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Given a compact set K ⊂ Rd, let E(K) denote the space of Whitney jets on K. The
compact set K is said to have the extension property if there exists a continuous
linear extension operator W : E(K) −→ C∞(Rd). In 1961 B.S. Mityagin posed a
problem to give a characterization of the extension property in geometric terms.
We show that there is no such complete description in terms of densities of
Hausdorff contents or related characteristics. Also the extension property cannot
be characterized in terms of growth of Markov’s factors for the set.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

By the celebrated Whitney theorem [24], for each compact set K ⊂ R
d, by means of a continuous

linear operator one can extend jets of finite order from Ep(K) to functions defined on the whole space,

preserving the order of differentiability. In the case p = ∞, the possibility of such extension crucially

depends on the geometry of the set. Following [21], let us say that K has the extension property (EP) if

there exists a linear continuous extension operator W : E(K) −→ C∞(Rd). Clearly, there always exists

a linear extension operator (one can individually extend the elements of a vector basis in E(K)) and a

continuous extension operator, by Whitney’s construction. Numerous examples show that a set K has EP

provided “local thickness” of K. For example, any set K with an isolated point does not have EP ([14],

Prop. 21).

B.S. Mityagin posed in 1961 ([14], p. 124) the following problem (in our terms):

What is a geometric characterization of the extension property?

We show that there is no complete characterization of that kind in terms of densities of Hausdorff contents

of sets or analogous functions related to Hausdorff measures.

This is similar to the state in Potential Theory where R. Nevanlinna [15] and H. Ursell [22] proved that

there is no complete characterization of polarity of compact sets in terms of Hausdorff measures. The scale

of growth rate of functions h, which define the Hausdorff measure Λh, can be decomposed into three zones.
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For h from the first zone of small growth, if 0 < Λh(K) then the set K is not polar. For h from the zone of

fast growth, if Λh(K) < ∞ then the set K is polar. However, there is a zone of uncertainty between them.

It is possible to take two functions with h2 ≺ h1 from this zone and the corresponding Cantor-type sets Kj

with 0 < Λhj
(Kj) < ∞ for j ∈ {1, 2}, such that the large (with respect to the Hausdorff measure) set K2

is polar, whereas the smaller K1 is not polar.

Here we present a similar example of two Cantor-type sets: the smaller set has EP whereas the larger

set does not.

Of course, such global characteristics as Hausdorff measures or Hausdorff contents cannot be used, in

general, to distinguish EP , which is defined by a local structure of the set. One can suggest for this reason

to characterize EP in terms of lower densities of Hausdorff contents of sets, because (see Section 9) densities

of Hausdorff measures cannot be used for this aim. We analyze a wide class of dimension functions and

show that lower densities of Hausdorff contents do not distinguish EP .

Neither EP can be characterized in terms of growth rate of Markov’s factors (Mn(·))∞
n=1 for sets. Two

sets are presented, K1 with EP and K2 without it, such that Mn(K1) grows essentially faster than Mn(K2)

as n → ∞. It should be noted that, by W. Pleśniak [17], any Markov compact set (with a polynomial growth

rate of Mn(·)) has EP . All examples are given in terms of the sets K(γ) introduced in [10]. The paper sump

up the research related to the problem by the first author in the last two decades.

The organization of the paper is the following. Section 2 is a short review of main methods of extension;

in it we also consider the Tidten–Vogt linear topological characterization of EP . In Section 3 we give some

auxiliary results about the weakly equilibrium Cantor-type set K(γ). In Section 4 we use local Newton

interpolations to construct an extension operator W . Section 5 contains the main result, namely a char-

acterization of EP for E(K(γ)) in terms of a sequence related to γ. In section 6 we compare W with the

extension operator from [12], which is given by individual extensions of elements of Schauder basis for the

space E(K(γ)). In Section 7 we consider two examples that correspond respectively to regular and irreg-

ular behaviour of the sequence γ. In Section 8 we calculate Λh(K(γ)) for the dimension function h that

corresponds to the set and show that Λh|K(γ) coincides with the equilibrium measure of K(γ). Also in this

section we present Ursell’s type example for EP . In Section 9 we consider Hausdorff contents and related

characteristics. In Section 10 we compare the growth of Markov’s factors and EP for K(γ).

For the basic facts about the spaces of Whitney functions defined on closed subsets of R
d see e.g.

[3], the concepts of the theory of logarithmic potential can be found in [18]. Throughout the paper, log

denotes the natural logarithm. Given compact set K, Cap(K) stands for the logarithmic capacity of K,

Rob(K) = log(1/Cap(K)) ≤ ∞ is the Robin constant for K. If K is not polar then µK is its equilibrium

measure. For each A ⊂ R, let #(A) be the cardinality of A, |A| be the diameter of A. Given a finite set

A = (am) and x ∈ R, by (dk(x, A)) we denote distances from x to the points of A arranged in nondecreasing

order, so dk(x, A) = |x − amk
| ր. Also, [a] is the greatest integer in a,

∑n
k=m(· · · ) = 0 and

∏n
k=m(· · · ) = 1

if m > n. The symbol ∼ denotes the strong equivalence: an ∼ bn means that an = bn(1 + o(1)) for n → ∞.

2. Three methods of extension

Let K ⊂ R
d be a compact set, α = (αj)d

j=1 ∈ N
d
0 be a multi-index. Let I be a closed cube containing

K and F(K, I) = {F ∈ C∞(I) : F (α)|K = 0, ∀α} be the ideal of flat on K functions. The Whitney

space E(K) of extendable jets consists of traces on K of C∞-functions defined on I, so it is a factor space

of C∞(I) and the restriction operator R : C∞(I) −→ E(K) is surjective. This means that the sequence

0 −→ F(K, I)
J

−→ C∞(I)
R

−→ E(K) −→ 0 is exact. If it splits, then the right inverse to R is the desired

linear continuous extension operator W and K has EP .

In [21] M. Tidten applied D. Vogt’s theory of splitting of short exact sequences of Fréchet spaces (see

e.g. [13], Chapter 30) and presented the following important linear topological characterization of EP :
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a compact set K has the extension property if and only if the space E(K) has a dominating norm (satisfies

the condition (DN)).

Recall that a Fréchet space X with an increasing system of seminorms ( || · ||k)∞
k=0 has a dominating norm

|| · ||p if for each q ∈ N there exist r ∈ N and C ≥ 1 such that || · ||2q ≤ C || · ||p || · ||r.

Concerning the question “How to construct an operator W if it exists?”, we can select three main methods

that can be applied for wide families of compact sets.

The first method goes back to B.S. Mityagin [14]: to extend individually the elements (en)∞
n=1 of a

topological basis of E(K). Then for f =
∑∞

n=1 ξn ·en take W (f) =
∑∞

n=1 ξn ·W (en). See Theorem 2.4 in [23]

about possibility of suitable simultaneous extensions of en in the case when K has a nonempty interior. The

main problem with this method is that we do not know whether each space E(K) has a topological basis,

even though E(K) is complemented in C∞(I). This is a particular case of the significant Mityagin–Pełczyński

problem: Suppose X is a nuclear Fréchet space with basis and E is a complemented subspace of X. Does E

possess a basis? The space X = s of rapidly decreasing sequences, which is isomorphic to C∞(I), presents

the most important unsolved case.

The second method was suggested in [16], where W. Pawłucki and W. Pleśniak constructed an extension

operator W in the form of a telescoping series containing Lagrange interpolation polynomials with Fekete

nodes. The authors considered the family of compact sets with polynomial cusps, but later, in [17], the result

was generalized to any Markov set. In fact (see T.3.3 in [17]), for each C∞ determining compact set K, the

operator W is continuous in the so-called Jackson topology τJ if and only if τJ coincides with the natural

topology τ of the space E(K) and this happens if and only if the set K is Markov. We remark that τJ is

not stronger than τ and that τJ always has the dominating norm property, see e.g. [2]. Thus, in the case of

non-Markov compact set with EP ([5,2]), the Pawłucki–Pleśniak extension operator is not continuous in τJ ,

yet this does not exclude the possibility for it to be bounded in τ . At least for some non-Markov compact

sets, the local version of this operator is bounded in τ ([2]).

In [4] L. Frerick, E. Jordá, and J. Wengenroth showed that, provided some conditions, the classical

Whitney extension operator for the space of jets of finite order can be generalized to the case E(K). Instead

of Taylor’s polynomials in the Whitney construction, the authors used a kind of interpolation by means of

certain local measures. A linear tame extension operator was presented for E(K), provided K satisfies a

local form of Markov’s inequality.

There are some other methods to construct W for closed sets, for example Seeley’s extension [19] from a

half space or Stein’s extension [20] from sets with the Lipschitz boundary. However these methods, in order

to define W (f, x) at some point x, essentially require existence of a line through x with a ray where f is

defined, so these methods cannot be applied for compact sets.

Here we consider rather small Cantor-type sets that are neither Markov nor local Markov. We follow [2]

in our construction, so W is a local version of the Pawłucki–Pleśniak operator. It is interesting that, at least

for small sets, W can be considered also as an operator extending basis elements of the space. Thus, for

such sets, the first method and a local version of the second method coincide.

3. Notations and auxiliary results

In what follows we will consider only perfect compact sets K ⊂ I = [0, 1], so the Fréchet topology τ in

the space E(K) can be given by the norms

‖ f ‖q = |f |q,K + sup

{

|(Rq
yf)(k)(x)|

|x − y|q−k
: x, y ∈ K, x 6= y, k = 0, 1, ...q

}

for q ∈ N0, where |f |q,K = sup{|f (k)(x)| : x ∈ K, k ≤ q} and Rq
yf(x) = f(x) − T q

y f(x) is the Taylor

remainder.
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Given f ∈ E(K), let ||| f ||| q = inf | F | q,I , where the infimum is taken over all possible extensions of f to

F ∈ C∞(I). By the Lagrange form of the Taylor remainder, we have || f || q ≤ 3 | F | q,I for any extension F .

The quotient topology τQ, given by the norms (||| · |||∞q=0), is complete and, by the open mapping theorem,

is equivalent to τ . Hence, for any q there exist r ∈ N, C > 0 such that

||| f ||| q ≤ C || f || r (1)

for any f ∈ E(K). In general, extensions F that realize ||| f ||| q for a given function f , essentially depend

on q. Of course, the extension property of K means the existence of a simultaneous extension which is

suitable for all norms.

Our main subject is the set K(γ) introduced in [10]. For the convenience of the reader we repeat the

relevant material. Given sequence γ = (γs)∞
s=1 with 0 < γs < 1/4, let r0 = 1 and rs = γsr2

s−1 for s ∈ N.

Define P2(x) = x(x − 1), P2s+1 = P2s(P2s + rs) and Es = {x ∈ R : P2s+1(x) ≤ 0} for s ∈ N. Then

Es = ∪2s

j=1Ij,s, where the s-th level basic intervals Ij,s are disjoint and max1≤j≤2s |Ij,s| → 0 as s → ∞.

Here, (P2s + rs/2)(Es) = [−rs/2, rs/2], so the sets Es are polynomial inverse images of intervals. Since

Es+1 ⊂ Es, we have a Cantor-type set K(γ) := ∩∞
s=0Es.

In what follows we will consider only γ satisfying the assumptions

γk ≤ 1/32 for k ∈ N and
∞

∑

k=1

γk < ∞. (2)

The lengths lj,s of the intervals Ij,s of the s-th level are not the same, but, provided (2), we can estimate

them in terms of the parameter δs = γ1γ2 · · · γs ([10], L.6):

δs < lj,s < C0 δs for 1 ≤ j ≤ 2s, (3)

where C0 = exp(16
∑∞

k=1 γk). Each Ij,s contains two adjacent basic subintervals I2j−1,s+1 and I2j,s+1. Let

hj,s = lj,s − l2j−1,s+1 − l2j,s+1 be the distance between them. By Lemma 4 in [10],

hj,s > (1 − 4γs+1)lj,s ≥ 7/8 · lj,s > 7/8 · δs for all j ≤ 2s. (4)

In addition, by T.1 in [10], the level domains Ds = {z ∈ C : |P2s(z) + rs/2| < rs/2} form a nested family

and K(γ) = ∩∞
s=0Ds. The value Rs = 2−s log 2 +

∑s
k=1 2−k log 1

γk
represents the Robin constant of Ds.

Therefore, the set K(γ) is non-polar if and only if Rob(K(γ)) =
∑∞

n=1 2−n log 1
γn

=
∑∞

n=1 2−n−1 log 1
δn

< ∞.

We decompose all zeros of P2s into s groups. Let X0 = {x1, x2} = {0, 1}, X1 = {x3, x4} = {l1,1, 1 −

l2,1}, · · · , Xk = {l1,k, l1,k−1 − l2,k, · · · , 1 − l2k,k} for k ≤ s − 1. Thus, Xk = {x : P2k (x) + rk = 0} contains

all zeros of P2k+1 that are not zeros of P2k . Set Ys = ∪s
k=0Xk. Then P2s(x) =

∏

xk∈Ys−1
(x − xk). Clearly,

#(Xs) = 2s for s ∈ N and #(Ys) = 2s+1 for s ∈ N0. We refer s-th type points to the elements of Xs.

The points from Ys can be ordered using, as in [8], the rule of increase of type. First we take points from

X0 and X1 in the ordering given above. To put in order the set X2, for 1 ≤ j ≤ 4, we take xj+4 as the

point of the second type which is the closest to xj . Thus, x5 = x1 + l1,2, x6 = x2 − l4,2, · · · and the ordered

set X2 is {x5, x7, x8, x6}. In other words, the ordered set X2 can be obtained from X0 ∪ X1 if we arrange

this set in increasing way and enlarge every index of x by 4. Similarly, each Xk = {x2k+1, · · · , x2k+1} can

be ordered. See [12] for more details.

In the same way, any N points can be chosen on each basic interval. Suppose 2n ≤ N < 2n+1 and the

points Z = (xk,j,s)N
k=1 are chosen on Ij,s by this rule. Then Z includes all 2n zeros of P2s+n on Ij,s (points

of the type ≤ s + n − 1) and some N − 2n points of the type s + n. In what follows, we write Z = (zk,j,s)N
k=1

or Z = (zk)N
k=1, when no confusion can arise, for the same set in the order of increasing.

We use two technical lemmas from [12]. We suppose that γ satisfies (2).
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Let 2n ≤ N < 2n+1 and a basic interval Ij,s be given. Suppose ZN = (xk,j,s)N
k=1 and ZN+1 = (xk,j,s)N+1

k=1

are chosen on Ij,s by the rule of increase of type. Write C1 = 8/7 · (C0 + 1).

Lemma A. (Lemma 2.2 from [12]) For each x ∈ R with dist(x, K(γ) ∩ Ij,s)) ≤ δs+n and z ∈ ZN+1 we have

δs+n

∏N
k=2 dk(x, ZN ) ≤ CN

1

∏N+1
k=2 dk(z, ZN+1).

Let (zk)N+1
k=1 be the same set ZN+1 but arranged in ascending order. For q = 2m − 1 with m < n and

1 ≤ j ≤ N + 1 − q, let J = {zj , · · · , zj+q} be 2m consecutive points from ZN+1. Given j, we consider all

possible chains of strict embeddings of segments of natural numbers: [j, j + q] = [a0, b0] ⊂ [a1, b1] ⊂ · · · ⊂

[aN−q, bN−q] = [1, N + 1], where ak = ak−1, bk = bk−1 + 1 or ak = ak−1 − 1, bk = bk−1 for 1 ≤ k ≤ N − q.

Every chain generates the product
∏N−q

k=1 (zbk
− zak

). For fixed J , let Π(J) denote the minimum of these

products for all possible chains.

Lemma B. (Lemma 2.3 from [12]) For each J ⊂ ZN+1 there exists z̃ ∈ J such that
∏N+1

k=q+2 dk(z̃, ZN+1) ≤

Π(J).

We will characterize EP of K(γ) in terms of the values Bk = 2−k−1 · log 1
δk

that have Potential Theory

meaning: Rob(K(γ)) =
∑∞

k=1 Bk. The main condition is (compare with (3) in [9]):

Bn+s
∑n+s

k=s Bk

→ 0 as n → ∞ uniformly with respect to s. (5)

We see that this condition allows polar sets.

Example 1. Let γ1 = exp(−4B) and γk = exp(−2kB) for k ≥ 2, where B ≥ 1
4 log 32, so (2) is valid. Here,

Bk = B for all k. Hence (5) is satisfied and the set K(γ) is polar.

The condition (5) means that

∀ε ∃s0, ∃n0 : Bs+n < ε(Bs + · · · + Bs+n) for n ≥ n0, s ≥ s0. (6)

Clearly, instead of ∃s0 one can take above ∀s0. Let us show that (6) is equivalent to

∀ε1 ∀m ∈ N0∃N : Bs+n−m + · · · + Bs+n < ε1(Bs + · · · + Bs+n−m−1), n ≥ N, s ≥ 1. (7)

Indeed, the value m = 0 in (7) gives (6) at once. For the converse, remark that in (7) we can take ε1(Bs +

· · ·+Bs+n) on the right side, so here we consider (7) in this new form. Suppose (6) is valid. Given ε1 and m,

take ε = ε1/(m + 1) and the corresponding value n0 from (6). Take N = n0 + m. Then for n ≥ N and

0 ≤ k ≤ m we have n − k ≥ n0, so Bs+n−k < ε(Bs + · · · + Bs+n−k) < ε(Bs + · · · + Bs+n). Summing these

inequalities, we obtain a new form of (7).

It follows that the negation of the main condition can be written as

∃ε ∃m : ∀N ∃n > N :

s+n
∑

s+n−m

Bk > ε

s+n−m−1
∑

s

Bk for s = sj ↑ ∞. (8)

Also, (6) is equivalent to

∀ε ∃m, n0, s0 : Bs+n < ε(Bs+n−m + · · · + Bs+n−1) for n ≥ n0, s ≥ s0. (9)
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Indeed, comparison of right sides of inequalities shows that (9) implies (6). Conversely, given ε, take n0 such

that (6) is valid with ε/(1+ε) instead of ε. Take m = n0. Then for n ≥ n0, s ≥ s0 we have s̃ = s+n−m ≥ s0

and, by (6), Bs+n = Bs̃+m < ε
1+ε (Bs̃ + · · · Bs̃+m), which is (9).

We will use a “geometric” version of (9) in terms of (δk)

∀M ∃m, n0, s0 : δs+n−1 δ2
s+n−2 · · · δ2m−1

s+n−m < δM
s+n for n ≥ n0, s ≥ s0. (10)

4. Extension operator for E(K(γ))

Here, as in [2], we use the method of local Newton interpolations. Let K be shorthand for K(γ). We fix

a nondecreasing sequence of natural numbers (ns)∞
s=0 with ns ≥ 2 and ns → ∞. Given function f on K, we

interpolate f at 2n0 points that are chosen by the rule of increase of type on the whole set. Half of points

are located on K ∩ I1,1. We continue interpolation on this set up to the degree 2n1 . Separately we do the

same on K ∩ I2,1. Continuing in this fashion, we interpolate f with higher and higher degrees on smaller

and smaller basic intervals. At each step the additional points are chosen by the rule of increase of type.

Interpolation on Ij,s does not affect other intervals of the same level due to the following function.

Let t > 0 and a compact set E on the line be given. Then u(·, t, E) is a C∞-function with the properties:

u(·, t, E) ≡ 1 on E, u(x, t, E) = 0 for dist(x, E) > t and supx∈R
|u

(p)
xp (x, t, K)| ≤ cp t−p, where the constant

cp depends only on p. Let cp ր.

For any interval I and points (zk)N+1
k=1 ⊂ I, let Ω(x) =

∏N+1
k=1 (x − zk), ωk(x) = Ω(x)

(x−zk)Ω′(zk) and

LN (f, x, I) =
∑N+1

k=1 f(zk) ωk(x) be the interpolating polynomial with nodes at these points.

We define Ns = 2ns − 1 and Ms = 2ns−1−1 − 1 for s ≥ 1, M0 = 1. Now, for fixed s, we take Ms + 1 ≤

N ≤ Ns, so 2n ≤ N < 2n+1 with n ∈ {ns−1 − 1, · · · , ns − 1}. For such N and s let tN := δs+n. Fix j with

1 ≤ j ≤ 2s. Next, we choose the set ZN+1 = (xk,j,s)N+1
k=1 = (zk)N+1

k=1 on Ij,s by the rule of increase of type

and consider, for given f ∈ E(K(γ)) and x ∈ R, the value

AN,j,s(f, x) := [LN (f, x, Ij,s) − LN−1(f, x, Ij,s)] u(x, tN , Ij,s ∩ K).

We call Aj,s(f, x) :=
∑Ns

N=Ms+1 AN,j,s the accumulation sum. The last term here corresponds to the

interpolation on Ij,s at 2ns points. In order to continue interpolation on subintervals of Ij,s, let us consider

the transition sum

Tk,s(f, x) := [LMs+1
(f, x, Ik,s+1) − LNs

(f, x, Ij, s)] u(x, δs+ns−1, Ik, s+1 ∩ K),

where we suppose 1 ≤ k ≤ 2s+1, j = [ k+1
2 ]. Of course, Ik,s+1 ⊂ Ij, s.

As above, we represent the difference in brackets in the telescoping form:

[LMs+1
− LNs

] = −
2ns −1
∑

N=2ns−1

[LN (f, x, Ij, s) − LN−1(f, x, Ij, s)].

Here, the interpolating set for LN consists of Ms+1 + 1 points of Ys+ns−1 ∩ Ik,s+1 and N − Ms+1 points on

Ii,s+1. The second parameter of u is smaller than the mesh size of Z, so Tk,s(f, x) 6= 0 only near Ik,s+1.

Consider a linear operator

W (f, ·) = LM0
(f, ·, I1, 0) u(·, 1, K) +

∞
∑

s=0

[

2s

∑

j=1

Aj,s(f, ·) +
2s+1

∑

k=1

Tk,s(f, ·)
]

. (11)

We remark at the outset that, for fixed x ∈ R and s, because of the choice of parameters for the function u,

at most one value Aj,s does not vanish. The same is valid for Tk,s.
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Let us show that W extends functions from E(K), provided a suitable choice of (ns)∞
s=0. Define n0 =

n1 = 2 and ns = [log2 log 1
δs

] for s ≥ 2. Then ns ≤ ns+1 and

1

2
log

1

δs
< 2ns ≤ log

1

δs
for s ≥ 2. (12)

Lemma 4.1. Let (ns)∞
s=0 be given as above. Then for any f ∈ E(K(γ)) and x ∈ K(γ) we have W (f, x) = f(x).

Proof. Let us fix a natural number q with q > 2+log(8C0/7), where C0 is defined in (3). By the telescoping

effect,

W (f, x) = lim
s→∞

LMs
(f, x, Ij,s), (13)

where j = j(s, x) is chosen in such a way that x ∈ Ij,s. As in [7],

| LMs
(f, x, Ij,s) − f(x)| ≤ || f || q

2n

∑

k=1

| x − zk| q | ωk(x) |. (14)

Here n is shorthand for ns−1 − 1 and s is such that Ms = 2n − 1 > q. The interpolating set (zk)2n

k=1 for

LMs
consists of all points of the type ≤ s + n − 1 on Ij,s. Given point x, we consider the chain of basic

intervals containing it: x ∈ Ijn,s+n ⊂ · · · ⊂ Ij1,s+1 ⊂ Ij,s. We see that Ijn,s+n contains one interpolating

point, Ijn−1,s+n−1 \ Ijn,s+n does one more zi, Ijn−2,s+n−2 \ Ijn−1,s+n−1 contains two such points, etc. Thus,

for fixed k, we get

| x − zk| q
2n

∏

i=1,i6=k

|x − zi| ≤ l q−1
j,s · ljn,s+n · ljn−1,s+n−1 · l2

jn−2,s+n−2 · · · l 2 n−1

j,s .

By (3), this does not exceed C2n+q−1
0 δs+n δs+n−1 δ2

s+n−2 · · · δ2n−2

s+1 δ2n−1+q−1
s .

On the other hand, by a similar argument, for the denominator of | ωk(x) | we have

| zk − z1| · · · | zk − zk−1| · | zk − zk+1| · · · | zk − z2n | ≥ lqn−1,s+n−1 · h2
qn−2,s+n−2 · · · h 2 n−1

j,s

for some indices qn−1, qn−2, · · · . The last product exceeds (7/8)2n−2δs+n−1 δ2
s+n−2 · · · δ2n−1

s , by (4). It follows

that

LHS of (14) ≤ || f || q 2n Cq−1
0 (8C0/7) 2 n

δs+n δq−1
s .

The expression on the right side approaches zero as s → ∞. Indeed, 2n < log(1/δs−1), by (12), and

2n(8C0/7) 2 n

δq−1
s < 1 due to the choice of q. Thus the limit in (13) exists and equals f(x). ✷

5. Extension property of weakly equilibrium Cantor-type sets

We need two more lemmas.

Lemma 5.1. Let γ satisfy (2), q = 2m, r = 2n with m < n and Z = (zk)r
k=1 with z1 < · · · < zr be all points

of the type ≤ s + n − 1 on I1,s for some s ∈ N0. Let f(x) =
∏r

k=1(x − zk) for x ∈ K(γ) ∩ I1,s and f = 0 on

K(γ)\I1,s. Then |f |0,K(γ) ≤ Cr
0 ·δn+s ·δn+s−1 ·δ2

n+s−2 · · · δ2n−1

s , |f (q)(0)| ≥ q! · (7/8)r−q ·δ2m

n+s−m−1 · · · δ2n−1

s

and ||f ||r ≤ 2 · r!.
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Proof. Fix x̃ that realizes |f |0,K(γ) and a chain of basic intervals containing this point: x̃ ∈ Ij0,n+s ⊂

Ij1,n+s−1 ⊂ · · · ⊂ Ijn,s = I1,s. Arguing as in Lemma 4.1, we see that |f |0,K(γ) ≤ lj0,n+s · lj1,n+s−1 ·

l2
j2,n+s−2 · · · l2n−1

1,s , which, by (3), gives the desired bound.

In order to estimate |f (q)(0)|, let us remark that f (q)(x) is a sum of
(

r
q

)

products, each product has a

coefficient q! and consists of r − q terms (x − zk). One of these products is g(x) :=
∏r

k=q+1(x − zk). All

products are nonnegative at x = 0, since r−q is even. From here, |f (q)(0)| ≥ q!·g(0). Taking into account the

location of points from Z, we get g(0) =
∏r

k=q+1 zk > h2m

1,n+s−m−1 · · · h2n−1

1,s > (7/8)r−q · δ2m

n+s−m−1 · · · δ2n−1

s ,

by (4). The bound of ||f ||r is evident. ✷

In the next Lemma, for given 2n ≤ N < 2n+1, we consider ΩN (x) =
∏N

k=1(x − zk) with ZN = (zk)N
k=1,

where the points are chosen on Ij,s by the rule of increase of type. Let u(x) = u(x, δs+n, Ij,s ∩ K(γ)).

Lemma 5.2. The bound |(ΩN · u)(p)(x)| ≤ 2p (C0 + 1) cp δ−p+1
s+n Np

∏N
k=2 dk(x, ZN ) is valid for each p < N

and x ∈ R.

Proof. By Leibnitz’s formula, |(ΩN · u)(p)(x)| ≤
∑p

i=0

(

p
i

)

| Ω
(i)
N (x)| cp−iδ

−p+i
s+n . Since dk increases, we have

|Ω
(i)
N (x)| ≤ N !

(N−i)!

∏N
k=i+1 dk(x, ZN ). This gives

|(ΩN · u)(p)(x)| ≤ 2p cp δ−p
s+n · max

0≤i≤p
(N δs+n)i

N
∏

k=i+1

dk(x, ZN ). (15)

The set ZN consists of 2n endpoints of subintervals of the level s+n−1 covered by Ij,s and N −2n points

of the type s + n. Here, dist(x, Ij,s ∩ K) = |x − x0| ≤ δs+n for some x0. Let x0 ∈ Ii,s+n ⊂ Im,s+n−1. Then

Im,s+n−1 contains from 2 to 4 points of ZN . In all cases, d1(x, ZN ) ≤ li,s+n + δs+n ≤ (C0 + 1)δs+n, by (3).

Also, δs+n/2 ≤ d2 ≤ (C0 + 1)δs+n−1. Here the lower bound corresponds to the case #(Ii,s+n ∩ ZN ) = 2,

whereas the upper bound deals with #(Im,s+n−1 ∩ ZN ) = 2. Similarly, d3 ≥ hm,s+n−1 − δs+n. From (4)

and (2) it follows that d3 ≥ 7/8 δs+n−1 − δs+n ≥ 27 δs+n. This gives δi−1
s+ndi+1 · · · dN ≤ (C0 + 1)d2 · · · dN for

0 ≤ i ≤ p and, by (15), the lemma follows. ✷

We can now formulate our main result.

Theorem 5.3. Suppose γ satisfies (2). Then K(γ) has the extension property if and only if (5) is valid.

Proof. Recall that the extension property of a set is equivalent to the condition (DN) of the corresponding

Whitney space. Due to L. Frerick [3, Prop. 3.8], E(K) satisfies (DN) if and only if for any ε > 0 and for

any q ∈ N there exist r ∈ N and C > 0 such that | · |1+ε
q ≤ C| · | 0,K || · || ε

r. Hence, in order to prove that

(5) is necessary for EP of K(γ), we can show that (8) implies the lack of (DN) for E(K(γ)), that is there

exist ε > 0 and q such that for any r ∈ N one can find a sequence (fj) ⊂ E(K(γ)) with

| fj |1+ε
q | fj |−1

0,K(γ) || fj ||− ε
r → ∞ as j → ∞.

Let us fix ε and m from the condition (8) and take q = 2m. For each fixed large r (clearly, we can take it in

the form r = 2n) and sj defined by (8), we consider the function fj given in Lemma 5.1 for s = sj . Then

C | fj |1+ε
q | fj |−1

0,K(γ) || fj ||− ε
r ≥ (δn+s · δn+s−1 · δ2

n+s−2 · · · δ2m−1

n+s−m)−1(δ2m

n+s−m−1 · · · δ2n−1

s )ε,

where C does not depend on j. The right side here goes to infinity. Indeed, its logarithm is 2n+s {2Bn+s +

Bn+s−1 + · · · + Bn+s−m − ε[Bn+s−m−1 + · · · + Bs]} and the expression in braces exceeds Bn+s by (8).
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Therefore, the whole value exceeds 2n+sBn+s = 1
2 log 1

δs+n
, which goes to infinity when s = sj increases.

Thus, EP of K(γ) implies (5).

For the converse, we consider the extension operator W from Section 5, where (ns) are chosen as in (12).

We proceed to show that W is bounded provided (10), which is equivalent to (5). Let us fix any natural

number p. This p and C1 from Lemma A define M = 2p + 2 + log(2C1). We fix m ∈ N that corresponds

to M in the sense of (10). Let q = 2m − 1 and r = r(q) be defined by (1). We will show that the bound

|(W (f, x))(p)| ≤ C ||f ||r is valid for some constant C = C(p) and all f ∈ E(K), x ∈ R.

Given f and x, let us consider terms of accumulation sums. For fixed s ∈ N we choose j ≤ 2s such that

x ∈ Ij,s. Fix N with 2n ≤ N < 2n+1 for ns−1 − 1 ≤ n ≤ ns − 1, so Ms + 1 ≤ N ≤ Ns. For large enough

s the value N exceeds p and q. We take ZN and ZN+1, as in Lemma A. By Newton’s representation of

interpolating operators in terms of divided differences, we have

AN,j,s(f, x) = [z1, · · · , zN+1]f · ΩN (x) u(x),

where ΩN and u are taken as in Lemma 5.2. We aim to show that

Ns |A
(p)
N,j,s(f, x)| ≤ s−2 ||f ||r (16)

for large s. This gives convergence of the accumulation sums.

For the divided difference we use (4) from [2]:

| [z1, · · · , zN+1]f | ≤ 2N− q |||f ||| q (Π(J0))−1, (17)

where Π(J0) = min1≤j≤N+1−qΠ(J) for Π(J) defined in Lemma B. Fix z̃ ∈ J0 that corresponds to this set

in the sense of Lemma B.

Applying Lemma 5.2 and Lemma A for z = z̃ yields

|(ΩN · u)(p)(x)| ≤ C δ−p
s+n Np CN

1

N+1
∏

k=2

dk(z̃, ZN+1) with C = 2p(C0 + 1) cp.

On the other hand, (17) and Lemma B for J0 give

| [z1, · · · , zN+1]f | ≤ 2N− q |||f ||| q

N+1
∏

k=q+2

d−1
k (z̃, ZN+1).

Combining these we see that

|A
(p)
N,j,s(f, x)| ≤ C |||f ||| q δ−p

s+n Np (2C1)N

q+1
∏

k=2

dk(z̃, ZN+1). (18)

Recall that the set ZN+1 includes all points of the type ≤ s+n−1 on Ij,s and N +1−2n points of the type

s+ n. We can only enlarge the product
∏q+1

k=2 dk(z̃, ZN+1) if we will consider only distances from z̃ to points

from Ys+n−1 ∩ Ij,s. Arguing as in Lemma 4.1, we get
∏q+1

k=2 dk(z̃, ZN+1) ≤ Cq
0δs+n−1 δ2

s+n−2 · · · δ2m−1

s+n−m. We

observe that d1(z̃, ZN+1) = 0 is not included into the product on the left side. By (10),
∏q+1

k=2 dk(z̃, ZN+1) ≤

Cq
0 δM

s+n.

In order to get (16), it is enough to show that

s2 Ns Np (2C1)N δM−p
s+n → 0 as s → ∞. (19)



ARTICLE IN PRESS

U
N

C
O

R
R
E
C
T

E
D

P
R
O

O
F

Please cite this article in press as: A. Goncharov, Z. Ural, Mityagin’s extension problem. Progress report, J. Math. Anal. Appl.
(2017), http://dx.doi.org/10.1016/j.jmaa.2016.11.001

JID:YJMAA AID:20853 /FLA Doctopic: Real Analysis [m3L; v1.190; Prn:8/11/2016; 13:02] P.10 (1-19)

10 A. Goncharov, Z. Ural / J. Math. Anal. Appl. ••• (••••) •••–•••

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

Here, by (12), Ns Np < 2ns(p+1) ≤ log(1/δs)p+1 < δ−p−1
s . Also, (2C1)N < δ

− log(2C1)
s . Clearly, we can

replace δs+n in (19) by δs. Then, because of the choice of M , the product in (19) does not exceed s2 δs,

which approaches 0 as s → ∞, since, by (2), δs ≤ 32−s.

Similar arguments are used for terms of the transition sums. ✷

6. Extension of basis elements

An extension operator for the spaces E(K(γ)) can also be constructed by means of suitable extensions

of basis elements of the space. It is interesting that for sufficiently small sets with EP both approaches

coincide.

Let e0 ≡ 1 and eN (x) =
∏N

1 (x − xk) for N ∈ N, where the points (xk)∞
1 are chosen on K(γ) by the rule

of increase of type. Then, by Theorem 3.3 in [12], (eN )∞
N=0 is a Schauder basis in E(K(γ)), provided

∀Q ∃m, k0 : Q ≤ Bk−m + · · · + Bk for k ≥ k0. (20)

Thus, in this case, the space possesses a strict polynomial basis. If, in addition,

∀M, Q ∃m, k0 : Q + M · Bk ≤ Bk−m + · · · + Bk for k ≥ k0,

then one can take simultaneous (suitable for all norms) extensions ẽN = eN ·u(·, δn, K(γ)), where 2n ≤ N <

2n+1. The biorthogonal functionals are given by the divided differences ξN (f) = [x1, x2, · · · , xN+1]f . Here,

the Mityagin method gives the operator W (f) =
∑∞

n=0 ξn(f) · ẽN for f =
∑∞

n=0 ξn(f) · en. In the notations

of Section 4, W (f) = L0(f, ·, I1, 0) u(·, 1, K(γ)) +
∑∞

n=1 AN,1,0(f, ·), which is exactly the Pawłucki–Pleśniak

operator, if (xk)N
1 are the Fekete points on the set. We conjecture that, at least for N = 2n, this is the case.

In general, without (20), (eN )∞
N=0 does not have the basis property. Here a basis can be constructed

by means of local interpolations. The condition (5) provides existence of extensions of basis elements that

correspond to the accumulation sums in (11). However, the terms of transition sums do not have simple

representations in terms of such extensions.

7. Two examples

First we consider regular sequences (Bk)∞
k=1. Let βk = (log Bk)/k. We say that (Bk)∞

k=1 is regular if,

for some k0, both sequences (Bk)∞
k=k0

and (βk)∞
k=k0

are monotone. Recall that (Bk)∞
k=1 has subexponential

growth if βk → 0 as k → ∞.

For example, given a > 1, let γ
(1)
k = k−a, γ

(2)
k = a−k, γ

(3)
k = exp(−ak) for large enough k. Then γ(j) for

1 ≤ j ≤ 3 generate regular B(j) with B
(1)
k ∼ 2−k−1 a k log k, B

(2)
k ∼ 2−k−2 k2 log a, B

(3)
k ∼ (a/2)k+1/(a − 1).

Here, β
(1)
k , β

(2)
k ր − log 2 and β

(3)
k → − log(a/2), so B(j) are not of subexponential growth, except B(3) for

a = 2. We see that (5) is valid in the first two cases and in the third case with a ≤ 2.

More generally, (5) is valid for each monotone convergent (Bk)∞
k=1. Indeed, if Bk ց B ≥ 0, then LHS of

(5) does not exceed (n + 1)−1. If Bk ր B, then we take s0 with Bs > B/2 for s ≥ s0. Then Bs + · · · Bs+n ≥

(n + 1)B/2 and LHS of (5) < 2(n + 1)−1. This covers the case of regular sequences (Bk)∞
k=1 when βk are

negative. Let us show that (5) is valid as well for divergent regular sequences (Bk)∞
k=1 of subexponential

growth.

Theorem 7.1. Let (Bk)∞
k=1 be regular with positive values of βk. Then (5) is valid if and only if (Bk)∞

k=1 has

subexponential growth.
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Proof. A regular sequence (Bk)∞
k=1 is not of subexponential growth, provided βk > 0, in the following

three cases: βk ր β < ∞, βk ր ∞ and βk ց ε0 > 0. We aim to show that (5) is not valid under the

circumstances.

In the first case, given s and n, let b = exp βs+n. Then b − 1 ≥ exp β1 − 1 > β1 > 0 and b ≤ exp β. Here,
∑s+n

k=s Bk < bs+n+1/(b − 1) as Bk = exp(kβk) ≤ bk for such k. Therefore, Bs+n/
∑s+n

k=s Bk > (b − 1)/b >

β1/ exp β, which contradicts (5).

If βk ր ∞ then, by the same argument, Bs+n/
∑s+n

k=s Bk > (b − 1)/b > 1/2 for s ≥ s0, where s0 is fixed

with exp βs0
> 2.

Suppose βk ց ε0. We fix indices s1 < s2 < · · · such that the intervals Ij connecting points (sj , βsj
) and

(sj+1, βsj+1
) form a convex envelope of the set (k, βk) on the plane. We start from s1 = max{s : βs = β1}.

If sj is chosen, then we take sj+1 with he property: for each k with sj ≤ k ≤ sj+1 the point (k, βk) is not

over Ij . At any step we can take the next value so large that the slopes of Ij increases to zero. In addition,

given sj , we take sj+1 such that

(4 − 2 sj/sj+1)βsj+1
≥ (3 − sj/sj+1)βsj

, (21)

which is possible as βk decreases to a positive limit.

For fixed j, we take s = sj and s + n = sj+1. Let β̃k = ak + b with a = −(βs − βs+n)/n and b =

βs + (βs − βs+n) s/n for s ≤ k ≤ s + n, so the points (k, β̃k) are located just on the interval Ij . Also, let

g(x) = ax2 + bx and B̃k = exp g(k) = exp(k β̃k) on [s, s + n]. Of course, B̃s = Bs and B̃s+n = Bs+n.

It is easy to check that the function g increases on this interval. Hence,
∑s+n

k=s Bk ≤
∑s+n

k=s B̃k <
∫ s+n

s
g(x) dx+Bs+n. By integration by parts,

∫ s+n

s
g(x) dx = g(n+s) · [2a(n+s)+b]−1 −g(s) · [2as+b]−1 +

2a
∫ s+n

s
g(x)(2ax + b)−2dx. We neglect the last term, as a < 0, and the second term, as 2as + b = g′(s) > 0.

Also, 2a(n + s) + b = (2 + s/n)βs+n − (1 + s/n)βs ≥ βs/2 ≥ ε0/2, by (21). Hence
∫ s+n

s
g(x) dx < 2 Bs+n/ε0

and Bs+n/
∑s+n

k=s Bk > ε0/(2 + ε0), so (5) is not valid.

We proceed to show that (5) is valid for βk ց 0, that is in the case of subexponential growth of (Bk)∞
k=1.

Here, for fixed large s and n, we estimate
∑s+n

k=s Bk from below. Let b = exp βs+n. Then Bk ≥ bk for

s ≤ k ≤ s + n. Therefore, Bs+n/
∑s+n

k=s Bk ≤ bn(b−1)
bn+1−1 .

If bn < 2 for the given s and n then bn+1 − 1 > (n + 1)βs+n. On the other hand, exp βs+n − 1 < 2 βs+n

for βs+n < 1. Thus the fraction above does not exceed 4/(n + 1).

Otherwise, bn ≥ 2 and bn < 2(bn+1 − 1). Here the fraction does not exceed 4 βs+n. It follows that

Bs+n/
∑s+n

k=s Bk ≤ max{4/(n + 1), 4 βn}, which is the desired conclusion. ✷

Our next objective is to consider irregular sequences (Bk)∞
k=1 (compare with Ex.6 in [11]). Given two

sequences, (kj)∞
j=1 ⊂ N with kj+1 − kj ր ∞ and (εj)∞

j=1 with εj ց 0, let γk = (k + 5)−2 for k 6= kj

and γkj
= (kj + 5)−2εj . Then γ satisfies (2) with δk = (5!/(k + 5)!)2 ε1ε2 · · · εj for kj ≤ k < kj+1. Let

Aj := log 1
ε1ε2···εj

. We will consider only sequences with the property

k2
j+1 · A−1

j → 0 as j → ∞. (22)

Provided this condition, Bk = 2−k log (k+5)!
5! + 2−k−1 Aj ∼ 2−k−1 Aj for kj ≤ k < kj+1. In addition, an easy

computation shows that for large j,

Bkj
+ Bkj+1 + · · · + Bkj+1−1 < 3 Bkj

. (23)

Now we can construct different examples of compact sets K(γ) without extension property.

Example 2. Let Aj = 2kj , so εj = exp(−2kj + 2kj−1) for j ≥ 2 and ε1 = exp(−2k1). In this case, (22) is

valid under mild restriction 2−kj k2
j+1 → 0 as j → ∞. Let us take s = kj , n = kj+1 − kj . Then Bs+n >
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2−kj+1−1 Aj+1 = 1/2 and, by (23), Bs + · · ·+Bs+n−1 < 3 Bs < 4 ·2−kj−1 Aj = 2. This gives (8) with ε = 1/4

and m = 0.

8. Extension property of K(γ) and Hausdorff measures

From now on, h is a dimension function, which means that h : (0, T ) → (0, ∞) is continuous, nondecreas-

ing and h(t) → 0 as t → 0. The h-Hausdorff content of E ⊂ R is defined as

Mh(E) = inf{
∑

h(|Gi|) : E ⊂ ∪Gi}

and the h-Hausdorff measure of E is

Λh(E) = lim inf
δ→0

{
∑

h(|Gi|) : E ⊂ ∪Gi, |Gi| ≤ δ}.

Here we consider finite or countable coverings of E by intervals (open or closed).

It is easily seen that Mh(E) = 0 if and only if Λh(E) = 0. We write h1 ≺ h2 if h1(t) = o(h2(t)) as t → 0.

Let h1 ≈ h2 if C−1h1(t) ≤ h2 ≤ Ch1(t) for some constant C ≥ 1 and 0 < t ≤ t0 < T . We will denote by h0

the function h0(t) = (log 1
t )−1 with 0 < t < 1, which defines the logarithmic measure of sets.

A set E is called dimensional if there is at least one dimension function h that makes E an h-set, that is

0 < Λh(E) < ∞. In our case, the set K(γ) is dimensional. In [1], following Nevanlinna [15], the corresponding

dimension function was presented. Let η(δk) = k for k ∈ Z+ with δ0 := 1 and η(t) = k + log δk

t / log δk

δk+1
for

δk+1 < t < δk. Then h(t) := 2−η(t) for 0 < t ≤ 1. Clearly, h(δk) = 2−k.

Lemma 8.1. Let γ satisfies (2) and h be defined as above. Then Λh(K(γ)) = 1.

Proof. Take t = C0 δk, where C0 is given in (3). Then δk < t = C0 γk δk−1 < δk−1 for large enough k. Here,

η(t) = k − log C0/ log(1/γk) and h(t) = 2−k ak with ak := exp log C0·log 2
log(1/γk) . Since γk → 0, given ε > 0, there

is k0 such that ak < 1 + ε for k ≥ k0. From (3) it follows that 1 = 2k h(δk) <
∑2k

j=1 h(lj,k) < 2k h(t) <

1 + ε provided that k ≥ k0. Of course, Λh(K(γ)) ≤
∑2k

j=1 h(lj,k) for each k. Since ε is arbitrary, we get

Λh(K(γ)) ≤ 1.

Let us show that Λh(K(γ)) ≥ 1. Fix ε > 0 and choose k0 such that

ε log 1/γk > − log 2 · log(1 − 4γk) for k ≥ k0. (24)

This can be done as γk → 0. Take any open covering ∪Gi of K(γ). Given ε, we can consider coverings only

with |Gi| < δk0
for each i. We choose a finite subcover ∪N

i=1Gi of K(γ).

Fix i ≤ N and k with δk+1 < |Gi| ≤ δk. By (3) and (4), the distance between any two basic intervals

from Ek+1 exceeds (1 − 4γk+1)δk. If |Gi| < (1 − 4γk+1)δk then Gi can intersect at most one interval from

Ek+1. In this case we can consider only |Gi| ≤ max1≤j≤2k+1 lj,k+1 ≤ C0δk+1, by (3). Thus there are two

possibilities: δk+1 < |Gi| ≤ C0δk+1 or (1 − 4γk+1)δk < |Gi| ≤ δk.

In the first case we have h(|Gi|) > 2−k−1. Here, Gi intersects at most one interval from Ek+1 and, by

construction, at most 2m−k−1 interval from Em for m > k. In turn, in the latter case, h(|Gi|) > 2−k(1 − ε).

Indeed, here, η(|Gi|) < k−log(1−4γk+1)/ log(1/γk+1) and h(|Gi|) > 2−k a, where a = exp
log(1−4γk+1)·log 2

log(1/γk+1) >

(1 − ε), by (24). Now Gi intersects at most two interval from Ek+1 and at most 2m−k interval from Em.

Let us choose m so large that each basic interval from Em belongs to some Gi. We decompose all

intervals from Em into two groups corresponding to the cases considered above. Counting intervals gives

2m ≤
∑′

i 2m−k−1 +
∑′′

i 2m−k < 2m[
∑′

i h(|Gi|) +
∑′′

i h(|Gi|)(1 − ε)−1]. From this we see that
∑

i h(|Gi|) >

1 − ε, which is the desired conclusion, as ε and (Gi) here are arbitrary. ✷
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The same reasoning applies to a part of K(γ) on each basic interval.

Corollary 8.2. Let γ and h be as in Proposition above, k ∈ N, 1 ≤ j ≤ 2k. Then Λh(K(γ) ∩ Ij,k) = 2−k.

Theorem 8.3. Suppose γ satisfies (2), h is defined as above and K(γ) is not polar. Then µK = Λh|K(γ).

Proof. Here, by Corollary 3.2 in [1], µK(γ)(Ij,k) = 2−k, so the values of µK(γ) and the restriction of Λh on

K(γ) coincide on each basic interval. From here, by Lemma 3.3 in [1], these measures are equal on K(γ). ✷

Thus, a non-polar set K(γ) satisfying (2) is indeed equilibrium Cantor-type set if we accept for definition

of this concept the condition µK = Λh|K(γ), which is more natural than the definition suggested in [10],

Section 6.

We recall that there is no complete characterization of polarity of compact sets in terms of Hausdorff

measures, see e.g. Chapter V in [15]. On the one hand, a set is polar if its logarithmic measure is fi-

nite. This defines a zone Zpol in the scale of growth rate of dimension functions consisting of h with

lim inft→0 h(t)/h0(t) > 0. If h ∈ Zpol and Λh(K) < ∞ then Cap(K) = 0. On the other hand, functions

with
∫

0 h(t)/t dt < ∞ form a non-polar zone Znp: if h ∈ Znp and Λh(K) > 0 then Cap(K) > 0. But, by

Ursell [22], the remainder makes up a zone Zu of uncertainty. One can take two functions in this zone with

h2 ≺ h1 and sets K1, K2, where Kj is a hj-set, such that K2 is polar, K1 is not, though in the sense of

Hausdorff measure the set K2 is larger than K1. Indeed, Λh2
(K2) > 0, but Λh2

(K1) = 0 or Λh1
(K2) = ∞,

but Λh1
(K1) < ∞.

Let us show that a similar circumstance is valid with the extension property.

Proposition 8.4. There are two dimension functions h2 ≺ h1 and two sets K1, K2, where Kj is an hj-set

for j ∈ {1, 2}, such that the smaller set K1 has the extension property, whereas the larger set K2 does not.

Proof. Take K1 from Example 1. Let us show that the corresponding function h1 = 2−η1 is equivalent to h0.

It is enough to find C > 0 such that η0(t)−C ≤ η1(t) ≤ η0(t)+C for small t. Here, η0(t) = (log log 1/t)/ log 2,

so h0(t) = 2−η0(t). For the set K1 we have δk = exp(−2k+1B) and η0(δk) = k+log 2B/ log 2. If δk+1 < t ≤ δk

for some k, then k ≤ η1(t) < k +1 and k +log 2B/ log 2 ≤ η0(t) < k +1+log 2B/ log 2, which gives h1 ≈ h0.

In turn, let K2 be as in Example 2 with Aj = 2kj 2−j and εj = exp(−Aj + Aj+1) for j ≥ 2. Here

we suppose that (kj)∞
j=1 satisfies 2−kj 2j k2

j+1 → 0 as j → ∞. Then (22) and (23) are valid, which, as

in Example 2, gives the lack of the extension property for K2. Let us show that h2 ≺ h0. It is enough

to check that η2(t) − η0(t) → ∞ as t → 0. Let δk < t ≤ δk−1 with kj ≤ k < kj+1 for large enough j.

Then log 1/δk = 2 log((k + 5)!/5!) + Aj < 2 Aj and η0(t) < η0(δk) < kj + 1 − j. On the other hand,

η2(t) ≥ η2(δk−1) = k − 1 ≥ kj − 1. Therefore, η2(t) − η0(t) > j − 2, which completes the proof. ✷

One can suppose that, at least for the considered family of sets, the scale of growth rate of dimension

functions can be decomposed as above into three zones. If K(γ) is an h-set for a function h with moderate

growth then the set has EP . If the corresponding function h is large enough, then EP fails. Proposition

above shows that the zone of uncertainty here is not empty.

We see that h = h0 is not the largest function which allows EP for h-sets K(γ). If we take Bk ր ∞ of

subexponential growth, as in the regular case, then δk = exp(−2k+1Bk) and h0(δk) = 2−k−1B−1
k , which is

essentially smaller than h(δk) = 2−k for the corresponding function h.

Example 3. Let log(m) t denote the m-th iteration log · · · log t for large enough t. The sequence Bk =

exp(k/ log(m) k) has subexponential growth. Then the corresponding sequence (γk)∞
k=1 satisfies (2), as for

large k we have γk = δk/δk−1 < exp(−2kBk) < exp(−2k) and for the previous k we can take γk = 1/32.

By Theorem 7.1, the set K(γ) has EP . Let us find a dimension function h that corresponds to this set.
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We will search it in the form h(t) = h
α(t)
0 (t). Let t = δk. Then log 1/t = 2k+1Bk, so k ∼ (log log 1/t)/ log 2.

On the other hand, h(t) = 2−k = (2k+1Bk)−α(t), which gives α(t) ∼ 1 − (log 2 · log(m) k)−1 ∼ 1 − (log 2 ·

log(m+2) 1/t)−1. Clearly, h ≻ h0.

The next Proposition generalizes Example 3. We restrict our attention to strictly increasing functions

h of the form h = hα
0 , where α is a monotone function on [0, t0]. As we will be interested in considering

dimension functions exceeding h0 in the next sections, let us suppose that α(t) ≤ 1. Then h ≻ tσ for each

fixed σ > 0.

In addition we assume that asymptotically

h(t) ≤ 2 h(t2), (25)

which is valid for typical dimension functions corresponding to the cases

a) α(t) = α0 ∈ (0, 1],

b) α(t) = α0 + ε(t) with α0 ∈ [0, 1),

c) α(t) = 1 − ε(t).

Here,

ε(t) ց 0 with ε(t) log log 1/t ր ∞ as t ց 0, (26)

since for slowly increasing ε we get hα0±ε ≈ hα0

0 .

By (25), for the inverse function h−1, we have h−1(τ) ≤ (h−1(2τ))2 and h−1 ≺ τM for M given

beforehand. From this, γk = h−1(2−k)/h−1(2−k+1) defines a sequence satisfying (2). We denote the

corresponding set by Kα(γ). Our aim is to check EP for this set provided regularity of the sequence

Bk = 2−k−1 log(1/h−1(2−k)). We see at once that Bk increases. In its turn, βk ց 0 if α0 = 1 in the case

(a), βk ր 1/α0 −1 in (b) and in (a) with α0 < 1. Concerning (c), the monotonicity of βk requires additional

rather technical restrictions on ε. At least for ε(t) = εm(t) := (log(m) 1/t)−1 we have βk ց 0. Here, m ≥ 3,

as h ≈ h0 for m ∈ {1, 2}.

Proposition 8.5. Let Kα(γ) be defined by a function h, as above, with a regular sequence (Bk)∞
k=1. Then

Kα(γ) has the extension property if and only if

(

log
1

h−1(2−k)

)1/k

→ 2 as k → ∞.

Proof. Let us find h−1 for the case α(t) = 1 − ε(t). If h(t) = τ then [1 − ε(t)] log log 1/t = log 1/τ . Let

us define a function δ by the condition log log 1/t = [1 + δ(τ)] log 1/τ . Then [1 − ε(t)][1 + δ(τ)] = 1, so

δ(τ) ց 0 as τ ց 0. Then t = h−1(τ) = exp[−(1/τ)1+δ(τ)] and log(1/h−1(2−k)) = 2k(1+δ(2−k)). The

k-th root of this expression tends to 2. On the other hand, (Bk)∞
k=1 here has subexponential growth as

βk = (δ(2−k) − 1/k) log 2 → 0. By Theorem 7.1, Kα(γ) has EP .

Similarly, if α(t) = α0 + ε(t) with 0 < α0 < 1 then h−1(τ) = exp[−(1/τ)1/α0−δ(τ)]. Here,

(log(1/h−1(2−k)))1/k = 2(1/α0−δ(2−k))
9 2 and βk 9 0, there is no EP . In the case (a), the function

δ vanishes.

Lastly, α0 = 0 in (b) gives h−1(τ) = exp[−(1/τ)∆(τ)] with ∆(τ) ր ∞ as τ ց 0. Here,

(log(1/h−1(2−k)))1/k → ∞ and βk → ∞. ✷
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9. Extension property and densities of Hausdorff contents

To decide whether a set K has EP , we have to consider a local structure of the most rarefied parts

of K. Obviously, such global characteristics as Hausdorff measures or Hausdorff contents cannot be applied

in general for this aim. Instead, one can suggest to describe EP in terms of lower densities of Mh or

related functions. Given a dimension function h, a compact set K, x ∈ K and r > 0, let ϕh,K(x, r) :=

Mh(K ∩ B(x, r)) and ϕh,K(r) := infx∈K ϕh,K(x, r), where B(x, r) = [x − r, x + r]. One can suppose

that K has EP if and only if the corresponding function ϕh,K is not very small, in a sense, as r → 0.

Essentially, this is similar to analysis of the lower density of the Hausdorff content, which can be defined

as φh(K) := lim infr→0 infx∈K
Mh(K∩B(x,r))

Mh(B(x,r)) . Indeed, Mh(B(x, r)) = h(2r) for h with h(t) ≻ t and the

expression above is lim infr→0
ϕh,K (r)

h(2r) .

In order to distinguish EP by means of φh, we have to consider large enough dimension functions h.

Indeed, if for some h1 with h1 ≻ h there exists h1-set K1 with EP , then h cannot be used for this

aim, because Λh(K1) = 0 implies Mh(K1) = 0 and the corresponding density vanishes contrary to our

expectations. Therefore, we can consider only functions exceeding h0.

We remark that Λh-analogs of ϕh,K or φh cannot be applied in general for distinguishing EP , since for

fat sets (K = Int(K)) we have Λh(K ∩ B(x, r)) = ∞ provided h(t) ≻ t.

Interestingly, it turns out that the lower density φh can be used to characterize EP for the family of

compact sets considered in [6].

Example 4. Given two sequences bk ց 0 (for brevity, we take bk = e−k) and Qk ր with Qk ≥ 2, let

K = {0} ∪
⋃∞

k=1 Ik, where Ik = [ak, bk], |Ik| = bQk

k . In what follows we will consider two cases: Qk ≤ Q with

some Q and Qk ր ∞ with Qk < log k for large k. By Theorem 4 in [6], K has the extension property in

the first case and does not have it for unbounded (Qk).

In the next lemma we consider concave dimension functions h = hα
0 for the cases (a), (b), as above, and

for more general

c′) α(t) = α0 − ε(t) with α0 ∈ (0, 1].

We suppose now that ε is a monotone differentiable function on [0, t0] with 0 < ε(t) < 1 − α0 in (b) and

0 < ε(t) < α0/2 in (c ′). As before, we assume (26). A direct computation shows that

h′(t) < h(t) h0(t) α(t)/t for the cases (a), (b) and h′(t) < h(t) h0(t)/t for (c ′). (27)

Lemma 9.1. Suppose intervals Ik are given as in Example 4 and n is large enough. Then Mh(∪∞
k=nIk) =

h(bn). This means that the covering of the set ∪∞
k=nIk by the interval [0, bn] is optimal in the sense of

definition of Mh.

Proof. Let us fix a covering of K by open intervals, choose a finite subcovering ∪M
i=1Gi and enumerate Gi

from left to right. We can suppose that G1 covers ∪∞
k=N Ik for some N ≥ n. Indeed, if G1 covers as well

some part of IN−1, then other part of IN−1 is covered by G2. In this case, association of G1 and G2 into

one interval will give better covering, since h(b) ≤ h(x) + h(b − x) for 0 ≤ x ≤ b, by concavity of h. For

the same reason, we suppose that each Gi covers entire number of Ik. After this we reduce each Gi to the

minimal closed interval Fi containing the same intervals Ik. Thus, F1 = [0, bN ] and F2 = [aN−1, bq] with

some n ≤ q ≤ N − 1. Our aim is to show that

h(bq) < h(bN ) + h(bq − aN−1), (28)
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so replacing F1 ∪ F2 with [0, bq] is preferable. We use the mean value theorem and the decrease of h′. Note

that h(bk) = k−α(bk).

Consider first the value q = N − 1. We will show h(bN−1) − h(bN ) < h(|IN−1|).

In the cases (a), (b), by (27), LHS < h′(bN )e−N (e − 1) < N−1−α(bN )α(bN )(e − 1). On the other hand,

h(|IN−1|) = [QN−1(N − 1)]−α(|IN−1|). Here, α(|IN−1|) < α(bN ), so we reduce the desired inequality to

(QN−1/N)α(bN )α(bN )(e − 1) < 1. It is valid, since for α0 > 0 the first term on the left goes to zero, whereas

for α0 = 0 in (b) we have α(bN ) = ε(bN ) → 0 as N → ∞.

Similarly, in the case (c ′) the inequality [QN−1(N − 1)]α0−ε(|IN−1|)(e − 1) < N1+α0−ε(bN ) is valid, as is

easy to check.

Suppose now that q ≤ N − 2. We write (28) as h(bq) − h(bq − aN−1) < h(bN ).

Here, in all cases, by (27), LHS < h′(bq − aN−1) aN−1 < h(bq)h0(bq) aN−1

bq−aN−1
, where the last fraction

does not exceed bN−1

bq−bN−1
. On the other hand, h(bN ) ≥ N−1 as α(bN ) ≤ 1. Hence it is enough to show

that N < (eN−q−1 − 1) q1+α(bq). We neglect α(bq) and notice that (eN−q−1 − 1) q ≥ (e − 1)(N − 2), which

completes the proof of (28).

Continuing in this manner, we see that h(bn) ≤
∑M

i=1 h(|Fi|). ✷

Corollary 9.2. Suppose bn+1 ≤ r ≤ bn − bn+1. Then ϕh,K(r) = h(|In|).

Proof. Clearly, ϕh,K(x, r) = h(|In|) for each x ∈ In. If x ∈ K ∩ [0, bn+1] then B(x, r) covers all intervals

Ik with k ≥ n + 1. By Lemma, ϕh,K(x, r) = h(bn+1) > h(|In|). Of course, for x ∈ Ik with k < n the value

ϕh,K(x, r) also exceed h(|In|). ✷

Remark. The covering of two (or small number of) intervals Ik by one interval is not optimal, since Mh(Ik ∪

Ik+1) = h(|Ik|) + h(|Ik+1|) < h(bk − ak+1).

We proceed to characterize EP for given compact sets in terms of lower densities φh for h = hα
0 , where

α(t) = α0 ∈ (0, 1] or α(t) = α0 ± εm(t) (29)

with 0 < α0 < 1 and εm(t) = (log(m) 1/t)−1 for m > 2, so (26) is valid.

Proposition 9.3. Let K be from the family of compact sets given in Example 4 and h be as above. Then K

has the extension property if and only if φh(K) > 0.

Proof. Suppose first that Qk ≤ Q with some Q, so K has EP . We aim to show lim infr→0
ϕh,K(r)

h(2r) > 0.

Let e−k−1 ≤ r < e−k for some k. Then, as ϕh,K increases, ϕh,K(r) ≥ ϕh,K(e−k−1), which is h(|Ik|) =

(k · Qk)−α(|Ik|), by Corollary 9.2. On the other hand, h(2r) < h(2e−k) = (k − log 2)−α(2e−k). Therefore,

ϕh,K(r)/h(2r) > Q
−α(|Ik|)
k kα(2e−k)−α(|Ik|) (1 − log 2/k)−α(2e−k).

The first term on the right converges to Q−α0 as k → ∞. The second and the third terms converge to 1.

Hence, φh(K) ≥ Q−α0 . Besides, this value is achieved in the case Qk = Q by the sequence rk = bk − bk+1.

Thus, φh(K) = Q−α0 > 0.

Similar arguments apply to the case Qk ր ∞, when K does not have EP . Here, φh(K) ≤

limk ϕh,K(rk)/h(2rk) for rk as above. By Corollary 9.2, ϕh,K(rk) = h(|Ik|). Also, h(2rk) > h(e−k). Hence,

ϕh,K(rk)/h(2rk) < Q
−α0/2
k kα(e−k)−α(|Ik|), which converges to 0 as k increases. ✷

Corollary 9.4. Given h, as above, for each σ > 0 there is a compact set with EP such that 0 < φh(K) < σ.
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Remark. For this family of sets, the extension property can also be characterized in terms of the Lebesgue

linear measure λ. Let λ(r) := infx∈K λ(K ∩ [x − r, x + r]). Then K has the extension property if and only

if lim infr→0 λ(r) · r−Q > 0 for some Q.

Nevertheless, at least for dimension functions h = hα
0 with α as in (29), there is no general characterization

of EP in terms of lower densities φh. In view of Example 3 and the discussion in the beginning of the section,

the value α0 = 1 can be omitted from consideration.

We now treat regular sets K(γ) with δk = exp(−bk). Here, Bk = 2−1(b/2)k. By Theorem 7.1, K(γ) has

EP if b = 2 and does not have it for b > 2.

Lemma 9.5. For each constants C ≥ 1 and h, as above, there is b > 2 such that h(Cδk) < 2 h(δk+1) for large

enough k. This inequality is also valid for b = 2.

Proof. In all cases we have h(δk) = b−k·α(δk) and the desired inequality has the form

b(k+1)α(δk+1) < 2 (bk − log C)α(Cδk). (30)

Suppose α ≡ α0. Then (30) is valid as bα0 < 2 (1 − b−k log C) for large k and b = 2 + σ with small

enough σ. All the more, it is valid for b = 2.

The same reasoning applies to the case α = α0 + ε(t) with ε ր as ε(δk+1) < ε(Cδk).

In the last case α(t) = α0 − εm(t) we use the following simple inequality

log(m)(Cx) − log(m)(x) < log C · [log x log(2)(x) · · · log(m−1)(x)]−1,

which is valid for all x from the domain of definition of log(m). From this we have k · [ε(Cδk) − ε(δk+1)] → 0

as k → ∞ and (30) can be treated as in the first case. ✷

Corollary 9.6. Let k be large enough. Then the covering of each basic interval Ij,k of K(γ) by one interval

is better (in the sense of definition of Mh) than covering by two adjacent subintervals.

Indeed, by (3), h(lj,k) < h(C0δk) < 2 h(δk+1) < h(l2j−1,k+1) + h(l2j,k+1).

Remark. It is essential that coverings of a whole basic interval are considered. For example, for the set

I1,k ∪ I3,k+1 we have h(l1,k) + h(l3,k+1) < h(b3,k+1), which corresponds to the covering of the set by one

interval.

Proposition 9.7. Let h = hα
0 with α as in (29) and K(γ) be defined by δk = exp(−bk) with b ≥ 2. Then

φh(K(γ)) = b−α0 .

Proof. For brevity, we denote here K(γ) by K. Fix x ∈ K. Let x ∈ Ij,k ⊂ Ii,k−1 and C0 δk ≤ r ≤ 7/8 · δk−1.

Then, by (3), lj,k ≤ r < hi,k−1 and K ∩ [x − r, x + r] = K ∩ Ij,k. Arguing as in Lemma 9.1, by Lemma 9.5,

we get ϕh,K(x, r) = h(lj,k). Therefore, by monotonicity, h(δk) < ϕh,K(x, r) < h(C0δk) for each x ∈ K.

We proceed to estimate φh(K) from both sides. Suppose that C0 δk ≤ r ≤ C0 · δk−1 for some k. Then

h(δk) < ϕh,K(r) < h(C0δk−1) and

h(δk)

h(2C0δk−1)
<

ϕh,K(r)

h(2r)
<

h(C0δk−1)

h(2C0δk)
.

Here, δk = δb
k−1. Analysis similar to that in the proof of Lemma 9.5 shows that the first fraction above has

the limit b−α0 , whereas the last fraction tends to bα0 as k → ∞. Moreover, the value b−α0 can be achieved

as limk ϕh,K(rk)/h(2rk) for rk = 7/8 · δk−1. ✷
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Comparison of Propositions 9.3 and 9.7 shows that, for given dimension functions, lower densities of

Hausdorff contents cannot be used in general to characterize the extension property. Indeed, let us take

K(γ), as above, with b > 2 and K, as in Example 4, with Q > b. Then φh(K) < φh(K(γ)) in spite of the

fact that K has EP , whereas K(γ) does not.

10. Extension property and growth of Markov’s factors

Let Pn denote the set of all holomorphic polynomials of degree at most n. For any infinite compact set

K ⊂ C we consider the sequence of Markov’s factors

Mn(K) = inf{M : |P ′|0,K ≤ M |P |0,K , P ∈ Pn}

for n ∈ N. We see that Mn(K) is the norm of the operator of differentiation in the space (Pn, | · |0,K). We say

that a set K is Markov if the sequence (Mn(K)) is of polynomial growth. This class of sets is of interest to

us, since, by W. Pleśniak [17], any Markov set has EP . On the other hand, there exist non-Markov compact

sets with EP ([5,2]). We guess that there is some extremal growth rate (mn)∞
n=1 with the property: if, for

some compact set K, Mn(K)/mn → ∞ as n → ∞ then K does not have EP . The next proposition asserts

that here, as above, there is a zone of uncertainty, in which growth rate of Markov’s factors is not related

with EP . In this sense, it is an analog of Proposition 8.3.

Proposition 10.1. There are two sets K1 with EP and K2 without it, such that Mn(K1) grows essentially

faster than Mn(K2) as n → ∞.

Proof. By Theorem 6 in [10], M2k (K(γ)) ∼ 2/δk. By monotonicity, δ−1
k < Mn(K(γ)) < 4 δ−1

k+1 for 2k ≤ n <

2k+1 with large enough k. As in Proposition 8.3, we take K1 from Example 1, so δ
(1)
k = exp(−2k+1B) with

B > 1. Also, we use K2 from Example 2 with Aj = 2kj . For simplicity, we fix kj = j2 that satisfies (22).

Here, δ
(2)
k > k−2k ε1ε2 · · · εj for kj ≤ k < kj+1. We aim to show that Mn(K2)/Mn(K1) → 0 as n → ∞. Let

us fix large n with 2k ≤ n < 2k+1. For this k we fix j with kj ≤ k < kj+1. Then

Mn(K2)/Mn(K1) < 4 δ
(1)
k /δ

(2)
k+1. (31)

Suppose first that k ≤ kj+1−2. Then RHS of (31) does not exceed 4 exp[−2k+1B+2(k+1) log(k+1)+Aj ].

The expression in brackets is smaller than 2kj (1 − 2B) + k2
j+1, which is (j + 1)4 − (2B − 1) 2j2

, so it tends

to −∞ as j → ∞.

If k = kj+1 − 1 then RHS of (31) is smaller than 4 exp[−2kj+1B + 2kj+1 log kj+1 + Aj+1], which goes

to 0, since B > 1. This completes the proof. ✷

Existence of a zone of uncertainty (for the extension property) in the scale of growth rate of Markov’s

factors implicates the problem to find boundaries of this zone.
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