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On the dynamics of a third order Newton’s approximation method
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We provide an answer to a question raised by S. Amat, S. Busquier, S. Plaza on the qualitative analysis of the
dynamics of a certain third order Newton type approximation function M f , by proving that for functions f twice
continuously differentiable and such that both f and its derivative do not have multiple roots, with at least four
roots and infinite limits of opposite signs at ±∞, M f has periodic points of any prime period and that the set
of points a at which the approximation sequence (Mn

f (a))n∈N does not converge is uncountable. In addition, we
observe that in their Scaling Theorem analyticity can be replaced with differentiability.
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1 Introduction

The classical Newton’s Approximation Function N f (x) = x − f (x)/ f ′(x), for numerical approximation of roots
of (nonlinear) functions f , under certain conditions of smoothness and distribution of roots and critical points, has
a second order speed of convergence and, until now, it is considered as one of the most useful and reliable iterative
method of this kind. S. Amat, S. Busquier, and S. Plaza, in [1], modified it to a third order approximation function
M f (x) = N f (x) − f (N f (x))/ f ′(x) that is free of second derivatives and shows a remarkable robustness when
compared to other methods. On the other hand, it is known that the classical Newton’s Approximation Function N f ,
when considered as a discrete dynamical system, shows chaotic behaviour, at least from two possible acceptions
of the concept of chaos: first in the sense of T-Y. Li and J. A. Yorke [5], that is, existence of periodic points of any
prime period, and second in the sense of R. Bowen [3], that is, a strictly positive topological entropy, as shown by
M. Hurley and C. Martin [4], see also D. G. Saari and J. B. Urenko [7] for similar investigations.

In [1], the chaotic behaviour of M f was numerically pointed out for polynomials of order less or equal than
3 by using a bifurcation diagram similar to that of the logistic map. They left open the question of performing a
qualitative analysis on the discrete dynamical system associated to M f in order to mathematically prove its chaotic
behaviour. The main result of this article is Theorem 3.3 that shows that for functions f of Newton type, see
Section 3 for definition, with at least four roots and infinite limits of opposite signs at ±∞, M f has periodic points
of any prime period and the set of points a at which the approximation sequence

(
Mn

f (a)
)

n∈N
does not converge

is uncountable. For example, when considering polynomials, this result applies to all odd degree polynomials
with a certain distribution of real roots. In view of Lemma 2.3, Theorem 3.3 might be extended to other classes
of Newton’s functions f having at least four roots and for which M f has at least two bands that cover the whole
real line R, that is, there are two pairs of disjoint open intervals, formed by consecutive critical points of f , that
are mapped by M f onto the whole R, see [4] for precise terminology.

In addition, in Theorem 4.1 we observe that in the Scaling Theorem from [1], which says that the dynamics
of M f is stable under affine conjugacy, as well as in its damped version as in [2], analyticity of f can be
replaced by its differentiability. The Scaling Theorem is essential for the analysis performed in [1] because it
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reduces the study of the dynamics of M f for a general class of functions f to the study of the dynamics of
M f for a considerably smaller class of simpler functions. For example, in order to understand the dynamics of
M f for quadratic polynomials f , it suffices to study only the dynamics of M f for the quadratic polynomials
x2, x2 + 1, x2 − 1, while for cubic polynomials f , it suffices to study only the dynamics of M f for the cubic
polynomials x3, x3 + 1, x3 − 1, x3 + γ x + 1, with γ ∈ R.

We might also add results on the lower estimation of the Bowen’s topological entropy for M f but, once
Theorem 3.3 is obtained, these follow in an almost identical fashion as in [4], when considered the two kinds
of bands induced by the critical points of f for M f . Also, we observe that, for the class of functions that make
the assumptions of Theorem 3.3, the damping with a parameter λ, cf. [2], does not change either the chaotic
behaviour expressed as the existence of periodic points of any prime period or the uncountability of the set of all
real numbers a for which the iterative sequences

(
Mn

λ, f (a)
)∞

n=1 diverges.

2 Preliminaries

In this section we collect results related to periodic points of continuous real functions. We start by proving
a sequence of lemmas that are essentially contained in [4] and more or less implicit/explicit in the works of
N. A. Sharkovsky [8] and T.-Y. Li and J. A. Yorke [5].

The first lemma is a well known fixed point result and a direct consequence of the Intermediate Value Property
for continuous functions.

Lemma 2.1 If I and J are compact intervals and f : I → J is a continuous function with f (I ) ⊇ I , then f
has a fixed point.

The next lemma is important for understanding the dynamics of continuous real functions, e.g. see Lemma 0
in [5]. We provide a proof for consistency.

Lemma 2.2 Let J and K be nonempty compact intervals and let f : J → R be a continuous function such
that f (J ) ⊇ K . Then, there exists a nonempty compact interval L ⊆ J such that f (L) = K .

P r o o f . Let K = [a, b]. If a = b then we apply the Intermediate Value Theorem and get c ∈ J such that
f (c) = a and let L = [c, c], so let us assume that a < b. Since the set {x ∈ J | f (x) = a} is compact and
nonempty, there is a greatest element c in this set. If f (x) = b for some x ≥ c with x ∈ J , then x > c and letting
d be the least of them, by the Intermediate Value Theorem f ([c, d]) = K and we let L = [c, d]. Otherwise,
f (x) = b for some x < c and let c′ be the largest of them. Then let d ′ be the smallest of the set of all x > c′ with
f (x) = a so that [c′, d ′] is an interval in J . Then f ([c′, d ′]) = K and we let L = [c′, d ′]. �

The main technical fact we use is a refinement of Lemma 2.2 in [4], implicit in the proof of Sharkovsky’s
Theorem [8], see also [5]. Recall that, a point a ∈ M is called a periodic point for a function g : M → M if there
exists n ∈ N such that gn(a) = a, and the least n ∈ N with this property is called its prime period.

Lemma 2.3 Let g : R → R be a function and let I1, I2, . . . , Ik be compact, disjoint and nondegenerate
intervals, with k ≥ 2, such that, for all m ∈ {1, 2, . . . , k}, g is continuous on Im and

g(Im) ⊇
k⋃

j=1

I j .

Then:
(a) For each n ∈ N, g has at least k(k − 1)n−1 periodic points of prime period n, in particular, g has periodic

points of any prime period.
(b) The set of all real numbers a for which the orbit (gn(a))n∈N makes a sequence that does not converge is

uncountable.
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P r o o f . (a) For any n ∈ N, take any sequence ( ji )n
i=1 of length n with ji ∈ {1, 2, . . . , k} and let jn+1 = j1.

Considering the sequence of intervals (I ji )
n+1
i=1 , by assumption,

g(I j1) ⊇
k⋃

j=1

Jj ⊇
n⋃

i=1

I ji ⊇ I j2 .

By Lemma 2.2 there exists a compact interval A j1 ⊆ I j1 such that g(A j1) = I j2 . If n = 1, we observe that, since
g(A j1) = I j2 = I j1 , by Lemma 2.1 it follows that g has a fixed point in the compact interval A j1 .

If n ≥ 2, then

g2(A j1) = g(I j2) ⊇
k⋃

j=1

Jj ⊇
n⋃

i=1

I ji ⊇ I j3 ,

and by Lemma 2.2 applied to g2 we obtain a compact interval A j2 ⊆ A j1 ⊆ I j1 such that g(A j2) = I j3 . Proceeding
in a similar fashion, after n consecutive applications of Lemma 2.2, we obtain compact intervals

A jn ⊆ A jn−1 ⊆ · · · ⊆ A j1 ⊆ I j1 ,

such that

gi(A ji ) = I ji+1 , i = 1, . . . , n, (2.1)

in particular, gn(A jn ) = I jn+1 = I j1 . Then, by Lemma 2.1 there is a fixed point a ∈ A jn for gn , hence a is a periodic
point for g of period n.

We observe now that, for n = 1 there are exactly k different choices for j1 = 1, . . . , k and, since the intervals
J1, . . . , Jk are mutually disjoint, the k fixed points obtained, as explained before, are all different, hence g has at
least k fixed points.

For n ≥ 2, if j1 �= ji for all i = 2, . . . , n, then the periodic point a for g obtained before from the sequence
( ji )n

i=1 has prime period n. Indeed, for all 2 ≤ i ≤ n, a ∈ A ji ⊆ A ji−1 and, by (2.1) it follows that gi−1(a) ∈ I ji
hence, since I j1 ∩ I ji = ∅ it follows that a cannot have any period less than n.

We consider now two different sequences ( ji )n
i=1, (li )n

i=1 as before, hence there exists r ∈ {1, 2, . . . , n} such
that jr �= lr . If the fixed point a for the two sequences of intervals (I ji )

n
i=1 and (Ili )

n
i=1, obtained as before, is the

same, then (gi (a))n
i=0, the orbit of a under g, is the same for both sequences. But then, gr−1(a) ∈ I jr ∩ Ilr = ∅

hence we have a contradiction. Therefore, for the k(k − 1)n−1 different sequences ( ji )n
i=1 of length n, formed

with elements from the set {1, . . . , k} and subject to the condition j1 �= ji for all i = 2, . . . , n, we have k(k − 1)n

different fixed points of prime period n.
(b) For any infinite sequence ( ji )∞

i=1 with elements from {1, 2, . . . , k}, which is not eventually constant, by the
same construction as above we get a sequence of nonempty compact intervals (A ji )

∞
i=1 subject to the properties

· · · ⊆ A ji+1 ⊆ A ji ⊆ · · · ⊆ A j2 ⊆ A j1 ⊆ I j1 , (2.2)

and

gi(A ji ) = I ji+1 , i ∈ N. (2.3)

By the Finite Intersection Property we have

A =
∞⋂

i=1

A ji �= ∅,

hence, any point a ∈ A has the property that its orbit (gi (a))∞
i=1 makes a sequence that does not converge. The

sequence (gi(a))∞
i=1 does not converge since, for all i ∈ N we have gi(a) ∈ I ji+1 , the sequence ( ji )∞

i=1 with
elements from {1, 2, . . . , k} is not eventually constant, and the compact intervals I1, . . . , Ik are mutually disjoint.

Let us consider two different sequences ( ji )∞
i=1 and (li )∞

i=1, formed with elements from the set {1, . . . , k}
and not eventually constant. As before, to the sequence ( ji )∞

i=1 we associate the sequence of nonempty compact
intervals (A ji )

∞
i=1 subject to the properties (2.2) and (2.3), and let a ∈ ⋂∞

i=1 A ji . Similarly, there is a sequence
(Bli )

∞
i=1 of nonempty compact intervals subject to the properties

· · · ⊆ Bli+1 ⊆ Bli ⊆ · · · ⊆ Bl2 ⊆ Bl1 ⊆ I j1 ,
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and

gi(Bli ) = Ili+1 , i ∈ N,

and let b ∈ ⋂∞
i=1 Bli �= ∅. We claim that a �= b. Indeed, there exists r ∈ N such that jr �= lr , hence gr (a) ∈

I jr ∩ Ilr = ∅, a contradiction.
In conclusion, there are as many real numbers a for which the sequence (gi (a))∞

i=1 does not converge at least
as many as sequences ( ji )∞

i=1 formed with elements from the set {1, . . . , k} and that are not eventually constant,
and the latter set is uncountable. �

3 The dynamics of M f

Following [4], the Newton Class is defined as the collection of all real functions f subject to the following
conditions:

(nf1) f is of class C2(R).
(nf2) If f (x) = 0 then f ′(x) �= 0.
(nf3) If f ′(x) = 0 then f ′′(x) �= 0.

Remarks 3.1 Let f be a Newton map.
(a) Clearly, both f and its derivative f ′ do not have multiple roots.
(b) The roots of f , and similarly the roots of f ′, do not have finite accumulation points. Indeed, if (xn)n∈N is

a sequence of distinct roots of f that accumulates to some x0 ∈ R then, by the Interlacing Property of the roots
of f and its derivative f ′, it follows that there exists a sequence (cn)n∈N of distinct roots of f ′ converging to x0.
Since both f and f ′ are continuous, it follows that x0 is a root for both f and f ′, contradiction with the statement
at item (a). A similar argument shows that the roots of f ′ do not have finite accumulation points.

For a differentiable function f on an open set D ⊆ R, the Classical Newton’s Approximation Function N f is
the function defined for all x ∈ D such that f ′(x) �= 0 by

N f (x) = x − f (x)
f ′(x)

. (3.1)

Following [1], the Modified Newton’s Approximation Function M f is the function, defined for all x ∈ D such that
f ′(x) �= 0 and N f (x) ∈ D,

M f (x) = x − f (x)
f ′(x)

−
f (x − f (x)

f ′(x) )

f ′(x)
(3.2)

or, in terms of N f

M f (x) = N f (x) − f (N f (x))
f ′(x)

. (3.3)

The following lemma provides some information on the behavior of N f in the neighbourhood of the critical
points of a Newton map f , see Remark 1.3 in [4].

Lemma 3.2 Let f be a Newton map and let c1 and c2 be two consecutive roots of f ′ such that in the interval
(c1, c2) there is a unique root of f . Then

lim
x→c1+

N f (x) = − lim
x→c2−

N f (x) = ±∞.

P r o o f . Indeed, near c1+ and c2−, f has opposite signs since it has a unique root inside the interval (c1, c2),
while f ′ does not change its sign and goes to zero when approaching both c1+ and c2−. Since the term x is
majorised by the term f (x)

f ′(x) near c1+ and c2−, we have the result. �

Here is the main result that shows that the Modified Newton’s Approximation Function M f provides chaotic
behaviour for a large class of Newton’s functions f .
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Theorem 3.3 Let the function f : R → R have the following properties:

(i) f is a Newton’s function.
(ii) limx→+∞ f (x) = − limx→−∞ f (x) = ±∞.

(iii) f has at least four real roots.

Then:
(a) M f has periodic points of any prime period.
(b) The set of all real numbers a for which the sequence (Mn

f (a))n∈N does not converge is uncountable.

P r o o f . By Rolle’s Theorem, between any two consecutive roots of f there exists a root of its derivative
f ′ hence, by Remarks 3.1 and property (iii), we can choose four consecutive roots r1 < r2 < r3 < r4 and three
or four roots c1 < c2 ≤ c′

2 < c3 of f ′ in the intervals (ri , ri+1) for i = 1, 2, 3, respectively, with a unique root of
f inside each of the intervals (c1, c2), (c′

2, c3) and with no other root of f ′ there. With this choice, f ′ does not
change its sign on the intervals (c1, c2) and (c′

2, c3). By using Lemma 3.2 and property (ii), we have

lim
x→c1+

f (N f (x)) = − lim
x→c2−

f (N f (x)) = ±∞. (3.4)

In the following we show that

lim
x→c1+

M f (x) = − lim
x→c2−

M f (x) = ±∞. (3.5)

Indeed, when x → c1+, the first equality will follow if we show that

lim
x→c1+

= − f (x) − f (N f (x))
f ′(x)

= ±∞,

and, taking into account that limx→c1+ f (x) = f (c1) ∈ R, we observe that the latter will follow if we prove that

lim
x→c1+

− f (N f (x))
f ′(x)

= ±∞,

which actually follows from (3.4) and the fact that f ′ does not change its sign in the interval (c1, c2). Hence,
the first equality in (3.5) is proven. The fact that limx→c2− M f (x) = ±∞ is proven similarly, the only thing that
remains to be shown is that the two limits in (3.5) have different signs, which actually is a consequence of (3.4)
and the fact that f ′ has constant sign on (c1, c2). Therefore, (3.5) is proven.

Similarly, we have that

lim
x→c′

2+
M f (x) = − lim

x→c3−
M f (x) = ±∞.

Therefore, there exists ε sufficiently small such that, letting I1 = [c1 + ε, c2 − ε] and I2 = [c′
2 + ε, c3 − ε]

we have M f (I j ) ⊇ [c1, c3], for j = 1, 2, hence M f (I1) and M f (I2) contain I1 ∪ I2. Finally, Lemma 2.3 is now
applicable with k = 2, which finishes the proof. �

Remark 3.4 In order to reduce the chaotic behaviour and improve numerical parameters of approximation for
lower order polynomials, in [2] and [6] damped Newton’s methods have been considered. More precisely, letting
λ be the damping parameter, one defines Nλ, f and Mλ, f as follows:

Nλ, f (x) = x − λ
f (x)
f ′(x)

, (3.7)

and

Mλ, f (x) = Nλ, f (x) − λ
f (Nλ, f (x))

f ′(x)
. (3.8)

It is easy to observe, by inspection, that Lemma 3.2 and Theorem 3.3 remain true if Nλ, f and Mλ, f replace N f and,
respectively, M f , for arbitrary damping parameter λ > 0, hence the chaotic behaviour characterised by existence
of periodic points of any prime period, as well as the uncountability of the set of points of divergence of iteration
of M f , remain unaltered by damping, for the class of functions considered in Theorem 3.3.
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4 The Scaling Theorem

In this section we observe that the Scaling Theorem, cf. Theorem 1 in [1], which says that M f is stable under
affine conjugation, remains true if we replace the analyticity condition on the function f with its differentiability.

Theorem 4.1 (The Scaling Theorem) Let f be a differentiable function on R. Let T (x) = ax + b be an affine
map with a �= 0. Then, for all x ∈ R with f ′(x) �= 0, we have

(
T ◦ M f ◦T ◦ T −1

)
(x) = M f (x).

We first prove a lemma saying that the transformation N f satisfies a similar property of stability under linear
conjugation.

Lemma 4.2 Under the assumptions as in Theorem 4.1, for all x ∈ R with f ′(x) �= 0, we have
(
T ◦ N f ◦T ◦ T −1

)
(x) = N f (x).

P r o o f . Clearly, for all y ∈ R we have ( f ◦ T )′(y) = a f ′(ay + b) hence, if f ′(ay + b) �= 0 we have

N f ◦T (y) = y − f (ay + b)
a f ′(ay + b)

, (4.1)

and then
(
T ◦ N f ◦T

)
(y) = ay − a

f (ay + b)
a f ′(ay + b)

+ b

= ay + b − f (ay + b)
f ′(ay + b)

= N f (ay + b) = (N f ◦ T )(y).

Since T −1(x) = x−b
a , letting x = ay + b we get

(
T ◦ N f ◦T ◦ T −1

)
(x) = N f (x). �

P r o o f o f T h e o r e m 4.1 By (3.2), for arbitrary y ∈ R with f ′(ay + b) �= 0, from (4.1) we obtain

(
T ◦ M f ◦T

)
(y) = aN f ◦T (y) + b − f (aN f ◦T (y) + b)

f ′(ay + b)
,

and then, letting x = ay + b,

(
T ◦ M f ◦T ◦ T −1

)
(x) = (

T ◦ N f ◦T ◦ T −1
)
(x) − f (

(
T ◦ N f ◦T ◦ T −1

)
(x))

f ′(a( x−b
a ) + b)

whence, applying Lemma 4.2,

= N f (x) − f (N f (x))
f ′(x)

= M f (x).
�

Remark 4.3 The Scaling Theorem remains true, with almost exactly the same proof, for the damped Newton’s
function Mλ, f , see (3.7), for arbitrary damping parameter λ �= 0, more precisely, we have

(
T ◦ Mλ, f ◦T ◦ T −1

)
(x) = Mλ, f (x),

for all x ∈ R such that f ′(x) �= 0. For the case of the damped Newton’s function Nλ, f , see (3.6), the corresponding
generalisation of Lemma 4.2,

(
T ◦ Nλ, f ◦T ◦ T −1

)
(x) = Nλ, f (x),

follows from the proof of Theorem 2.1 in [6]; although it was stated for analytic functions f , the assumption was
not used in that proof.
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