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1. INTRODUCTION

The motivation to consider the topics of this article comes from our attempt to under-
stand locally Hilbert C∗-modules from an operator theory point of view. More precisely,
a generalisation of the concept of C∗-algebra that is called locally C∗-algebra, cf. Inoue
[7], triggered the investigations of locally Hilbert C∗-modules. Locally C∗-algebras
have been called also LMC∗-algebras [14], b∗-algebras [1], and pro C∗-algebras [15],
[13]. Inoue also proved that, in order to have an operator model for locally C∗-algebra,
a strictly inductive limit of Hilbert spaces, later called locally Hilbert space, is a natural
concept to be used. Following this idea and employing techniques from dilation theory,
in [4] we provided an operator model for locally Hilbert C∗-modules whose utility was
first tested by obtaining a direct proof of existence of the exterior tensor products for
locally Hilbert C∗-modules. Other applications are expected as well.

On the other hand, a locally Hilbert space bears an inductive limit topology,
a pre-Hilbert topology, and a weak topology as well, and their relations require to be
clarified. In this respect, some attempts performed in [8] turned out to be wrong, see
our Examples 3.7 and 3.9.

This note is an investigation of some basic properties of locally Hilbert spaces
with respect to their topological properties, the geometry of their subspaces, linear
functionals and dual spaces, all these making the contents of Section 3. In this respect,
using some classical duality theory, we first clarify for which subspaces of a locally
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Hilbert space we expect to have orthocomplementarity and then we characterise
the topological dual spaces of Hilbert spaces as projective limits of Hilbert spaces
and some of their distinguished linear functionals, those norm continuous and those
weakly continuous. Briefly, these are based on the observation that a strictly inductive
system of Hilbert spaces gives naturally rise to a projective system of Hilbert space
which characterises the topological dual of the underlying locally Hilbert space. This
aspect is related to the concept of coherent transformation between inductive limits
or between projective limits spaces. We also included a preliminary section that fixes
the terminology and basic results on projective limits and inductive limits of locally
convex spaces, cf. [5, 11,12], that we use. In addition, in Subsection 2.4 we reviewed
some consequences of the general duality theory for the geometry of subspaces of
pre-Hilbert spaces.

2. SOME NOTATION AND PRELIMINARIES

2.1. PROJECTIVE LIMITS OF LOCALLY CONVEX SPACES.

A projective system of locally convex spaces is a pair ({Vα}α∈A; {ϕα,β}α≤β) subject
to the following properties:

(ps1) (A;≤) is a directed poset (partially ordered set);
(ps2) {Vα}α∈A is a family of locally convex spaces;
(ps3) {ϕα,β | ϕα,β : Vβ → Vα, α, β ∈ A, α ≤ β} is a family of continuous linear maps

such that ϕα,α is the identity map on Vα for all α ∈ A;
(ps4) the following transitivity condition holds

ϕα,γ = ϕα,β ◦ ϕβ,γ , for all α, β, γ ∈ A, such that α ≤ β ≤ γ. (2.1)

For such a projective system of locally convex spaces, consider the vector space
∏

α∈A
Vα = {(vα)α∈A | vα ∈ Vα, α ∈ A}, (2.2)

with product topology, that is, the weakest topology which makes the canonical
projections

∏
α∈A Vα → Vβ continuous, for all β ∈ A. Then define V as the subspace

of
∏
α∈A Vα consisting of all families of vectors v = (vα)α∈A subject to the following

transitivity condition

ϕα,β(vβ) = vα, for all α, β ∈ A, such that α ≤ β, (2.3)

for which we use the notation
v = lim←−

α∈A
vα. (2.4)

Further on, for each α ∈ A, define ϕα : V → Vα as the linear map obtained by
composing the canonical embedding of V in

∏
α∈A Vα with the canonical projection
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on Vα. Observe that V is a closed subspace of
∏
α∈A Vα and that the topology of V

induced by the product topology from
∏
α∈A Vα can be seen as well as the weakest

locally convex topology that makes the linear maps ϕα : V → Vα continuous, for all
α ∈ A. The pair (V; {ϕα}α∈A) is called a projective limit of locally convex spaces
induced by the projective system ({Vα}α∈A; {ϕα,β}α≤β) and is denoted by

V = lim←−
α∈A
Vα. (2.5)

With notation as before, a locally convex space W and a family of continu-
ous linear maps ψα : W → Vα, α ∈ A, are compatible with the projective system
({Vα}α∈A; {ϕα,β}α≤β) if

ψα = ϕα,β ◦ ψβ , for all α, β ∈ A with α ≤ β. (2.6)

For such a pair (W; {ψα)}α∈A, there always exists a unique continuous linear map
ψ : W → V = lim←−α∈A Vα such that

ψα = ϕα ◦ ψ, α ∈ A. (2.7)

Note that the projective limit (V; {ϕα}α∈A) defined before is compatible with the
projective system ({Vα}α∈A; {ϕα,β}α≤β) and that, in this sense, the projective limit
(Vα; {ϕα}α∈A) is uniquely determined by the projective system ({Vα}α∈A; {ϕα,β}α≤β).

The projective limit of a projective system of Hausdorff locally convex spaces is
always Hausdorff and, if all locally convex spaces are complete, then the projective
limit is complete.

2.2. INDUCTIVE LIMITS OF LOCALLY CONVEX SPACES

An inductive system of locally convex spaces is a pair ({Xα}α∈A; {χβ,α}α≤β) subject
to the following conditions:

(is1) (A;≤) is a directed poset;
(is2) {Xα}α∈A is a net of locally convex spaces;
(is3) {χβ,α : Xα → Xβ | α, β ∈ A, α ≤ β} is a family of continuous linear maps such

that χα,α is the identity map on Xα for all α ∈ A;
(is4) the following transitivity condition holds

χδ,α = χδ,β ◦ χβ,α, for all α, β, γ ∈ A with α ≤ β ≤ δ. (2.8)

Recall that the locally convex direct sum
⊕

α∈A Xα is the algebraic direct sum,
that is, the subspace of the direct product

∏
α∈A defined by all families {xα}α∈A with

finite support, endowed with the strongest locally convex topology that makes the
canonical embedding Xα ↪→

⊕
β∈A Xβ continuous, for all β ∈ A. In the following, we

consider Xα canonically identified with a subspace of
⊕

β∈A Xβ and then, let the linear
subspace X0 of

⊕
α∈A Xα be defined by

X0 = Lin{xα − χβ,α(xα) | α, β ∈ A, α ≤ β, xα ∈ Xα}. (2.9)
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The inductive limit locally convex space (X ; {χα}α∈A) of the inductive system of
locally convex spaces ({Xα}α∈A; {χβ,α}α≤β) is defined as follows. Firstly,

X = lim−→
α∈A
Xα =

(⊕

α∈A
Xα
)
/X0. (2.10)

Then, for arbitrary α ∈ A, the canonical linear map χα : Xα → lim−→α∈A Xα is defined
as the composition of the canonical embedding Xα ↪→

⊕
β∈A Xβ with the quotient

map
⊕

α∈A Xβ → X . The inductive limit topology of X = lim−→α∈A Xα is the strongest
locally convex topology on X that makes the linear maps χα continuous, for all α ∈ A.

An important distinction with respect to the projective limit is that, under the
assumption that all locally convex spaces Xα, α ∈ A, are Hausdorff, the inductive limit
topology may not be Hausdorff, unless the subspace X0 is closed in

⊕
α∈A Xβ , see

[10] and [12]. Also, in general, the inductive limit of an inductive system of complete
locally convex spaces is not complete.

With notation as before, a locally convex space Y, together with a family of
continuous linear maps κα : Xα → Y, α ∈ A, is compatible with the inductive system
({Xα}α∈A; {χβ,α}α≤β) if

κα = κβ ◦ χβ,α, α, β ∈ A, α ≤ β. (2.11)

For such a pair (Y; {κα)}α∈A, there always exists a unique continuous linear map
κ : Y → X = lim−→α∈A Xα such that

κα = κ ◦ χα, α ∈ A. (2.12)

Note that the inductive limit (X ; {χα}α∈A) is compatible with ({Xα}α∈A; {χβ,α}α≤β)
and that, in this sense, the inductive limit (X ;χα}α∈A) is uniquely determined by the
inductive system ({Xα}α∈A; {χβ,α}α≤β).

2.3. COHERENT MAPS.

Let (X ; {χα}α∈A), X = lim−→α∈A Xα, and (Y; {κα}α∈A), Y = lim−→α∈A Yα, be two induc-
tive limits of locally convex spaces indexed by the same directed poset A. A linear
map g : X → Y is called coherent if
(cim) There exists {gα}α∈A a net of linear maps gα : Xα → Yα, α ∈ A, such that

g ◦ χα = κα ◦ gα for all α ∈ A.
In terms of the underlying inductive systems ({Xα}α∈A; {χβ,α}α≤β) and
({Yα}α∈A; {κβ,α}α≤β), (cim) is equivalent with
(cim)′ There exists {gα}α∈A a net of linear maps gα : Xα → Yα, α ∈ A, such that

κβ,α ◦ gα = gβ ◦ χβ,α, for all α, β ∈ A with α ≤ β.
There is an one-to-one correspondence between the class of all coherent linear maps
g : X → Y and the class of all nets {gα}α∈A as in (cim) or, equivalently, as in (cim)′.

Let (V; {ϕα}α∈A), V = lim←−α∈A Vα, and (W; {ψα}α∈A), W = lim←−α∈AWα, be two
projective limits of locally convex spaces indexed by the same directed poset A. A linear
map f : V → W is called coherent if
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(cpm) There exists {fα}α∈A a net of linear maps fα : Vα → Wα, α ∈ A, such that
ψα ◦ f = fα ◦ ϕα for all α ∈ A.

In terms of the underlying projective systems ({Vα}α∈A; {ϕα,β}α≤β) and
({Wα}α∈A; {ψα,β}α≤β), (cpm) is equivalent with
(cpm)′ There exists {fα}α∈A a net of linear maps fα : Vα → Wα, α ∈ A, such that

ψα,β ◦ fβ = fα ◦ ϕα,β , for all α, β ∈ A with α ≤ β.
There is an one-to-one correspondence between the class of all coherent linear maps
f : V → W and the class of all nets {fα}α∈A as in (cpm) or, equivalently, as in (cpm)′.

2.4. ORTHOCOMPLEMENTED SUBSPACES IN PRE-HILBERT SPACES.

In the following we consider an inner product space H and let H̃ denote its completion
to a Hilbert space. We will denote by 〈·, ·〉 the inner product on both H and H̃, when
there is no danger of confusion. The ambiental space is H and the weak topology on
H is determined by the set of linear functionals H 3 h 7→ 〈h, k〉, for k ∈ H. On the
other hand, there is a weak topology on the Hilbert space H̃, determined by all linear
functionals H̃ 3 h 7→ 〈h, k〉, for k ∈ H̃, and this induces a topology on H, determined
by all linear functionals H 3 h 7→ 〈h, k〉, for k ∈ H̃, different than the weak topology
on H; in general, the weak topology of H is weaker than the topology induced by the
weak topology of H̃ on H.

The following Proposition is a special case of a well-known result in duality theory,
e.g. see Theorem 1.3.1 in [9].
Proposition 2.1. If the linear functional ϕ on the inner product space H is weakly
continuous then there exists a vector h0 ∈ H such that

ϕ(h) = 〈h, h0〉, h ∈ H.
For an arbitrary nonempty subset S of H we denote, as usually, the orthogonal

companion of S by S⊥ = {k ∈ H | 〈h, k〉 = 0 for all h ∈ H}. Clearly, S⊥ is always
weakly closed. We first show that, as in the Hilbert space case, in any pre-Hilbert
space the weak topology provides a characterisation of those linear manifolds L in H
such that L = L⊥⊥. The next two results are also known, even under more general
assumptions, e.g. see [3] for the case of indefinite inner product spaces, but we present
short proofs for the reader’s convenience.
Lemma 2.2. Let L be a linear manifold of H and denote by L its weak closure. Then
L⊥ is weakly closed and L⊥ = L⊥.
Proof. If h0 6∈ L⊥ then there exists k ∈ L such that 〈h0, k〉 6= 0. Since the inner
product is weakly continuous in the first variable there exists a neighbourhood V of
h0, with respect to the weak topology, such that [h, k] 6= 0 for all h ∈ V ∩ L⊥. Hence
L⊥ is weakly closed.

Since L ⊆ L we obtain L⊥ ⊇ L⊥. Conversely, if h 6∈ L⊥ there exists k0 ∈ L such
that 〈h, k0〉 6= 0. Then 〈h, k〉 6= 0 for all k in a neighbourhood U of k0. Since U ∩L 6= ∅
it follows h 6∈ L⊥.
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Proposition 2.3. A linear manifold L of the inner product space H is weakly closed
if and only if L = L⊥⊥.

Proof. From Lemma 2.2 we obtain L ⊆ L⊥⊥. Conversely, let h0 6∈ L. Then there exists
ε > 0 and {k1, . . . , kn} ⊂ H such that

{h | |〈h− h0, kj〉| < ε, 1 ≤ j ≤ n} ∩ L = ∅.

Let us consider the seminorms on H

p(h) = nmax
j=1
|〈h, kj〉|, h ∈ H,

q(h) = inf
l∈L

p(h− l), l ∈ H.

Then q(h0) ≥ ε. By the complex version of the Hahn–Banach Theorem we obtain
a linear functional ϕ on H such that ϕ(h0) = ε and

|ϕ(h)| ≤ q(h), h ∈ H. (2.13)

By definition, q is weakly continuous hence ϕ is weakly continuous. Thus, by Proposition
2.1, there exists k0 ∈ H such that

ϕ(h) = 〈h, k0〉, h ∈ H.

From (2.13) and the definition of q, it follows k0 ∈ L⊥ while 〈h0, k0〉 = ε > 0, hence
h0 6∈ L⊥⊥.

For two linear subspaces S and L of H, that are mutually orthogonal, we denote
by S ⊕L their algebraic sum. Also, a linear operator T : H → H is called projection if
T 2 = T and Hermitian if 〈Th, k〉 = 〈h, Tk〉 for all h, k ∈ H. It is easy to see that any
Hermitian projection T is positive in the sense 〈Th, h〉 ≥ 0 for all h ∈ H and that T is
a Hermitian projection if and only if I − T is the same.

The following result characterises the linear subspaces S of H that are ortho-
complemented, that is, H = S ⊕ S⊥. From the previous result it is clear that an
orthocomplemented subspace S has the property that S = S⊥⊥ and hence, it is
necessarily weakly closed, but the general picture is a bit more involved than that.

Proposition 2.4. Let S be a linear subspace of H. The following assertions are
equivalent:

(i) The weak topology of S coincides with the topology induced on S by the weak
topology of H.

(ii) For each h ∈ H the functional S 3 y 7→ 〈y, h〉 is continuous with respect to the
weak topology of S.

(iii) H = S ⊕ S⊥.
(iv) There exists a Hermitian projection P : H → H such that Ran(P ) = S.
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Proof. (i)⇒(ii). Let h ∈ H and observe that the linear functional S 3 y 7→ 〈y, h〉 is
continuous with respect to the topology induced by the weak topology of H on S. Since,
by assumption, these two topologies coincide, it follows that this linear functional is
weakly continuous on S.

(ii)⇒(iii). Let h ∈ H be an arbitrary vector and consider the linear functional S 3
y 7→ 〈y, h〉 which, by assumption, is weakly continuous on S hence, by Proposition 2.1,
it follows that there exists h0 ∈ S such that 〈y, h〉 = 〈y, h0〉 for all y ∈ S. This implies
that h1 := h− h0 ∈ S⊥ hence h ∈ S ⊕ S⊥. This proves that H = S ⊕ S⊥.

(iii)⇒(iv). The assumption means that for any h ∈ H there exist unique h0 ∈ S
and h1 ∈ S⊥ such that h = h0, so one can define Ph = h0. It is easy to show that P
is a Hermitian projection on H and that Ran(P ) = S.

(iv)⇒(i). The topology induced by the weak topology of H on S is determined by
the linear functionals S 3 y 7→ 〈y, h〉, when h runs in H. Since, for any h ∈ H and any
y ∈ S we have 〈y, h〉 = 〈Py, h〉 = 〈y, Ph〉, it follows that any of these linear functionals
can be represented, for some h0 = Ph ∈ S, as a linear functional S 3 y 7→ 〈y, h0〉,
hence the two topologies coincide.

3. MAIN RESULTS

3.1. LOCALLY HILBERT SPACES.

A locally Hilbert space is an inductive limit

H = lim−→
λ∈Λ
Hλ =

⋃

λ∈Λ
Hλ, (3.1)

of a strictly inductive system of Hilbert spaces {Hλ}λ∈Λ, that is,

(lhs1) (Λ;≤) is a directed poset;
(lhs2) {Hλ; 〈·, ·〉Hλ}λ∈Λ is a net of Hilbert spaces;
(lhs3) for each λ, µ ∈ Λ with λ ≤ µ we have Hλ ⊆ Hµ;
(lhs4) for each λ, µ ∈ Λ with λ ≤ µ the inclusion map Jµ,λ : Hλ → Hµ is isometric,

that is,
〈x, y〉Hλ = 〈x, y〉Hµ , for all x, y ∈ Hλ. (3.2)

As in Subsection 2.3, for each λ ∈ Λ, letting Jλ : Hλ → H be the inclusion of Hλ in⋃
λ∈ΛHλ, the inductive limit topology on H is the strongest that makes the linear maps

Jλ continuous for all λ ∈ Λ. Also, it is clear that a locally Hilbert space is uniquely
determined by the strictly inductive system of Hilbert spaces as in (lhs1)–(lhs4).

On H a canonical inner product 〈·, ·〉H can be defined as follows:

〈h, k〉H = 〈h, k〉Hλ , h, k ∈ H, (3.3)

where λ ∈ Λ is any index for which h, k ∈ Hλ. It follows that this definition of the
inner product is correct and, for each λ ∈ Λ, the inclusion map Jλ : (Hλ; 〈·, ·〉Hλ)→
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(H; 〈·, ·〉H) is isometric. This implies that, letting ‖ · ‖H denote the norm induced by
the inner product 〈·, ·〉H on H, the norm topology on H is weaker than the inductive
limit topology of H. Since the norm topology is Hausdorff, it follows that the inductive
limit topology on H is Hausdorff as well. In addition, on H we consider the weak
topology as well, that is, the locally convex topology induced by the family of seminorms
H 3 h → |〈h, k〉|, indexed by k ∈ H. Of course, the weak topology on any locally
Hilbert space is Hausdorff separated as well.

Note that, a locally Hilbert space is a rather special type of locally convex space
and, in general, not a Hilbert space, although it bears a canonical structure of a
pre-Hilbert space. In particular, the results presented in Subsection 2.4 with respect
to orthogonal companions and orthocomplentarity apply. For λ ≤ µ we denote by
Hµ 	Hλ the orthogonal companion of Hλ in Hµ.
Lemma 3.1. For each λ ∈ Λ we have H = Hλ ⊕ H⊥λ , in particular there exists
a unique Hermitian projection Pλ : H → H such that Ran(Pλ) = Hλ.
Proof. Clearly, H ⊇ Hλ ⊕ H⊥λ . Conversely, let h ∈ H arbitrary. Then there exists
µ ∈ Λ such that λ ≤ µ, and hence Hλ ⊆ Hµ, with h ∈ Hµ = Hλ ⊕ (Hµ 	Hλ). Since
Hµ 	Hλ ⊆ H⊥λ it follows that h ∈ Hλ ⊕H⊥λ .

The existence (and uniqueness) of the Hermitian projection Pλ : H → H with
Ran(Pλ) = Hλ follows as in the proof of Proposition 2.4 (iii)⇒(iv).

With respect to the decomposition provided by Lemma 3.1, the underlying locally
Hilbert space structure of H⊥λ can be explicitly described.

Proposition 3.2. Fix λ ∈ Λ arbitrary and denote by Λλ = {µ ∈ Λ | λ ≤ µ} the
branch of Λ defined by λ. Then, with respect to the induced order relation ≤, Λλ is a
directed poset, {Hµ	Hλ | µ ∈ Λλ} is a strictly inductive system of Hilbert spaces, and

H⊥λ = lim−→
µ∈Λλ

(Hµ 	Hλ). (3.4)

Proof. The fact that for each λ ∈ Λ the branch Λλ is a directed poset is clear. Clear
is also the fact that {Hµ 	H⊥λ }µ∈Λλ is a strictly inductive system of Hilbert spaces.
In order to finish the proof we only have to prove that

H⊥λ =
⋃

µ∈Λλ

(Hµ 	Hλ). (3.5)

One inclusion of (3.5) is clear. In order to prove the converse inclusion, let h ∈ H⊥λ
be an arbitrary vector. Then h ∈ H =

⋃
ν∈ΛHν and hence there exists ν ∈ Λ such

that h ∈ Hν . Since Λ is directed, without loss of generality we can assume that λ ≤ ν,
hence Hλ ⊆ Hν . Then h ∈ Hν 	Hλ, hence (3.5) holds.

The following remark shows that any pre-Hilbert space can be viewed as a locally
Hilbert space.

Remark 3.3. Let H be an arbitrary pre-Hilbert space. Consider F(H) the collection
of all finite dimensional subspaces of H and note that the inclusion makes F(H)
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a directed ordered set. Then observe that F(H) can be viewed as a strictly inductive
system of Hilbert spaces in a canonical way and that

H = lim−→
L∈F(H)

L =
⋃

L∈F(H)

L.

3.2. LINEAR FUNCTIONALS ON LOCALLY HILBERT SPACES.

Let H = lim−→λ∈ΛHλ be a locally Hilbert space. Let H] be the linear space consisting of
all linear functionals f : H → C that are continuous with respect to the inductive limit
topology of H. For each λ ∈ Λ we consider the canonical projection H] 3 f 7→ fλ =
f |Hλ ∈ H]λ, where H

]
λ denotes the topological dual space of Hλ, viewed as a Banach

space with the functional norm, and then, for each λ, µ ∈ Λ such that λ ≤ µ, there
is a canonical projection H]µ 3 f 7→ f |Hλ ∈ H]λ. It is easy to see that, in this way,
we obtain a projective system of Banach spaces {H]λ}λ∈Λ and that H] is canonically
identified with its projective limit

H] = lim←−
λ∈Λ
H]λ, (3.6)

such that, for each f ∈ H], letting fλ = f |Hλ ∈ H]λ, we identify f with lim←−λ∈Λ fλ. We
consider on H] the projective limit topology induced by (3.6).
Lemma 3.4. For every f ∈ H] there exists a unique net (f̂λ)λ∈Λ subject to the
following properties:
(i) f̂λ ∈ Hλ for each λ ∈ Λ.
(ii) For every λ ≤ µ we have Pλ,µf̂µ = f̂λ, where Pλ,µ is the orthogonal projection of
Hµ onto Hλ.

(iii) For every λ ∈ Λ, f(h) = 〈h, f̂λ〉Hλ , for all h ∈ Hλ.
Proof. For each λ ∈ Λ consider the linear map Φλ : H]λ → Hλ defined by Φλ(ϕ) = ϕ̂,
for all ϕ ∈ H]λ, where ϕ̂ ∈ Hλ is, via the Riesz Representation Theorem, the unique
vector such that ϕ(h) = 〈h, ϕ̂〉 for all h ∈ Hλ.

If f ∈ H] and λ ≤ µ then, considering an arbitrary vector h ∈ Hλ ⊆ Hµ, we have

f(h) = 〈h, f̂µ〉Hµ = 〈Pλ,µh, f̂µ〉Hµ
= 〈h, Pλ,µf̂µ〉Hµ = 〈h, Pλ,µf̂µ〉Hλ ,

hence, taking into account the uniqueness of the vector f̂λ, it follows that Pλ,µf̂µ = f̂λ.

We observe that ({Hλ}λ∈Λ; {Pλ,µ}λ≤µ), where Pλ,µ is the orthogonal projection
of Hµ onto Hλ for every λ ≤ µ, is a projective system of Hilbert spaces, with respect
to which there is a unique projective limit of Hilbert spaces lim←−λ∈ΛHλ. Then observe
that Lemma 3.4 implies that there exists a canonical map

H] 3 f 7→ f̂ = lim←−
λ∈Λ

f̂λ ∈ lim←−
λ∈Λ
Hλ. (3.7)
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Proposition 3.5. The transformation defined at (3.7) is a coherent conjugate linear
isomorphism between the two projective limit locally convex spaces H], defined as
in (3.6), and lim←−λ∈ΛHλ.

Proof. For each λ ∈ Λ consider the linear map Φλ : H]λ → Hλ defined as in the
proof of Lemma 3.4. Clearly, Φλ is a conjugate isometric isomorphism. Then, modulo
Lemma 3.4, define Φ: H] → lim←−λ∈ΛHλ by

Φ(f) = (f̂µ)µ∈Λ, f ∈ H].

Letting Rλ : H] → H]λ denote the canonical projection, defined by restriction, and
considering the canonical projection Pλ : lim←−µ∈ΛHµ → Hλ, for all λ ∈ Λ, it follows
that

Pλ ◦ Φ = Φλ ◦Rλ, λ ∈ Λ,

hence Φ is a coherent conjugate linear transformation. The continuity of Φ comes
for free, taking into account that the maps Φλ are isometric, for all λ ∈ Λ, hence
continuous, and the definition of the projective limit topologies.

In order to show that Φ is a coherent conjugate linear isomorphism of projective
limit spaces, we explicitly determine its inverse. Let h = lim←−λ∈Λ hλ ∈ lim←−λ∈ΛHλ be
an arbitrary vector, that is, hλ ∈ Hλ, for each λ, and Pλ,µhµ = hλ whenever λ ≤ µ.
For arbitrary λ ∈ Λ, let fλ ∈ H]λ be the linear functional on Hλ determined by hλ,
that is, fλ(k) = 〈k, hλ〉, for all k ∈ Hλ. We show that (fλ)λ∈Λ satisfies the transitivity
condition, that is, fµ|Hλ = fλ whenever λ ≤ µ. Indeed, for each k ∈ Hλ,

fµ(k) = 〈k, hµ〉Hµ = 〈Pλ,µk, hµ〉Hµ
= 〈k, Pλ,µhµ〉Hλ = 〈k, hλ〉Hλ = fλ(k).

Letting

lim←−
λ∈Λ
Hλ 3 h = (hλ)λ∈Λ 7→ Ψ(h) = f = (fλ)λ∈Λ ∈ lim←−

λ∈Λ
H]λ = H],

we obtain a coherent conjugate linear transformation Ψ which is the inverse of Φ. The
continuity of Ψ follows since Ψλ are isometric, for all λ ∈ Λ, hence continuous, and
the definition of the projective limit topologies.

Since the inductive limit topology on H is stronger than the norm topology, it is
clear that any norm continuous linear functional on H is continuous with respect to
the inductive limit topology on H. The converse implication does not hold, in general.

Proposition 3.6. Let f ∈ H] and consider (f̂λ)λ∈Λ ∈ lim←−λ∈ΛHλ as in (3.7). The
following assertions are equivalent:

(i) f is norm continuous.
(ii) There exists zf ∈ H̃, the Hilbert space completion of H, such that f(h) = 〈h, zf 〉H̃

for all h ∈ H.
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(iii) The net (f̂λ)λ∈Λ is norm bounded, that is, supλ∈Λ ‖f̂λ‖Hλ <∞.
(iv) The net (f̂λ)λ∈Λ is Cauchy with respect to the norm topology on H.
Proof. (i)⇒(ii). If f is norm continuous then it has a (unique) extension to a bounded
linear functional f̃ on the Hilbert space H̃ hence, by the Riesz Representation Theorem
there exists zf ∈ H̃ such that f̃(h) = 〈h, zf 〉H̃ for all h ∈ H̃, in particular, for all
h ∈ H.

(ii)⇒(iii). For each λ ∈ Λ, letting P̃λ denote the orthogonal projection of H̃ onto
its closed subspace Hλ, we have P̃λzf = f̂λ. Indeed, for arbitrary h ∈ Hλ,

f(h) = 〈h, zf 〉H̃ = 〈P̃λh, zf 〉H̃ = 〈h, P̃λzf 〉H̃ = 〈h, P̃λzf 〉Hλ ,

and then apply the uniqueness of f̂λ. Then, ‖f̂λ‖Hλ = ‖P̃λzf‖Hλ ≤ ‖zf‖H̃.
(iii)⇒(i). Let M = supλ∈Λ ‖f̂λ‖Hλ and let h ∈ H be arbitrary. Then there exists

λ ∈ Λ such that h ∈ Hλ and hence

|f(h)| = |fλ(h)| = |〈h, f̂λ〉Hλ |
≤ ‖h‖Hλ‖f̂λ‖Hλ ≤M‖h‖Hλ = M‖h‖H.

(ii)⇒(iv). As before, for all λ ∈ Λ, we have P̃λzf = f̂λ. Since the net of orthog-
onal projections (P̃λ)λ∈Λ converges to IH̃, the identity operator on H̃, with respect
to the strong operator topology, e.g. see Proposition 2.5.6 in [9], it follows that
f̂λ = P̃λzf → zf in norm, hence the net (f̂λ)λ∈Λ is Cauchy with respect to the norm
topology.

(iv)⇒(iii). If the net (f̂λ)λ∈Λ is norm Cauchy then clearly it is norm bounded.

For the next examples, recall that a linear functional on a topological vector space
is continuous if and only if its null space is closed, e.g. see Corollary 1.2.5 in [9].
Example 3.7. Let CN be the vector space of all complex sequences and for each
n ∈ N let Hn = {x = (x(k))k ∈ CN | x(k) = 0 for all k ≥ n}. Then {Hn}n∈N is
a strictly inductive system of Hilbert spaces and its inductive limit is the space
H = {x ∈ CN | supp(x) <∞} of all complex sequences with finite support. The inner
product on H is that induced from `2C, which is the Hilbert space completion H̃ of H.

On H consider the linear functional

f(x) =
∞∑

k=1
x(k), x = (x(k))k∈N ∈ H.

The sequence (f̂n)n∈N associated to f as in Lemma 3.4 is f̂ (k)
n = 1 for k ≤ n and k = 0

for k > n. Observe that ‖f̂n‖ =
√
n, hence the sequence (f̂n)n∈N is unbounded. This

shows that f is continuous with respect to the inductive limit topology on H but it is
not norm continuous. In particular, this shows that Theorem 2.7 and Corollary 2.8
in [8] are false.

In addition, letting L = Null(f) = {x ∈ H |∑∞k=1 x
(k) = 0}, this is an example of

a subspace of H that is closed with respect to the inductive limit topology but not
closed with respect to the norm topology.
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Clearly, any weakly continuous linear functional on H is norm continuous and
hence continuous with respect to the inductive limit topology on H. The converse
implication does not hold, in general.

Proposition 3.8. Let f ∈ H] and consider (f̂λ)λ∈Λ ∈ lim←−λ∈ΛHλ as in (3.7). The
following assertions are equivalent:

(i) f is weakly continuous.
(ii) There exists zf ∈ H such that f(h) = 〈h, zf 〉H for all h ∈ H.
(iii) The net (f̂λ)λ∈Λ is eventually constant, that is, there exists λ0 ∈ Λ such that, for

each λ ∈ Λ with λ0 ≤ λ we have f̂λ = f̂λ0 .

Proof. (i)⇒(ii). This is a consequence of Proposition 2.1.
(ii)⇒(i). This is obvious.
(ii)⇒(iii). Since zf ∈ H it follows that there exists λ0 ∈ Λ such that zf ∈ Hλ0 .

Then, for any λ ∈ Λ with λ0 ≤ λ we have zf ∈ Hλ and hence, for all h ∈ Hλ we have

〈h, zf 〉Hλ = f(h) = 〈h, f̂λ〉Hλ .

By uniqueness, it follows that f̂λ = zf = f̂λ0 .
(iii)⇒(ii). Let zf = f̂λ0 ∈ H. For any h ∈ H there exists λ ∈ Λ, with λ0 ≤ λ and

h ∈ Hλ, hence,
f(h) = 〈h, f̂λ〉Hλ = 〈h, f̂λ0〉Hλ = 〈h, zf 〉H.

Example 3.9. With notation as in Example 3.7, the subspace M = {x ∈ H |∑∞
k=1

x(k)

k = 0} is norm closed, hence closed with respect to the inductive limit
topology of H, but not weakly closed. Indeed, consider the linear functional g : H → C
defined by

g(x) =
∞∑

k=1

x(k)

k
, x = (x(k))k ∈ H,

and observe that M = Null(g). The functional g is norm continuous, since letting
zg = ( 1

k )k ∈ `2 = H̃, we have g(x) = 〈x, zg〉 for all x ∈ H, but it is not weakly
continuous, since zg 6∈ H. Therefore, by Proposition 3.6M = Null(g) is a norm closed
subspace of H but, by Proposition 3.8 it is not weakly closed,.

Also, since M 6= H and M⊥ = {0} it follows that H 6= M⊕M⊥, see [6]. In
particular, this shows that Theorem 2.6 in [8] is false.
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