvalue kmax is

thus close to one. In fact, when self connections are included,

kmax becomes exactly one for any size. On the other hand,

for bipartite graphs the largest eigenvalue is at its maximum

possible value. This class of graphs contains many examples,

such as cycles with even number of vertices, regular lattices,

and trees.24

For a synchronized s-periodic orbit CðtÞ ¼ ½ptðmodsÞ�, we
denote its unique Floquet multiplier for the uncoupled sys-

tem (1) by

B ¼
Ys�1

k¼0

bk ¼
Ys�1

k¼0

f 0ðpkÞ: (14)

Using (7) and (4), it can be seen that

ck
bk

¼: e 2 R; k ¼ 0;…; s� 1; (15)
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which is referred as coupling constant. For simplicity, we

assume that e 2 ½�1; 1�. Using (14) and (15), we can write

plðsÞ ¼ ssþ1 � Bðð1� eÞsþ eð1� klÞÞs: (16)

It turns out that the stability regions of plðsÞ in the

parameter space ðe;B; kÞ change non-monotonically with

delay s. A monotonical change in the stability region can be

observed if, instead of the Floquet multiplier B, one uses the
Lyapunov exponent l of the periodic orbit CðtÞ, namely,

l ¼ 1

s

Xs�1

k¼0

lnjf 0 pkð Þj (17)

or the modulus of the scaled Floquet multiplier b, namely,

jbj ¼ jBj1s ¼ el: (18)

In the sequel, we use the parameter jbj for the sake of sim-

plicity in equations. From Eqs. (14), (17), and (18), the rela-

tion between B and jbj can be found as

B ¼ rjbjs; (19)

where the parameter r 2 f�1;þ1g denotes the sign of the

Floquet multiplier of the periodic orbit CðtÞ. Substituting
(19) in (16), we have the following result.

Corollary 1. A synchronized s-periodic solution CðtÞ
¼ ½ptðmodsÞ� of (4) is locally asymptotically stable if the
roots of

pðsÞ ¼ ssþ1 � rjbjsðð1� eÞsþ eð1� kÞÞs (20)

are in the open unit disc for all k 2 fk1…kng, and is unsta-
ble if p(s) has a root outside the unit disc for some
k 2 fk1…kng.

Let us consider the stability region of p(s) in the parame-

ter space ðe; jbj; kÞ for r¼ 1 and for r ¼ �1 separately,

namely, the set of points ðe; jbj; kÞ for which all roots of (20)

are in the open unit disc. We show the following symmetry

between the stability regions of p(s) for r¼ 1 and for

r ¼ �1:

j : ðr; kÞ ! ð�r; 2� kÞ: (21)

To show this symmetry, consider

�pðsÞ ¼ jðpðsÞÞ ¼ ssþ1 þ rjbjsðð1� eÞs� eð1� kÞÞs:

It can be verified that �pð�sÞ ¼ �pðsÞ if s is even and

�pð�sÞ ¼ pðsÞ if s is odd. Hence, for any s,

pðsÞ is stable () �pðsÞ is stable:

Due to this symmetry, it is enough to check the stability

of p(s) for 0 � k � 1 and obtain the stability conditions

for 1 < k � 2 by applying the symmetry transformation j.
This also proves that for k¼ 1 the stability region of p(s) in
ðe; jbjÞ for r¼ 1 is identical to the stability region for

r ¼ �1. In fact, the roots of p(s) for k¼ 1 are easily seen

to be s1 ¼ rjbjsð1� eÞs and si¼ 0 for i ¼ 2;…; sþ 1.

Therefore, a necessary and sufficient condition for the stabil-

ity of p(s) for k¼ 1 is

jbjj1� ej < 1: (22)

The term bð1� eÞ can be seen as a delay-independent scaled

Floquet multiplier of the coupled system with maximum mod-

ulus when k¼ 1. For other values of k, stability conditions

can be splitted into delay-dependent and delay-independent

ones (see Figs. 1(c) and 1(d)). Delay-dependent conditions for

p(s) turn out to be highly complex and seem to give no

insight. In one of the simplest cases, namely, k¼ 0, a delay-

dependent necessary condition can be obtained from the sec-

ond iteration to the Bistritz method as jbj < ðsþ 1Þ1s. Other
iterations of the Bistritz method provide extremely complex

conditions due to the special structure of p(s).
Applying the first condition of the Schur-Cohn criterion

(pð1Þ > 0) to p(s) and �pðsÞ, the following necessary condi-

tion can be obtained for the stability of p(s):

1� rjbjsð1� eþ eð1� kÞÞs > 0; (23)

1þ rjbjsð1� e� eð1� kÞÞs > 0: (24)

On the other hand, a corollary of the Gershgorin disc theo-

rem (see Ref. 26, Theorem 5.10) implies the following suffi-

cient condition:

1� jbjð1� eþ jeð1� kÞjÞ > 0: (25)

The above necessary and sufficient conditions are used

to provide some upper and lower bounds of the stability

regions. In addition to these, we use an algorithmic method,

namely, the Bistritz Tabulation,20,27 to determine stability

regions precisely. This method is based on a three-term

recursion of symmetric polynomials generated from the

main polynomial. Similar to the well-known Jury method,28

the Bistritz tabulation method gives necessary and sufficient

conditions on parameters for the stability of a polynomial,

while affording significant computational savings20 as com-

pared to the Jury method.

A. The role of the largest Laplacian eigenvalue

Using the Bistritz tabulation method, the 3-D stability

region of p(s) for s¼ 2 is found as in Figs. 1(a) and 1(b) for

r¼ 1 and for r ¼ �1, respectively. Figs. 1(c) and 1(d) show

that stability regions shrink down monotonically as s
increases.

The stability region of CðtÞ in the parameter space

ðe; jbjÞ can be obtained by taking the intersection of n 2-D

slices of the 3-D stability region of p(s) for the Laplacian

eigenvalues k ¼ k1;…; kn. For s¼ 3, these 2-D slices corre-

sponding to k ¼ 0; 0:25;…; 2 are illustrated in Fig. 2(a) for

r¼ 1. Stability regions for r ¼ �1 can be found using the

above-mentioned symmetry as in Fig. 2(b).

In order to obtain the stability region of a synchronized

s-periodic orbit CðtÞ with s¼ 3, one has to take the intersec-

tion of the stability regions of p(s) for k ¼ k1;…; kn. It is
straightforward to check that the stability region thus
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obtained is bounded by the curves related to the smallest and

the largest Laplacian eigenvalue. We have repeated this pro-

cess for different values of s and obtained the same result,

namely, the stability region of CðtÞ depends only on the

smallest and the largest Laplacian eigenvalues. However,

we do not have a rigorous proof for this observation. Note

that the smallest Laplacian eigenvalue is always zero, there-

fore, the largest Laplacian eigenvalue plays a crucial role

in stability. For a general coupling structure, namely, for

kmax 2 ½1; 2�, typical regions obtained by taking the intersec-

tion of the stability regions in Fig. 2 for k¼ 0 and k ¼ kmax

are illustrated in Fig. 3.

B. Minimal stability region

Stability regions become minimal in two cases, namely,

for bipartite graphs and for the case of s ! 1. In both cases,

stability regions are identical for r¼ 1 and r ¼ �1, and

given by the following inequalities:

jbj < 1 for e > 0; (26)

jbj < 1

1� 2e
for e < 0: (27)

We call this region the minimal stability region, which is

depicted in Fig. 4. Note that b and b 1
1�2e

� �
can be interpreted

as delay-independent scaled Floquet multipliers of the

uncoupled system with bipartite connection.

To see that the stability region reduces to the minimal sta-

bility region for a bipartite connection structure, consider p(s)
for k¼ 0 and for k¼ 2 and assume that r¼ 1. Substituting

these in (23) and (24), one gets jbj < 1 and jbj < 1
1�2e, which

is equivalent to (26) and (27). By the symmetry (21), the

same applies to the case r ¼ �1. On the other hand, the

FIG. 1. The stability regions of p(s) for s¼ 2 are shown in (a) and (b) when the Floquet multiplier is positive ðr ¼ 1Þ and negative ðr ¼ �1Þ, respectively—
these are related by the symmetry given in (21). The stability boundaries for s ¼ 2; 3; 4 are shown in (c) and (d), for r¼ 1 and r ¼ �1, respectively.
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sufficient condition (25) for all Laplacian eigenvalues is

equivalent to a unique condition, namely, (25) for k¼ 0,

which also reduces to (26) and (27). Hence, we have the fol-

lowing negative result for stabilization.

Theorem 2. An unstable periodic orbit CðtÞ ¼ ptðmod sÞ
cannot be stabilized via coupling of form (4) if the connec-
tion structure is bipartite.

To see that the stability region is given by the minimal

stability region when s ! 1, we use the fact that for r¼ 1

and for r ¼ �1 stability regions coincide in the limit

s ! 1. This can be seen by substituting s ¼ reih in p(s) and
observing that the magnitude equations turn out to be the

same. It is known that solutions to the phase equation are

uniformly distributed when s ! 1.29 Thus, the stability

regions for r¼ 1 and for r ¼ �1 coincide when s ! 1. To

see that these are identical to the minimal stability region,

observe that for e > 0 and r¼ 1, both the necessary condi-

tion (23) for k¼ 0 and the sufficient condition (25) reduce to

(26). For the case e < 0, both the necessary condition (24)

for k¼ 0 and the sufficient condition (25) reduce to (27)

when r ¼ �1.

FIG. 2. The stability regions of p(s) for several values of k (for s¼ 3). The

stability regions are the open regions under the colored curves, which are

plotted for k ¼ 0:0; 0:25;…; 2:0. (a) and (b) Stability regions when the

Floquet multiplier is positive ðr ¼ 1Þ and negative ðr ¼ �1Þ, respec-

tively—these are related by the symmetry given in (21).

FIG. 3. Typical stability regions of the periodic orbit CðtÞ ¼ CtðmodsÞ for the
system (4). The region can be obtained by taking the intersection of the sta-

bility regions in Fig. 2 for k¼ 0 (in black) and for k ¼ kmax (in red). jb�j is
the maximum value of the modulus of the scaled Floquet multiplier for

which stabilization is possible. e� is the coupling strength which favors sta-

bility most.

FIG. 4. Stability region of the periodic orbit CðtÞ ¼ ptðmodsÞ for the system

(4) with a bipartite connection structure. The stability region is independent

of s, and it is depicted in (26) and (27).
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C. Periodic orbits with a positive Floquet multiplier

It has been shown in the paper18 that an unstable fixed

point of a one-dimensional map with positive eigenvalue

cannot be stabilized via coupling in the form (4). Here, we

prove a similar result for a synchronized periodic orbit of a

coupled map lattice with delay where the period of the orbit

is equal to the delay.

Theorem 3. An unstable periodic orbit CðtÞ ¼ ptðmod sÞ
with a positive Floquet multiplier cannot be stabilized via
coupling of the form (4).

Proof. We prove the contrapositive as follows: Assume

that stabilization occurs. Since k¼ 0 is always an eigenvalue

of the Laplacian, p0ðsÞ ¼ ssþ1 � rjbjsðð1� eÞsþ eÞs must

be Schur stable. By the necessary condition (23), we have

1� rjbjs > 0. Since jbj > 1 by the instability assumption,

one gets r ¼ �1.

The stability region of p(s) obtained for k¼ 0 and r¼ 1

in Fig. 2(a) justifies Theorem 3 for s¼ 3.

Remark 2. Theorem 3 has important consequences. For

instance, unstable periodic orbits of dyadic maps cannot be

stabilized via coupling of the form (4).

D. Most stabilizing network configuration

It can be observed from Figs. 2 and 3 that the stability

regions shrink as the largest eigenvalue increases.

Consequently, connection structures having a small value

for the largest Laplacian eigenvalue, such as the all-to-all

coupling topology, favor the stability of synchronized s-
periodic orbits. It is known that, in the case of all-to-all

coupling with self connections, i.e., aij ¼ 1; 8i; j, the eigen-
values of the Laplacian are k1 ¼ 0 and kk ¼ 1 for k � 2.

Alternatively, one can consider all-to-all coupled networks

without self-coupling but with a large number of nodes, for

which k1 ¼ 0 and kk ¼ n=ðn� 1Þ ffi 1; k � 2. Since, in

these cases, it suffices to check the stability of p(s) only for

k¼ 0 and for k¼ 1 (or for k ¼ n
n�1

), the stability regions

can be calculated precisely (see Fig. 5). For k¼ 1, the sta-

bility region is given in (22), and for k¼ 0 we use the

Bistritz tabulation method to obtain the stability regions of

pk¼0ðsÞ ¼ ssþ1 � rjbjsðð1� eÞsþ eÞs.

IV. STABILIZATION/DESTABILIZATION OF
SYNCHRONIZED s-PERIODIC ORBITS AND CHAOS
SUPPRESSION VIA COUPLING

In Sec. III, we have shown that unstable periodic orbits

with negative Floquet multipliers can be stabilized via

coupling. On the other hand, stable periodic orbits may lose

stability when coupled through a negative coupling

constant.

In order to illustrate the stabilization, we consider the

case that favors stability most, namely, all-to-all coupling

with self-connections. It can be seen from Fig. 5 that the

stability regions shrink as s increases for both r¼ 1 and

r ¼ �1. The stability region for r ¼ �1 (Fig. 5(b)) has a

maximum value jb�j at a certain coupling strength e� (see

also Fig. 3) and both jb�j and e� decrease monotonically as

s increases. Note that, as a result of Theorem 3, stabilization

is not possible for positive Floquet multipliers which is seen

also from Fig. 5(a). In Table I, the maximum jbj values

(jb�j) for which stabilization is possible, and the correspond-

ing e� values are given.
We demonstrate the destabilization of periodic orbits

when the coupling constant is negative. It can be seen from

Fig. 4 that stable s-periodic orbits of maps may lose stability

FIG. 5. Stability regions of the periodic orbit CðtÞ ¼ ptðmodsÞ for the system

(4) with different delays and with an all-to-all coupled connection structure

including self-connections. Stability regions are the open regions inside the

colored curves. The minimal stability region (s ! 1) is also shown as

dashed line.

TABLE I. Maximum modulus of the scaled Floquet multiplier jb�j and the

corresponding values of the coupling constant e� for which the system (4)

has a stable s-periodic solution.

s 2 3 4 5 6 7 8

jb�j 1.605 1.435 1.338 1.276 1.236 1.205 1.178

e� 0.3845 0.3145 0.2605 0.2243 0.1956 0.1751 0.1575
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when the maps are connected in the form (4) with a negative

coupling constant e. The destabilization is more likely if the

largest eigenvalue of the Laplacian kmax is equal to 2,

namely, the coupling structure is bipartite of which the sta-

bility region in the (e; jbj) plane is depicted in Fig. 4.

Example 1 (Stabilization and destabilization of a syn-

chronized 3-periodic orbit). We consider the coupled system

(4) with a delay s¼ 3, where f is the logistic map

f ðxÞ ¼ rxð1� xÞ. The map f has a 3-periodic orbit, which is

stable for r 2 ðr3; r6Þ,30 where r3 ffi 3:8284 is the parameter

value at which the stable 3-periodic orbit appears and r6 ffi
3:8415 is the value where it becomes unstable and a stable 6-

periodic orbit appears via a period-doubling bifurcation.31

We set r¼ 3.845 and run (4) for n¼ 10 with initial condi-

tions chosen close to the 6-periodic orbit (see Fig. 6). Note

that for this value of r, the 3-periodic orbit is unstable with

its Floquet multiplier being B ffi �1:27, namely, r ¼ �1 and

jbj ffi 1:08. Initially, the coupling is not activated and each

map converges to the 6-periodic orbit. At time t¼ 50, an all-

to-all coupling (including self connections) with e ¼ 0:3 is

activated which leads to the stability of a synchronized 3-

periodic orbit (check Fig. 5(b) for parameters e ¼ 0:3 and

jbj ¼ 1:08). At time t¼ 100, a bipartite coupling as in Fig. 7

is activated with e ¼ �0:1, which destabilizes the synchro-

nized 3-periodic orbit in accordance with the parameter

region in Fig. 4.

FIG. 6. Solutions of (4) for n¼ 10 and

s¼ 3 where f(x) is the logistic map

with r¼ 3.845. All-to-all coupling with

e ¼ 0:3 is activated at time t¼ 50, after

which all maps synchronize on a stable

3-periodic orbit. At time t¼ 100, cou-

pling is changed to a bipartite coupling

(Fig. 7) with e ¼ �0:1 which leads to

the instability of the 3-periodic orbit. A

Gaussian noise of variance 10�6 is

added to the state at t¼ 100 to destroy

any numerical locking near the syn-

chronous solution.

FIG. 7. A bipartite connection structure.

FIG. 8. A solution of (4) for n¼ 10

and s¼ 4 where f(x) is the logistic map

with r¼ 3.58. Initially, coupling is set

to zero and each map converges to a

chaotic attractor. All-to-all coupling

with e ¼ 0:3 is activated at time t¼ 50,

after which all maps synchronize on a

stable 4-periodic orbit.
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Example 2 (Chaos suppression). Stabilization of a syn-

chronized s-periodic orbit of (4) via coupling with delay s is
possible only if the modulus of the scaled Floquet multiplier

(jbj) of the periodic orbit is small enough (see Table I). For

instance, the logistic map with r¼ 4 has infinitely many

p-periodic orbits, the Floquet multiplier of which are given

as 2p. In this case, it is not possible to stabilize s-periodic
orbits (s � 2) of logistic maps with r¼ 4 via delay s.
Nevertheless, when the logistic map first enters chaos at the

end of the period doubling bifurcation at r ffi 3:57, Floquet
multipliers of 2k-periodic orbits are relatively small, which

makes stabilization possible. Fig. 8 shows a simulation result

for the coupled system (4) of ten logistic maps with r¼ 3.58,

for which maps are chaotic with the largest Lyapunov expo-

nent ffi 0:109. Initially, coupling is not activated and systems

approach to their chaotic attractor independently from each

other. At time t¼ 50, an all-to-all coupling with e ¼ 0:3 and

s¼ 4 is activated which stabilizes a synchronized 4-periodic

orbit (r ¼ �1; jbj ffi 1:16) in accordance with the stability

region in Fig. 5.

V. CONCLUSION

We have analyzed the stability of synchronized periodic

orbits of delay-coupled maps when the delay is equal to the

period of the periodic orbit. A sufficient condition for stabil-

ity is obtained in terms of the modulus of the scaled Floquet

multiplier of the periodic orbit for the uncoupled map, the

coupling constant, and the largest Laplacian eigenvalue. We

have investigated stabilization and destabilization of periodic

orbits as well as chaos suppression via coupling with delay.

Stabilization of unstable periodic orbits via delayed

feedback is a popular approach in chaos control.1,2,32 Here,

we have shown that stabilization is also possible when sys-

tems are coupled to each other with coupling delays. This

shows another property of delay in regulating the dynamic

behaviour of coupled systems. On the other hand, stabiliza-

tion has been shown to be not possible when the Floquet

multiplier of the uncoupled system is positive or when the

connection structure of the coupled system is bipartite.

We emphasize that the polynomial that determines the

stability of a synchronized s-periodic orbit has a special

form, namely, pðsÞ ¼ ssþ1 �Qs�1
k¼0ððbk � ckÞsþ ckð1� kÞÞ,

which reduces to the polynomial pðsÞ¼ ssþ1�rjbjsðð1�eÞs
þeð1�kÞÞs if the coupling of form (4) is considered. A

more detailed analytical investigation of these polynomials

may lead to further results on the stability of such periodic

orbits of coupled systems.

1E. Ott, C. Grebogi, and J. A. Yorke, “Controlling chaos,” Phys. Rev. Lett.

64, 1196–1199 (1990).
2K. Pyragas, “Continuous control of chaos by self-controlling feedback,”

Phys. Lett. A 170, 421–428 (1992).
3T. Ushio, “Limitation of delayed feedback control in nonlinear discrete-

time systems,” IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 43,
815–816 (1996).

4O. Morg€ul, “On the stability of delayed feedback controllers,” Phys. Lett.,

Sect. A: Gen., At. Solid State Phys. 314, 278–285 (2003).

5V. Patidar, N. K. Pareek, and K. K. Sud, “Suppression of chaos using

mutual coupling,” Phys. Lett., Sect. A: Gen., At. Solid State Phys. 304,
121–129 (2002).

6P. C. Rech, “Chaos control in a discrete time system through asymmetric

coupling,” Phys. Lett., Sect. A: Gen., At. Solid State Phys. 372,
4434–4437 (2008).

7P. C. Rech, “A coupling of three quadratic maps,” Chaos, Solitons Fractals

41, 1949–1952 (2009).
8T. J€ungling, H. Benner, H. Shirahama, and K. Fukushima, “Complete cha-

otic synchronization and exclusion of mutual pyragas control in two delay-

coupled R€ossler-type oscillators,” Phys. Rev. E 84, 056208 (2011).
9A. Wagemakers, E. Barreto, M. A. Sanjun, and P. So, “Control of collec-

tive network chaos,” Chaos (Woodbury, N.Y.) 24, 023127 (2014).
10K. Kaneko, “Chaotic but regular posi-nega switch among coded attractors

by cluster-size variation,” Phys. Rev. Lett. 63, 219–223 (1989).
11K. Kaneko, “Globally coupled chaos violates the law of large numbers but

not the central-limit theorem,” Phys. Rev. Lett. 65, 1391–1394 (1990).
12K. Kaneko, Theory and Applications of Coupled Map Lattices (Wiley,

New York, 1993).
13P. M. Gade and R. E. Amritkar, “Wavelength-doubling bifurcations in

one-dimensional coupled logistic maps,” Phys. Rev. E 49, 2617–2622

(1994).
14J. Jost and M. P. Joy, “Spectral properties and synchronization in coupled

map lattices,” Phys. Rev. E 65, 016201 (2001).
15A. C. Mart�ı, M. Ponce, and C. Masoller, “Dynamics of delayed-coupled

chaotic logistic maps: Influence of network topology, connectivity and

delay times,” Pramana 70, 1117–1125 (2008).
16A. Jakobsen, “Symmetry breaking bifurcations in a circular chain of n cou-

pled logistic maps,” Physica D: Nonlinear Phenom. 237, 3382–3390

(2008).
17L. Xu, G. Zhang, B. Han, L. Zhang, M. F. Li, and Y. T. Han, “Turing

instability for a two-dimensional logistic coupled map lattice,” Phys. Lett.,

Sect. A: Gen., At. Solid State Phys. 374, 3447–3450 (2010).
18F. M. Atay and O. Karabacak, “Stability of coupled map networks with

delay,” SIAM J. Appl. Dyn. Syst. 5, 508–527 (2006).
19Under some conditions on aij’s, one can use directly the eigenvectors of

the connectivity matrix faijg for decomposing the dynamics as in the

papers.23,33

20Y. Bistritz, “Zero location with respect to the unit circle of discrete-time

linear system polynomials,” Proc. IEEE 72, 1131–1142 (1984).
21S. Lepri, G. Giacomelli, A. Politi, and F. T. Arecchi, “High-dimensional

chaos in delayed dynamical systems,” Physica D 70, 235–249 (1994).
22W. Just, E. Reibold, H. Benner, K. Kacperski, P. Fronczak, and J. Holyst,

“Limits of time-delayed feedback control,” Phys. Lett. A 254, 158–164
(1999).

23A. Englert, S. Heiligenthal, W. Kinzel, and I. Kanter, “Synchronization of

chaotic networks with time-delayed couplings: An analytic study,” Phys.

Rev. E 83, 046222 (2011).
24F. R. K. Chung, Spectral Graph Theory (American Mathematical Society,

Providence, RI, 1997).
25F. M. Atay, “Oscillator death in coupled functional differential equations

near hopf bifurcation,” J. Differ. Equations 221, 190–209 (2006).
26S. Elaydi, An Introduction to Difference Equations, 3rd ed. (Springer-

Verlag, New York, 2005).
27Y. Bistritz, “Zero location of polynomials with respect to the unit-circle

unhampered by nonessential singularities,” IEEE Trans. Circuits Syst. I:

Fundam. Theory Appl. 49, 305–314 (2002).
28E. I. Jury, Theory and Application of the Z-Transform Method (Wiley,

New York, 1964).
29P. Erdos and P. Turan, “On the distribution of roots of polynomials,” Ann.

Math. 51, 105–119 (1950).
30W. B. Gordon, “Period three trajectories of the logistic map,” Math. Mag.

69, 118–120 (1996); available at https://www.jstor.org/stable/2690666?

seq=1#page_scan_tab_contents.
31Z. Galias and B. Garda, “Detection of all low-period windows for the

logistic map,” in Proceedings of the IEEE International Symposium on
Circuits and Systems (2015), Vol. 2015, pp. 1698–1700.

32S. Boccaletti, C. Grebogi, Y.-C. Lai, H. Mancini, and D. Maza, “The con-

trol of chaos: Theory and applications,” Phys. Rep. 329, 103–197 (2000).
33M. P. Pecora and T. L. Carroll, “Master stability functions for synchro-

nized coupled systems,” Phys. Rev. Lett. 80, 2109–2112 (1998).
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