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We characterize the exact lumpability of smooth vector fields on smooth manifolds. 
We derive necessary and sufficient conditions for lumpability and express them from 
four different perspectives, thus simplifying and generalizing various results from 
the literature that exist for Euclidean spaces. We introduce a partial connection 
on the pullback bundle that is related to the Bott connection and behaves like a 
Lie derivative. The lumping conditions are formulated in terms of the differential of 
the lumping map, its covariant derivative with respect to the connection and their 
respective kernels. Some examples are discussed to illustrate the theory.
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1. Introduction

Dimensional reduction is an important aspect in the study of smooth dynamical systems and in particular 
in modeling with ordinary differential equations (ODEs). Often a reduction can elucidate key mechanisms, 
find decoupled subsystems, reveal conserved quantities, make the problem computationally tractable, or rid 
it from redundancies. A dimensional reduction by which micro state variables are aggregated into macro 
state variables also goes by the name of lumping. Starting from a micro state dynamics, this aggregation 
induces a lumped dynamics on the macro state space. Whenever a non-trivial lumping, one that is neither 
the identity nor maps to a single point, confers the defining property to the induced dynamics, one calls the 
dynamics exactly lumpable and the map an exact lumping.
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Our aim in this paper is to provide necessary and sufficient conditions for exact lumpability of smooth 
dynamics generated by a system of ODEs on smooth manifolds. To be more precise, let X and Y be two 
smooth manifolds of dimension n and m, respectively, with 0 < m < n. Let pX : TX → X and pY : TY → Y

be their tangent bundles, whose fibers we take as spaces of derivations, and let v be an element of the smooth 
sections Γ∞(X, TX) of TX over X, i.e. smooth maps from X to TX satisfying pX ◦ v = idX . The integral 
curves Φt of v satisfy the equation

d

dt

∣∣∣
t=s

Φt(x) = v(Φs(x)) . (1)

On a local coordinate patch U ⊆ X we can write (1) as ẋi = vi(x) so that we recover an ODE on that patch. 
Consider a smooth surjective submersion π : X → Y and let Θt(x) = π ◦ Φt(x). Since dim(Y ) < dim(X), 
the mapping π is many-to-one, and hence is called a lumping. The question is whether there exists a smooth 
dynamics on Y that is generated by another system of ODEs,

d

dt

∣∣∣
t=s

Θt(x) = ṽ(Θs(x))

for some smooth vector field ṽ on Y . If that is the case, we say that (1) is exactly lumpable for the map π. 
Geometrically this means that ṽ and v are π-related [1].

The reduction of the state space dimension has been studied for Markov chains by Burke and Rosenblatt 
[2,3] in the 1960s. Kemeny and Snell [4] have studied its variants and called them weak and strong lumpa-
bility. Many conditions have been found, mostly in terms of linear algebra, for various forms of Markov 
lumpability [4–12]. Since Markov chains are characterized by linear transition kernels, most of these con-
ditions carry over directly to the case of linear difference and differential equations. In 1969 Kuo and Wei 
studied exact [13] and approximate lumpability [14] in the context of monomolecular reaction systems, 
which are systems of linear first order ODEs of the form ẋ = Ax. They gave two equivalent conditions for 
exact lumpability in terms of the commutativity of the lumping map with the flow or with the matrix A
respectively. Luckyanov [15] and Iwasa [16] studied exact lumpability in the context of ecological modeling
and derived further conditions in terms of the Jacobian of the induced vector field and the pseudoinverse of 
the lumping map. Iwasa also only considered submersions. The program was then continued by Li and Rab-
itz et al., who wrote a series of papers successively generalizing the setting, but remaining in the Euclidean 
realm. They first constrained the analysis to linear lumping maps [17], where they offered for the first time 
two construction methods in terms of matrix decompositions of the vector field Jacobian. These methods, 
together with the observability concept [18] from control theory, were employed to arrive at a scheme for ap-
proximate lumpings with linear maps [19]. They extended their analysis further to exact nonlinear lumpings 
of general nonlinear but differentiable dynamics [20], providing a set of necessary and sufficient conditions, 
extending and refining those obtained by Kuo, Wei, Luckyanov and Iwasa. By considering the spaces that 
are left invariant under the Jacobian of the vector field, they open up a new fruitful perspective, namely 
the tangent space distribution viewpoint.

The connection to control theory has been made explicit in [21]. Coxson notes that exact lumpability is an 
extreme case of non-observability, where the lumping map is viewed as the observable. She specifies another 
necessary and sufficient condition by stating that the rank of the observability matrix ought to be equal to 
the rank of the lumping map itself. The geometric theory of nonlinear control is outlined in, e.g., [22]. There, 
Isidori considers sets of observables hi with values in R and their differentials dhi. He discusses how to obtain 
the maximal observable subspace in an iterative fashion, where one consecutively constructs distributions 
that are invariant under the vector field and contain the kernel of the dhi [22, p. 69]. This distribution 
is constructed by means of Lvdhi, the Lie derivatives of dhi. Although this theory is not concerned with 
the case of exact lumping, it follows that in the exactly lumpable case the maximal observable subspace is 
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precisely the kernel of the dhi and the Lie derivatives Lvdhi are just linear combinations of dhi. (We obtain 
similar results, but allow for general maps, that are not necessarily R-valued.)

In this paper we tie together all these strands into one geometric theory of exact lumpability. The 
conditions obtained by Iwasa, Luckyanov, Coxson, Li, Rabitz, and Toth are contained in this framework. 
Instead of considering the distribution spanned by the differential of the lumping map, as is done in [20]
although not explicitly, we consider the vertical distribution which is defined by the kernel of the differ-
ential. We begin by stating the mathematical setting in Section 2.1. We then define the notion of exact 
smooth lumpability and provide two elementary propositions in terms of commutative diagrams in Sec-
tion 2.2. In Section 2.3 we characterize exact lumpability in terms of the vertical distribution and partial 
connections on it. In Section 3 we investigate some properties of exact lumpings and illustrate them with 
examples.

2. Characterization of lumpability

2.1. Preliminaries

As above, let X and Y be two smooth manifolds of dimension n and m and pX : TX → X and 
pY : TY → Y be their tangent bundles, respectively. The differential of a smooth manifold map π : X → Y

at point x is a R-linear map Dπx : TxX → Tπ(x)Y . For wx ∈ TxX the vector Dπxwx can be defined via 
its action as a derivation Dπxwx[f ] = wx[f ◦ π] on smooth test functions f ∈ C∞(X, R). We use square 
brackets to enclose the argument of the derivation. The map π is a submersion if Dπx is surjective with 
constant rank for all x ∈ X. We denote by π−1TY the pullback bundle whose fibers at x are Tπ(x)Y . There 
are two bundle maps associated to the differential. The first one is a manifold map Dπ : TX → TY which 
respects the vector bundle structure and satisfies pY ◦ Dπ = π ◦ pX . The second one is a vector bundle 
homomorphism over the same base Dπ : TX → π−1TY . This latter one induces a C∞-linear map on the 
vector fields Dπ : Γ∞(X, TX) → Γ∞(X, π−1TY ). All of these are denoted by Dπ and the context will tell 
them apart. One can only define a vector field w̃ on Y whenever there exists a unique vector Dπxw(x) for 
all x ∈ π−1(y) and all y ∈ Y .

A smooth regular distribution S is a smooth subbundle locally spanned by smooth and linear independent 
vector fields [1,23]. The distribution kerDπ = �x∈X kerDπx can be shown to be smooth, where � denotes 
disjoint union. This follows from the existence of a smooth local coframe (c.f. [1]) spanned by m smooth 
1-forms (dπ1, . . . , dπm) that annihilate kerDπ. The distribution kerDπ is regular if and only if π is a 
submersion. An integral submanifold W of S is an immersed submanifold of X such that TW ⊆ S|W . It 
has the maximal integral submanifold property if TW = S|W and W is not contained in any other integral 
submanifold. Following Sussmann and Stefan [24,25], S is integrable if every point of X is contained in 
an integral submanifold with the maximal integral submanifold property. Frobenius theorem states that a 
regular distribution is integrable if and only if the space of its sections is closed under the Lie bracket, i.e., 
S is involutive. The distribution kerDπ is by construction an integrable distribution where {π−1(x)}x∈X

are the maximal integral submanifolds of maximal dimension.
Let v and w be two vector fields where v generates the flow Φ. The Lie derivative of w in the direction 

v is defined by

Lvw := d

dt

∣∣∣
t=0

DΦ−tw ◦ Φt . (2)

The Lie derivative Lv : Γ∞(X, TX) → Γ∞(X, TX) is a derivation on the C∞-module of vector fields. One 
can also show [1] that Lvw = �v, w�, where �·, ·� : Γ∞(X, TX) × Γ∞(X, TX) → Γ∞(X, TX) is the Lie 
bracket.
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A linear connection on a vector bundle E → X is a map ∇E : Γ∞(X, TX) × Γ∞(X, E) → Γ∞(X, E)
which is tensorial in the first argument and for any v ∈ Γ∞(X, TX) the map ∇E

v := ∇E(v, ·) is a derivation 
on Γ∞(X, E). A partial connection over a subbundle S ⊂ TX is a map ∇̊E : Γ∞(X, S) × Γ∞(X, E) →
Γ∞(X, E). A notable partial connection is the Bott connection [26] defined over an integrable subbundle S
on the quotient bundle Q = TX/S. Let ρ be the corresponding quotient map; then the connection is defined 
by

∇̊Q
w

[
v
]

= ρ
�
w, ρ−1[v]�

, (3)

where the right inverse ρ−1[v] = v′ + w′ picks out smoothly an arbitrary representative of the equivalence 
class, with w′ ∈ ker ρ. Since the Lie bracket is bilinear and S is involutive, this is independent of the choice w′

and thus well defined. Only the term that is linear in w survives the projection by ρ and so the requirements 
of a veritable connection are satisfied. The partial connection can be completed to a full connection [27]. For 
example, one could introduce a Riemannian metric which splits TX = S⊕S⊥ and decomposes g = gS⊗gS⊥ . 
The corresponding Levi-Civita connection ∇̄ restricted to Q completes ∇̊Q to a metric connection:

∇Q
w = ∇̊Q

w + ∇̄|Q
w .

This is sometimes called an adapted connection.

2.2. Lumpability and commutativity

In this section we state two necessary and sufficient conditions for exact lumpability. Henceforth π is a 
smooth surjective submersion and v ∈ Γ∞(X, TX) is a smooth vector field generating the flow Φ : TX ⊆
R × X → X, where TX := {(Tx, x) : Tx ⊆ R, x ∈ X} is the domain of the flow and Tx contains an open 
interval around 0. We denote by Φx : Tx → X the integral curves with starting point x, and by Φt : Xt → X

the flow map parametrized by time, with Xt := {x ∈ X : t ∈ Tx} being the domain of definition. We start 
by giving a precise definition of lumpability.

Definition 1 (Exact smooth lumpability). The system

d

dt

∣∣∣
t=s

Φ = v ◦ Φs (4)

is called exactly smoothly lumpable (henceforth exactly lumpable) for π iff there exists a smooth vector 
field ṽ ∈ Γ∞(Y, TY ) such that the dynamics of Θ = π ◦ Φ is governed by

d

dt

∣∣∣
t=s

Θ = ṽ ◦ Θs . (5)

The Picard–Lindelöf theorem guarantees a unique solution of (4) for sufficiently small times for all x, 
since v is smooth and in particular Lipschitz. It exists for all times of definition Tx ⊆ R. Formally equation 
(4) should be understood as the pushforward of the section ∂

∂t on TX by Φ:

d

dt

∣∣∣
t=s

Φ : =
(
DΦ

)∣∣
s

∂

∂t
,

and likewise for (5). The flow of the vector field ṽ ∈ Γ∞(Y, TY ) is denoted by Φ̃ : TY → Y , where again 
TY := {(T̃y, y) : (−ε, ε) ⊆ T̃y ⊆ R, y ∈ Y } is the domain of the flow. A priori there is no connection between 
Tx and T̃y. However, we will see later that Proposition 2 relates the two.
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Proposition 1. The system (4) is exactly lumpable for π iff there exists a smooth vector field ṽ ∈ Γ∞(Y, TY )
such that

Dπxv(x) = ṽ ◦ π(x) (6)

for all x ∈ X.

Proof. Consider the time derivative of Θ:
d

dt

∣∣∣
t=0

Θx = D(π ◦ Φx)
∣∣
0
∂

∂t
= Dπxv(x).

By exact lumpability, Θ is generated by (5), so d
dt

∣∣
t=0Θx = ṽ◦Θ0(x) = ṽ◦π(x). Therefore, exact lumpability 

implies (6). On the other hand, if we demand (6) for all x and in particular for Φs(x), then

DπΦs(x)v(Φs(x)) = ṽ ◦ π ◦ Φs(x) .

The right hand side equals ṽ ◦Θs(x) and the left hand side equals d
dt

∣∣
t=s

Θt(x), which implies exact lumpa-
bility. �
Remark 1. Alternatively, we can say that (4) is exactly lumpable for π iff there exists a smooth vector field 
ṽ ∈ Γ∞(Y, TY ) such that ṽ and v are π-related. Proposition 1 can be formulated as a commutative diagram

Y TY

TXX

ṽ

v

Dππ

which reads ṽ(π(x)) = Dπxv(x) for all x ∈ X.

Proposition 2. The system (4) is exactly lumpable for π iff for all y ∈ Y the time domain T̃y = Tx is 
independent of the choice x ∈ π−1(y), and

Φ̃t ◦ π(x) = π ◦ Φt(x) (7)

for all x ∈ X and all times t ∈ T̃π(x).

Proof. One implication is obtained by taking time derivatives on both sides of (7) at t = 0 and using that 
ṽ is the generator of Φ̃. This gives rise to (6) and by Proposition 1 implies exact lumpability. On the other 
hand, by the definition of exact lumpability, the curve Θx is an integral curve to ṽ for any x. There is 
another integral curve Φ̃π(x) for ṽ which at t = 0 coincides with Θx. By the uniqueness of integral curves 
they must coincide, so Φ̃π(x)(t) = Θx(t) for all t ∈ Tx and all x. Since they are the same integral curves, 
T̃π(x) = Tx for all x. This proves the proposition. �
Remark 2. Proposition 2 can also be cast into a commutative diagram

Y Y

XX

Φ̃t

Φt

ππ

which reads Φ̃t ◦ π = π ◦ Φt for all times of definition t ∈ T̃π(x) and all x ∈ X.
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2.3. Lumpability and the vertical distribution

In this section we discuss some relations between exact lumpability, invariant distributions, and the Bott 
connection. The lumping map π : X → Y gives rise to a subbundle kerDπ ⊆ TX of the tangent bundle. 
This is called the vertical distribution, which is integrable by construction and ρ : TX → TX/ kerDπ is the 
corresponding quotient map. We start with a basic proposition.

Proposition 3. The distribution kerDπ is invariant under the flow Φ iff the space of sections Γ∞(X, kerDπ)
is invariant under Lv.

Proof. kerDπ is invariant under the flow if (DΦt)x(kerDπ)x ⊆ (kerDπ)Φt(x) for all x, t where it is defined. 
Since Φt is a diffeomorphism, this condition is equivalent to (DΦ−t)Φt(x)(kerDπ)Φt(x) ⊆ (kerDπ)x. So, for 
any w ∈ Γ∞(X, kerDπ), we have (DΦ−t)w ◦ Φt ∈ Γ∞(X, kerDπ). Taking time derivatives and evaluating 
at 0, we obtain that the Lie derivative (2) of v in the direction of w is again a section of kerDπ. �

We would like to define a derivative of the differential Dπ to find further conditions.

Definition 2 (Covariant derivative of the differential). Let ∇H be a connection on H = (π ◦ Φ)−1TY ⊗
T ∗(X × R) and v ∈ Γ∞(X, TX) with flow Φ. Then

L∇
v Dπ := ∇H

∂
∂t

D(π ◦ Φ)
∣∣
0 (8)

is the covariant derivative with respect to ∇H of the differential Dπ in the direction ∂
∂t = (0, ∂∂t ) ∈ T (X×R).

The covariant derivative takes the place of d
dt and ensures that the map D(π ◦Φt) : TX → (π ◦Φt)−1TY

is differentiated properly and covariantly. It is worth noting that this object behaves like a Lie derivative as 
we will see in (13), but since Dπ is not a tensor one cannot define a proper Lie derivative. Nevertheless, we 
will use the similar notation.

We shall make the connection to the Lie derivative more apparent. Let V → X be a vector bundle, 
L : TX → V a vector bundle homomorphism, and θ : X → X a diffeomorphism. Then there exists an 
induced linear map θ�L : TX → V of L:

θ�L := L ◦Dθ−1 .

Analogously to the Lie derivative (2) of sections on the tangent bundle, we can then define (8) as

L∇
v Dπ := ∇H

∂
∂t

(
Φ−t

)
�
Dπ ◦ Φt

∣∣
0

with respect to ∇H .
In Definition 2 one needs to specify a covariant derivative. This is of course unfortunate, because there 

are many options. However it turns out that we are fortunate nevertheless, because there is a good choice 
which turns out to be closely related to the Bott connection. Given a connection ∇E on E → Y and a map 
π : X → Y , there is a unique [28] connection π∗∇π−1E on π−1E → X, called the pullback connection

π∗∇π−1E
v (s ◦ π) =

(
∇E

Dπvs
)
◦ π,

defined for sections s ∈ Γ∞(Y, E) and extended locally to arbitrary sections 
∑

a c
a(sa ◦ π) ∈ π−1E by 

linearity, where ca ∈ C∞(X, R) for all a. Given a tensor product bundle H = H1 ⊗ H2, connections ∇H1

and ∇H2 on H1 and H2 respectively induce a connection on H as follows:
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∇H(s1 ⊗ s2) = ∇H1s1 ⊗ s2 + s1 ⊗∇H1s2, (9)

where s1 and s2 are sections on H1 and H2, respectively. For the next proposition we require the connections 
to be torsion free. Recall that ∇ is called torsion free if ∇vw −∇wv = �v, w�.
Lemma 3. Let g : M → N and ∇̄TN be a torsion-free connection on TN . Then

g∗∇̄g−1TN
w Dg v − g∗∇̄g−1TN

v Dg w = Dg
�
w, v

�
, (10)

where v, w are sections on TM .

Proof. See page 6 of [28]. �
Proposition 4. Let ∇̄TY and ∇̄T∗(X×R) be torsion-free connections and ∇̄H the tensor product connection (9). 
Then

∇̄H
∂
∂t
D(π ◦ Φ)

∣∣
0 w = π∗∇̄π−1TY

w (Dπv) . (11)

Proof. The proof follows [28] in the first part. With some abuse of notation, we use w(x, t) = (w(x), 0) ∈
T(x,t)(X ⊗ R) and ∂

∂t = (0, 1) ∈ T(x,t)(X ⊗ R). Then

∇̄H
∂
∂t
D(π ◦ Φ)

∣∣∣
0
w = π∗∇̄(π◦Φ)−1TY

∂
∂t

D(π ◦ Φ)w
∣∣∣
0
−D(π ◦ Φ) ∇̄T (X×R)

∂
∂t

w (12)

The second term vanishes because ∇̄T (X×R) = ∇̄TX⊕TR and w and ∂
∂t are orthogonal. Now we use Lemma 3

with M = X ×R, N = Y , and g = π ◦ Φ, as well as the fact that ∇̄TY is torsion free, to obtain (p. 6 [28])

∇̄TY
D(π◦Φ) ∂

∂t
D(π ◦ Φ)w − ∇̄TY

D(π◦Φ)wD(π ◦ Φ) ∂
∂t

= D(π ◦ Φ)
� ∂

∂t
, w

�
.

This vanishes because w doesn’t depend on t. The pullback of this equation allows us to rewrite (12) as

∇̄H
∂
∂t
D(π ◦ Φ)

∣∣
0w =π∗∇̄(π◦Φ)−1TY

w D(π ◦ Φ) ∂
∂t

∣∣∣
0

=π∗∇̄π−1TY
w Dπv.

The last term is in principle over T (X × R) but after having set t = 0 we can omit the TR part. �
Lemma 3 and Proposition 4 show the analogy between L∇̄

v Dπ and the Lie derivative for torsion-free 
connections. Upon substitution of (8) into (11), equation (10) reads

π∗∇̄π−1TY
v Dπw = (L∇̄

v Dπ)w + DπLvw, (13)

which should be compared to

Lv〈dπ,w〉 = 〈Lvdπ,w〉 + 〈dπ,Lvw〉,

where π : X → R is a real-valued function, dπ is a differential one-form, and 〈·, ·〉 : T ∗X × TX → R is the 
natural pairing of tangent and co-tangent vectors.

The linear map L∇̄
v Dπ : TX → π−1TY is a vector bundle homomorphism and the kernel kerL∇̄

v Dπ is a 
smooth distribution, which can be checked by viewing L∇̄

v Dπ as a differential one-form: On each pullback 
patch U ∩ π−1V ⊆ X with local coordinates ψ̃ : V ⊆ Y → R

m, one constructs locally a set of one-forms
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σa := (L∇̄
v Dπ)a = d(Dπv)a + Γ̄a

bc(Dπv)cdπb (14)

where a, b, c are the indices of the local coordinates and Γ̄a
bc is the Christoffel symbol of ∇̄. Here and in 

the remainder of the article, we use the convention that repeated indices are summed over, unless stated 
otherwise. Since π has full rank, (σ1, . . . , σm) spans a smooth m-dimensional local co-frame. We have 
〈σa, w〉 = ((L∇̄

v Dπ)w)a; so, this co-frame annihilates vectors in kerL∇̄
v Dπ.

The motivation for the Definition 2 partly stems from the following two propositions:

Proposition 5. The distribution kerDπ is invariant under the flow Φt iff the space of sections
Γ∞(X, kerDπ) ⊆ Γ∞(X, kerL∇̄

v Dπ).

Proof. By Proposition 3, the distribution kerDπ is invariant under the flow Φt iff the space of sections 
Γ∞(X, kerDπ) is invariant under Lv. By (13), if w ∈ Γ∞(X, kerDπ) then (L∇̄

v Dπ)w = 0 ⇐⇒ Lvw = 0. �
A slightly stronger version that implies Proposition 5 is the following.

Proposition 6. The distribution kerDπ is invariant under the flow Φt iff kerDπ ⊆ kerL∇̄
v Dπ.

Proof. kerDπ is invariant under the flow if (DΦt)x(kerDπ)x ⊆ (kerDπ)Φt(x) for all x, t where it is defined. 
So, (Dπ)Φt(x)(DΦt)x wx = 0 for wx ∈ (kerDπ)x, or in other words (Dπ)Φt(x)(DΦt)x maps (kerDπ)x to 
(kerDπ)Φt(x) so that D(π ◦ Φt)w remains 0 for any w ∈ kerDπ. In infinitesimal terms this means that the 
covariant derivative (8) vanishes, ∇̄H

∂
∂t

D(π ◦ Φt)w
∣∣
0 = (L∇̄

v Dπ)w = 0 on w. �
We would now like to define a partial connection on the pullback bundle π−1TY over sections of kerDπ. 

The next proposition establishes an isomorphism that will help us define the partial connection.

Proposition 7. There is a vector bundle isomorphism ϕ : π−1TY → TX/ kerDπ.

Proof. We shall show that on each fiber ϕx : Tπ(x)Y → TxX/ kerDπx is a vector space isomorphism. Let 
ṽ ∈ Tπ(x)Y . We fix local coordinates and denote the Jacobian of π by Ma

i = ∂πa

∂xi . There exists a unique 
pseudoinverse [29] M+ such that M+M : TxX → (kerM)⊥ is an orthogonal projection and MM+ =
idTπ(x)X . We show that ϕx : ṽ �→

[
M+ṽ

]
is one-to-one and onto. Suppose ϕxṽ = ϕxṽ

′, then M+ṽ−M+ṽ′ = w

and w ∈ kerM . Applying M yields ṽ = ṽ′. To show surjectivity, we construct ṽ = M
[
v
]
, which is the element 

that maps to 
[
v
]
. So ϕx is clearly a fiberwise isomorphism and ϕ is a vector bundle isomorphism. In fact,

ϕ−1 ◦ ρ = Dπ (15)

is the differential. �
Definition 3. We define the partial connection

∇̊π−1TY : Γ∞(X, kerDπ) × Γ∞(X,π−1TY ) → Γ∞(X,π−1TY )

by

∇̊π−1TY
w ṽ := Dπ

�
w, v

�
, (16)

where w ∈ Γ∞(X, kerDπ), v ∈ Γ∞(X, TX) and ṽ = Dπv ∈ Γ∞(X, π−1TY ).
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Definition 3 indeed satisfies the requirements of a connection: Let f ∈ C∞(Y, R) be a test function on Y . 
Recall that Dπw[f ] := w[f ◦ π]; so,

Dπ
�
w, v

�
[f ] = w[v[f ◦ π]] − v[w[f ◦ π]] . (17)

If w ∈ Γ∞(X, kerDπ) then the second term vanishes. The first term is linear in w and a derivation in Dπv.

Proposition 8. The connection defined in (16) is related to the Bott connection (3) through the commutative 
diagram

π−1TY TX/ kerDπ

TX/ kerDππ−1TY

ϕ

ϕ
∇̊TX/ ker Dπ∇̊π−1TY

where TX/ kerDπ = Q in (3).

Proof. By (15),

ϕ∇̊π−1TY
w ṽ = ϕ ◦ ϕ−1 ◦ ρ

�
w, ρ−1(ϕ(ṽ))

�
= ∇̊TX/ ker Dπ

w ϕ(ṽ).

Therefore, ϕ∇̊π−1TY
w ṽ = ∇̊TX/ ker Dπ

w ϕ(ṽ) for any w ∈ Γ∞(X, kerDπ). �
Proposition 9. Let ∇̄TY be a torsion-free connection on TY . Then π∗∇̄π−1TY completes the partial con-
nection (16).

Proof. Let w ∈ Γ∞(X, kerDπ). By (10) we have

π∗∇̄π−1TY
w Dπv = Dπ

�
w, v

�
= ∇̊π−1TY

w Dπv,

and therefore π∗∇̄π−1TY = ∇̊π−1TY + π∗∇̄π−1TY
∣∣
(ker Dπ)⊥ . �

We now connect all of these concepts to exact lumpability.

Theorem 4. The system (4) is exactly lumpable for π iff Γ∞(X, kerDπ) is invariant under Lv.

Proof. First we show that exact lumpability implies the invariance of Γ∞(X, kerDπ) under Lv. By exact 
lumpability, we know from (6) that there is a vector field ṽ such that v[f ◦π] = ṽ[f ] ◦π for any test function 
f ∈ C∞(Y, R). Substituting this condition into (17) yields

Dπ
�
v, w

�
[f ] = v[w[f ◦ π]] − w[ṽ[f ] ◦ π]

The right hand side equals v[Dπw[f ]] −Dπw[ṽ[f ]]. So the left hand side vanishes for w ∈ Γ∞(X, kerDπ).
Secondly we show that exact lumpability is implied by the invariance of Γ∞(X, kerDπ) under Lv. We want 

to define the vector field ṽ as a smooth function of y such that ṽπ(x) = Dπxv(x) for all x ∈ X. This would 
imply exact lumpability due to (6). If Dπxv(x) is constant along the fibers x ∈ π−1(y), then ṽ is well defined 
everywhere modulo smoothness, since π is surjective. We consider a vector field w ∈ Γ∞(X, kerDπ) tangent 
to the fibers. By Proposition 9 the covariant derivative π∗∇̄π−1TY

w Dπv = ∇̊π−1TY
w Dπv = Dπ�w, v� = 0

vanishes if Γ∞(X, kerDπ) is invariant under Lv.
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It remains to show that ṽ is a smooth function of y. This is the case if for any smooth curve γ̃y : (−ε, ε) →
Y the composition ṽ ◦ γ̃y is a smooth function in time. But any such curve can be viewed as the composition 
of π with a curve γx : (−ε, ε) → X, where π(x) = y. Since for any γx the equality ṽ ◦ π ◦ γx = Dπ v ◦ γx
holds, and since the right hand side is a composition of smooth functions and is thus also smooth, it follows 
that ṽ must be smooth. �
Corollary 5. The system (4) is exactly lumpable for π iff kerDπ is invariant under the flow Φ.

Proof. This follows immediately from Proposition 3. �
Corollary 6. The system (4) is exactly lumpable for π iff kerDπ ⊆ kerL∇̄

v Dπ.

Proof. This follows from Proposition 6. �
We make the connection to control theory by introducing the 2-observability map:

O2 :=
(

Dπ

L∇̄
v Dπ

)
: TX → π∗TY ⊕ π∗TY ,

as the mapping

v �→ (Dπ ⊕ L∇̄
v Dπ)(v ⊕ v)

The n-observability map On : TX →
⊕n

π∗TY is defined analogously with higher-order Lie derivatives. In 

the linear case, where ẋ = v(x) = Ax and π(x) = Cx, we have Dπ = C, L∇̄
v Dπ = CA, and O2 =

(
C

CA

)
; 

furthermore, On is just the standard observability matrix familiar from linear control theory [30], where the 
system is called observable if rankOn = n.

Proposition 10. The system (4) is exactly lumpable for π iff rankO2 = rankDπ.

Proof. We consider the situation locally. Let ψ̃ : V ⊆ Y → R
m be local coordinates on a patch V ⊆ Y , 

indexed by a, b and ψ : U ∩ π−1V → R
n coordinates on a pullback patch indexed by i. The rank of O2 is 

equal to the rank of Dπ if and only if

(L∇̄
v Dπ)ai =

∑
b

φa
b(Dπ)bi (18)

with smooth coefficient functions φa
b. Now w ∈ kerDπ implies w ∈ kerL∇̄

v Dπ, which implies exact lumpabil-
ity by Proposition 6. On the other hand, considering the local coordinate form (14) of L∇̄

v Dπ and demanding 
the system to be exactly lumpable,

(L∇̄
v Dπ)ai = ∂

∂xi
(ṽa ◦ π) + Γ̄a

bc(ṽc ◦ π)∂π
b

∂xi
=

∑
b

(
∂ṽa

∂yb
+ Γ̄a

bcṽ
c

)
◦ π (Dπ)bi ,

which is of the form (18) and thus implies that rankO2 = rankDπ. �
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Corollary 7. The system (4) is exactly lumpable iff locally:

m∧
b=1

(Dπ)b ∧ d (Dπv)a = 0 ∀ a ∈ {1, . . . ,m}.

Proof. Proposition 10 states that the local condition (18) is necessary and sufficient for exact lumpability. 
So, the vectors (Dπ)a and (L∇̄

v Dπ)b are linearly dependent. However, from (14) it is seen that the second 
summand of (L∇̄

v Dπ)b is already proportional to (Dπ)a, with the proportionality constant given by the 
Christoffel symbol. Hence, only the first summand d (Dπv)a has to be checked for linear dependence. �
3. Properties and examples

We next discuss some properties of exactly lumpable systems and illustrate them with examples. A very 
prominent class of submersions are fiber bundles π : X → Y , and our examples are fiber bundle maps 
mostly over the 2-sphere Y = S2. We begin by relating lumpability to the theory of integrable systems. 
Recall that a first integral for the dynamics v is a function I : X → R such that v[I] = 0.

Proposition 11. Any system with a first integral I of rank 1 is exactly lumpable.

Proof. Since rankDI = 1, the quotient map π = I is submersive. There exists a vector field ṽ = 0 on Im(I)
such that DIv = v[I] = 0 = ṽ ◦ I. Thus, v is exactly lumpable for I. �
Remark 8. Proposition 11 also holds true if we relax the condition that exact lumpings have to be submersive 
and allow for target manifolds that have boundaries or are singular in other ways but can nevertheless be 
endowed with a smooth structure.

In order to illustrate Proposition 11, we consider as an example the geodesic flow on the 2-sphere, which is 
generated by a vector field on the tangent bundle TS2. We embed TS2 ↪→ R

6 by (x, v) �→ (X, V ) ∈ R
3×R

3, 
together with the requirement that the Euclidean dot products for X and V satisfy X ·X = 1 and X ·V = 0. 
Then,

d
dtXi = Vi

d
dtVi = −(V · V )Xi

(19)

generates the geodesic flow [31]. There is a stationary submanifold Ω = {(X, V ) ∈ TS2 : V = 0}.
We will use Proposition 11 to show that the geodesic flow (19) on TS2\Ω is exactly lumpable for 

I : TS2 → R, given by I(X, V ) = V · V . First we note that I is a first integral to (19), which can eas-
ily be seen by differentiating I with respect to time and using X ·V = 0. The geodesic flow can be viewed as 
a Hamiltonian flow whose energy is given by 1

2V · V . The rank of I is 1, except on the stationary submani-
fold Ω, where it equals 0. Hence, I is submersive on TS2\Ω and satisfies v[I] = 0. Therefore, the dynamics 
is exactly lumpable for I by Proposition 11.

As a consequence of the energy conservation, the geodesic flow is just considered on one energy shell, say 
V · V = 1; so it effectively takes place on the unit tangent bundle UTS2 → S2.

Proposition 12. Any dynamics v is exactly lumpable for the quotient map π : X → X/Φ to the orbit space.

Proof. The kernel of π is simply the distribution spanned by v. This is trivially invariant under the flow Φ
generated by v, since DΦsv = v ◦ Φs by definition and v = DΦt

∂
∂t

∣∣∣
0
. Exact lumpability then follows from 

Corollary 5. �
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Fig. 1. We choose local coordinates (x, y, α) ∈ ψ(U), where U is the unit tangent bundle restricted to the north pole N ⊂ S2. The 
function ψ acts by stereographic projection on the 2-sphere and maps the unit tangent vector v to an angle α ∈ [0, 2π), which is the 
angle enclosed by the x-direction and the push forward of v under the stereographic projection. We depict fibers of the projection 
π in the range π/2 ≤ α ≤ 3π/2 from two different perspectives, indicating also the flow field in (a). The longitudes and latitudes 
of the sphere are seen on the bottom of the figures for reference.

To exemplify this proposition, we now consider the geodesic flow on the unit tangent bundle of the 
2-sphere UTS2. We claim that it is exactly lumpable for the cross product (X, V ) �→ X × V ∈ S2 and use 
the above proposition to show this.

There is an isomorphism [31] between the unit tangent bundle UTS2 and SO(3), given by (X, V ) �→ M , 
where Mi1 = Xi, Mi2 = Vi, and Mi3 = (X×V )i, or in compressed notation M = (X|V |X×V ). So, for any 
p ∈ S2 this matrix maps to another point y = M · p ∈ S2, and there is a collection of lumping candidates 
indexed by p. We choose p = (0, 0, 1) and calculate the vector field induced by π(X, V ) = M(X, V ) p =
X × V :

3∑
i=1

∂π

∂Xi

d

dt
Xi +

3∑
i=1

∂π

∂Vi

d

dt
Vi = (0, 0, 0) .

Thus, the dynamics (19) on UTS2 lies in the kernel of Dπ. But π is surjective onto S2, it has constant rank, 
and dim kerDπ = 1. So, the vector field and hence the flow is parallel to the fibers and every point on S2

corresponds to a flowline of the geodesic flow. This is illustrated in Fig. 1. By Proposition 12, π is an exact 
lumping.

We next discuss the relation of lumpability to the symmetries of the system. We shall show that the 
proper action of a Lie group that is compatible with the vector field results in an exact lumping; however, 
the converse is not true. Let G be a finite Lie group with Lie algebra g. We denote by A : G → Diff(X) the 
left action of the Lie Group on X and a : g → Γ∞(X, TX) the corresponding action of the Lie algebra. The 
action on the whole algebra is denoted by D = a(g).

Proposition 13. If D is invariant under Lv and G acts properly and freely, then v is exactly lumpable for 
the quotient map π : X → X/G.
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Proof. By the quotient manifold theorem [1] the quotient map of a proper and free Lie group action is a 
submersion and the quotient space has a natural smooth manifold structure. The vector fields that generate 
the action are annihilated by the differential of the quotient map; therefore, D = Γ∞(X, kerDπ) and so 
Proposition 4 implies exact lumpability. �

The converse statement to Proposition 13 is not true. Given a vector field v and a lumping π, the level 
sets need not be orbits of a proper and free Lie group action. The integrable distribution of a free Lie group 
action is spanned by its linearly independent generators making D a finitely generated submodule of the 
sections of TX. There are many integrable distributions that are not finitely generated and thus do not 
stem from a Lie Group action. Any section of such a distribution gives rise to a lumping that does not stem 
from a Lie group action.

The Hopf fibration over S2,

S1 ↪→ S3 π−→ S2,

illustrates Proposition 13. We use the formulation of the Hopf map in terms of the quaternions H = (R4, 
, ∗), 
which is the vector space R4 together with an involution ∗ : H → H and an algebra product · 
 · : H ×H → H. 
Let a = (a0, a1, a2, a3) and b = (b0, b1, b2, b3) be two elements in H. Then 
 is defined by

(a 
 b)0 =a0b0 − ajbj

(a 
 b)i =a0bi + aib0 + εijkajbk,

where the indices i, j, k run over {1, 2, 3} and εijk is the Levi-Civita symbol. It is totally antisymmetric in 
its indices. The involution acts as (a0, a1, a2, a3) �→ (a0, −a1, −a2, −a3). The 3-sphere S3 can be embedded 
into H by UH = {x ∈ H : ||x|| = 1}. To each unit quaternion x ∈ UH one can associate an element in 
SO(3), acting on purely imaginary quaternions u ∈ IH = {a ∈ H : a0 = 0} ∼= R

3 by

u �→ Rx(u) = x 
 u 
 x∗ ∈ IH.

One can show that the mapping x �→ Rx is a smooth, nondegenerate, two-to-one, surjective assignment of 
any x to an element of SO(3) and that S3 is in fact the double cover of SO(3). Hence there is a collection 
of submersions πu : S3 → S2 indexed by vectors u ∈ S2 that act like πu(x) = Rx(u). Choosing u = (0, 0, 1)
and setting π = πu we get

πi(x) = (x2
0 − xjxj)δi3 + 2x0εij3xj + 2x3xi (20)

as one example of a Hopf map. Alternatively, one can describe this map as the quotient of a U(1) action on 
S3 ∼= UH. We use the abbreviation I = (1, 0, 0, 0), I = (0, 1, 0, 0), J = (0, 0, 1, 0), and K = (0, 0, 0, 1). They 
satisfy the quaternion algebra I 
 I = J 
 J = K 
K = I 
 J 
 K = −I. The U(1) action

(eKt, x) �→ eKt 
 (x0 + Kx3) + e−Kt 
 J 
 (x2 −Kx1) (21)

is generated by the vector field w(x) = (−x3, x2, −x1, x0). We now show that π is the quotient map of the 
U(1)-action (21). The differential of (20) is given by

(Dπ)iμ = 2(x0δμ0 − xjδμj)δi3 + 2(xjδμ0 + x0δμj)εij3 + 2δμ3xi + 2δμix3.

A calculation reveals that Dπw = 0, and w spans kerDπ since π is a submersion and kerDπ is one-
dimensional.
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Having introduced the lumping map π : S3 → S2 in the framework of quaternions and the Lie algebra 
action, generated by w, we now proceed with the example. There is a collection of vector fields vc(x) = c 
x, 
indexed by c ∈ IH, given by

(vc)μ(x) = −δμ0cjxj + δμjcjx0 + δμjεjklckxl,

which is exactly lumpable for π as in (20). We will now show that this follows from Proposition 13. The Lie 
group U(1) is compact; so, its action is proper and, since w is nowhere vanishing, it is also free. We check 
whether Lvcw ∈ Γ∞(X, kerDπ):

[w, vc]α = wμ
∂(vc)α
∂xμ

− (vc)μ
∂wα

∂xμ

= + (x1c2 − x0c3 − x2c1 + x0c3 − ε3klxkcl)δα0

− (x0c2 + ε2klxlck)δα1 + (x0c1ε1klxlck)δα2 + (xjcj − x0c0)δα3

− (x3cj − εjk1x2ck + εjk2x1ck − εjk3x0ck)δαj

= 0 .

So we invoke Proposition 13 which implies lumpability. In fact,

(Dπvc)i(x) = 2εijkcjπk(x).

The lumped dynamics for the vector field that generates quaternion rotations vc = d
dt

∣∣
0e

tc 
 x = c 
 x under 
the quotient map π is ṽc(y) = 2 c × y. Clearly it runs tangent to the sphere since ṽc · y = 0 for y ∈ S2.

Proposition 14. Exact lumpings preserve invariant sets.

Proof. Let A be a forward (resp., backward) invariant set, i.e. for all t ≥ 0 the flow preserves the invariant set 
ΦtA ⊆ A (resp., Φ−tA ⊆ A). After a projection with the lumping map, π◦ΦtA ⊆ πA (resp., π◦Φ−tA ⊆ πA). 
Invoking the lumping condition from Proposition 2 yields

Φ̃t ◦ πA ⊆ πA (resp., Φ̃−t ◦ πA ⊆ πA);

so, πA is a forward (resp., backward) invariant set of Φ̃t. �
This property can be exploited to determine invariant sets of the dynamics by finding the stationary points 

of a 1-dimensional exact lumping. We conclude with a final example which also illustrates this feature. For 
a set of real coefficients ai which are not all zero, the logistic dynamics

ẋi = xi(1 − ajxj), i = 1, . . . , n,

has two invariant sets Ω0 = {ajxj = 1} and Ω1 = {x = 0} that are preserved under the lumping map 
π(x) = ajxj . With vi = xi(1 − ajxj) we calculate

Dπv(x) = ∂π

∂xi
vi(x) = aixi(1 − ajxj)

and find that ṽ(y) = y(1 − y) is the lumped dynamics. Hence by Proposition 14, πΩ0 and πΩ1 are invariant 
under ṽ.
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