Very Cleanness of Generalized Matrices

Yosum Kurtulmaz

Department of Mathematics, Bilkent University, Ankara, Turkey yosum@fen.bilkent.edu.tr

Abstract

An element a in a ring R is very clean in case there exists an idempotent $e \in R$ such that ae = ea and either a - e or a + e is invertible. An element a in a ring R is very J-clean provided that there exists an idempotent $e \in R$ such that ae = ea and either $a - e \in J(R)$ or $a + e \in J(R)$. Let R be a local ring, and let $s \in C(R)$. We prove that $A \in K_s(R)$ is very clean if and only if $A \in U(K_s(R))$; $I \pm A \in U(K_s(R))$ or $A \in K_s(R)$ is very J-clean.

2010 MSC: 15A12, 15B99, 16L99 **Key words:** local ring, very clean ring, very *J*-clean ring

1 Introduction

Throughout this paper all rings are associative with identity. Let R be a ring. Let C(R) be the center of R and $s \in C(R)$. The set containing all 2×2 matrices $\begin{pmatrix} R & R \\ R & R \end{pmatrix}$ becomes a ring with usual matrix addition and multiplication defined by

 $\begin{pmatrix} a_1 & x_1 \\ y_1 & b_1 \end{pmatrix} \begin{pmatrix} a_2 & x_2 \\ y_2 & b_2 \end{pmatrix} = \begin{pmatrix} a_1a_2 + sx_1y_2 & a_1x_2 + x_1b_2 \\ y_1a_2 + b_1y_2 & sy_1x_2 + b_1b_2 \end{pmatrix}.$ This ring is denoted by $K_s(R)$ and the element s is called the

This ring is denoted by $K_s(R)$ and the element s is called the *multiplier* of $K_s(R)$ [3].

Let A, B be rings, ${}_{A}M_{B}$ and ${}_{B}N_{A}$ be bimodules. A *Morita context* is a 4-tuple $A = \begin{pmatrix} A & M \\ N & B \end{pmatrix}$ and there exist context products $M \times N \to A$ and $N \times M \to B$ written multiplicatively as $(w, z) \to wz$ and $(z, w) \to zw$, such that $\begin{pmatrix} A & M \\ N & B \end{pmatrix}$ is an associative ring with the obvious matrix operations. A Morita context $\begin{pmatrix} A & M \\ N & B \end{pmatrix}$ with A = B = M = N = R is called a *gen*eralized matrix ring over R. Thus the ring $K_s(R)$ can be viewed as a special kind of Morita context. It was observed by Krylov [3] that the generalized matrix rings over R are precisely these rings $K_s(R)$ with $s \in C(R)$. When $s = 1, K_1(R)$ is just the matrix ring $M_2(R)$, but $K_s(R)$ can be different from $M_2(R)$. In fact, for a local ring R and $s \in C(R)$, $K_s(R) \cong K_1(R)$ if and only if s is a unit see ([3], Lemma 3 and Corollary 2) and ([4], Corollary 4.10). In [5], it is said that that an element $a \in R$ is strongly clean provided that there exist an idempotent $e \in R$ and a unit $u \in R$ such that a = e + u and eu = ue and a ring R is called *strongly clean* in case every element in R is strongly clean. In [1], very clean rings are introduced. An element $a \in R$ is very clean provided that either a or -a is strongly clean. A ring R is very clean in case every element in R is very clean. It is explored the necessary and sufficient conditions under which a triangular 2×2 matrix ring over local rings is very clean. The very clean 2×2 matrices over commutative local rings are completely determined. Motivated by this general setting, the aim of this paper is to investigate the very cleanness of 2×2 generalized matrix rings.

For elements $a, b \in R$, we say that a is equivalent to b if there exist units u, v such that b = uav; we use the notation $a \sim b$ to mean that a is similar to b, that is, $b = u^{-1}au$ for some unit u.

Throughout this paper, $M_n(R)$ and $T_n(R)$ denote the ring of all $n \times n$ matrices and the ring of all $n \times n$ upper triangular matrices over R, respectively. We write R[[x]], U(R) and J(R) for the power series ring R, group of units and the Jacobson radical of R, respectively. For $A \in M_n(R), \chi(A)$ stands for the characteristic polynomial $det(tI_n - A)$. Let $\mathbb{Z}(p)$ be the localization of \mathbb{Z} at the prime ideal generated by the prime p.

2 Very Clean Elements

A ring R is *local* if it has only one maximal ideal. It is well known that, a ring R is *local* if and only if a + b = 1 in R implies that either a or b is invertible. The aim of this section is to investigate elementary properties of very clean matrices over local rings.

Lemma 2.1 ([7], Lemma 1) Let R be a ring and let
$$s \in C(R)$$
. Then
 $\begin{pmatrix} a & x \\ y & b \end{pmatrix} \rightarrow \begin{pmatrix} b & y \\ x & a \end{pmatrix}$ is an automorphism of $K_s(R)$.

Lemma 2.2 ([7], Lemma 2) Let R be a ring and $s \in C(R)$. Then the following hold

(1)
$$J(K_s(R)) = \begin{pmatrix} J(R) & (s:J(R)) \\ (s:J(R)) & J(R) \end{pmatrix}$$
, where
 $(s:J(R)) = \{r \in R | rs \in J(R) \}.$

(2) If R is a local ring with
$$s \in J(R)$$
, then $J(K_s(R)) = \begin{pmatrix} J(R) & R \\ R & J(R) \end{pmatrix}$ and
moreover $\begin{pmatrix} a & x \\ y & b \end{pmatrix} \in U(K_s(R))$ if and only if $a, b \in U(R)$.

Lemma 2.3 ([7], Lemma 3) Let $E^2 = E \in K_s(R)$. If E is equivalent to a diagonal matrix in $K_s(R)$, then E is similar to a diagonal matrix in $K_s(R)$.

Lemma 2.4 Let R be a local ring with $s \in C(R)$ and let E be a non-trivial idempotent of $K_s(R)$. Then we have the following.

(1) If
$$s \in U(R)$$
, then $E \sim \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.

(2) If
$$s \in J(R)$$
, then either $E \sim \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ or $E \sim \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$

Proof. Let $E = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ where $a, b, c, d \in R$. Since $E^2 = E$, we have $a^2 + sbc = a, \ scb + d^2 = d, \ ab + bd = b, \ ca + dc = c$ (1)

If $a, d \in J(R)$, then $b, c \in J(R)$ and so $E \in J(M_2(R; s))$. Hence E = 0, a contradiction. Since R is local, we have $a \in U(R)$ or $d \in U(R)$. Assume that $a \in U(R)$. Then

$$\begin{pmatrix} 1 & 0 \\ -ca^{-1} & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} a^{-1} & a^{-1}b \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & sca^{-1} - d \end{pmatrix}$$
(2)

Hence E is equivalent to a diagonal matrix. Now suppose that $d \in U(R)$. Then

$$\begin{pmatrix} 1 & -bd^{-1} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -d^{-1}c & d^{-1} \end{pmatrix} = \begin{pmatrix} a - sbd^{-1}c & 0 \\ 0 & 1 \end{pmatrix}$$
(3)

Hence E is equivalent to a diagonal matrix. According to Lemma 2.3, there exist $P \in U(K_s(R))$ and idempotents $f, g \in R$ such that

$$PEP^{-1} = \begin{pmatrix} f & 0\\ 0 & g \end{pmatrix} \tag{4}$$

To complete the proof we shall discuss four cases f = 1 and g = 0 or f = 0and g = 1 or f = 1 and g = 1 or f = 0 and g = 0. However, E is a non-trivial idempotent matrix, we may discard the latter two cases. Since R is local, $s \in U(R)$ or $s \in J(R)$. We divide the proof into some cases: (A) Assume that $s \in U(R)$.

Case (i). f = 1 and g = 0. Then $E \sim \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. Case (ii). f = 0 and g = 1. Then $E \sim \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$. But since $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, where $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}^{-1} = \begin{pmatrix} 0 & s^{-1} \\ s^{-1} & 0 \end{pmatrix}$, we have that $E \sim \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. This proves (1). (B) Assume that $s \in J(R)$. Case (iii). f = 1 and g = 0. Then $E \sim \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. Case (iv). f = 0 and g = 1. Then $E \sim \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$. To complete the proof of (B), we prove that only one of $E \sim \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ or $E \sim \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ is valid. Indeed, if otherwise, $E \sim \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $E \sim \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$. Then $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$. That is, there exists $P = \begin{pmatrix} x & y \\ z & t \end{pmatrix} \in U(K_s(R))$ such that $P \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} P$. By direct calculation one sees that x = t = 0. But since $P \in U(K_s(R))$ and $s \in J(R)$, we get $x, t \in U(R)$ by Lemma 2.2, a contradiction. This holds (2).

Lemma 2.5 Let R be a ring and $s \in C(R)$. Then $A \in K_s(R)$ is very clean if and only if for each invertible $P \in K_s(R)$, $PAP^{-1} \in K_s(R)$ is very clean.

Proof. If PAP^{-1} is very clean in $K_s(R)$, then either PAP^{-1} or $-PAP^{-1}$ is strongly clean for some $P \in U(K_s(R))$. Suppose that PAP^{-1} is strongly clean in $K_s(R)$. Then there exist $E^2 = E$, $U \in U(K_s(R))$ such that $PAP^{-1} = E + U$ and EU = UE. Then $A = P^{-1}EP + P^{-1}UP$, $(P^{-1}EP)^2 = P^{-1}EP$, $P^{-1}UP \in U(K_s(R))$, $P^{-1}EP$ and $P^{-1}UP$ commute; $(P^{-1}EP)(P^{-1}UP)$ $= P^{-1}EUP = P^{-1}UEP = (P^{-1}UP)(P^{-1}EP)$. So A is strongly clean. If $-PAP^{-1}$ is very clean in $K_s(R)$, then -A is strongly clean by using the similar argument. Hence A is very clean. Conversely assume that $A \in K_s(R)$ is very clean i.e. either A or -A is strongly clean. Suppose that -A is strongly clean. There exist $F^2 = F \in K_s(R)$ and $W \in U(K_s(R))$ such that -A = F + W with FW = WF. Let $P \in K_s(R)$ be an invertible matrix. $P^{-1}(-A)P = P^{-1}FP + P^{-1}WP$ is strongly clean since $P^{-1}FP$ is an idempotent, $P^{-1}WP \in U(K_s(R))$, $P^{-1}FP$ and $P^{-1}WP$ commute. Similarly, strong cleanness of A implies strong cleanness of $P^{-1}AP$. This completes the proof.

Lemma 2.6 Let R be a local ring and $s \in C(R)$. Then $A \in K_s(R)$ is very clean if and only if either

(1)
$$I \pm A \in U(K_s(R))$$
, or
(2) $A \sim \begin{pmatrix} v & 0 \\ 0 & w \end{pmatrix}$, where $v \in J(R)$, $w \in \pm 1 + J(R)$ and $s \in U(R)$, or
(3) either $A \sim \begin{pmatrix} v & 0 \\ 0 & w \end{pmatrix}$ or $A \sim \begin{pmatrix} w & 0 \\ 0 & v \end{pmatrix}$, where $v \in J(R)$, $w \in \pm 1 + J(R)$ and $s \in J(R)$.

Proof. " \Leftarrow : " If $I \pm A \in U(K_s(R))$, then A is obviously very clean. If $A \sim \begin{pmatrix} v & 0 \\ 0 & w \end{pmatrix}$, where $v \in J(R)$, $w \in \pm 1 + J(R)$ and $s \in U(R)$, then $\begin{pmatrix} v-1 & 0 \\ 0 & w \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} v & 0 \\ 0 & w \end{pmatrix}$, $\begin{pmatrix} v-1 & 0 \\ 0 & w \end{pmatrix}$ is invertible and $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ is idempotent. Then $\begin{pmatrix} v & 0 \\ 0 & w \end{pmatrix}$ is strongly clean. Similarly $\begin{pmatrix} -v & 0 \\ 0 & -w \end{pmatrix}$ is strongly clean. Since either $A \sim \begin{pmatrix} v & 0 \\ 0 & w \end{pmatrix}$ or $A \sim \begin{pmatrix} -v & 0 \\ 0 & -w \end{pmatrix}$ we have $PAP^{-1} = \begin{pmatrix} v & 0 \\ 0 & w \end{pmatrix}$ is very clean. By Lemma 2.5, A is very clean.

Similarly, if either $A \sim \begin{pmatrix} v & 0 \\ 0 & w \end{pmatrix}$ or $A \sim \begin{pmatrix} w & 0 \\ 0 & v \end{pmatrix}$, where $v \in J(R)$, $w \in \pm 1 + J(R)$ and $s \in J(R)$, then A is very clean.

" \Rightarrow :" Assume that A is very clean and $\pm A, I \pm A \notin U(K_s(R))$. Then either A - E or A + E is in $U(K_s(R))$ where $E^2 = E \in K_s(R)$.

Case 1. If A - E is in $U(K_s(R))$, then A - E = V and EV = VE, where $V \in U(K_s(R))$. If $s \in U(R)$, then $E \sim \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ by Lemma 2.4. Then there exists

 $P \in U(K_s(R))$ such that $PEP^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. From Lemma 2.5, $PAP^{-1} -$ $PEP^{-1} = PVP^{-1} \text{ is very clean. Let } W = \begin{bmatrix} w_{ij} \end{bmatrix} = PVP^{-1} \text{ and } PEP^{-1} = F.$ Since $WF = \begin{pmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{pmatrix} = FW,$ we find $w_{12} = w_{21} = 0$ and $w_{11}, w_{22} \in U(R)$. Hence $A \sim \begin{pmatrix} w_{11} + 1 & 0 \\ 0 & w_{22} \end{pmatrix} = B$. Note that $A \in U(K_s(R))$ if and only if $PAP^{-1} \in U(K_s(R))$. This gives that $B \notin U(K_s(R))$ and $I \pm B \notin U(K_s(R))$. Since R is local, we have $w_{22} \in \pm 1 + J(R)$ and $\pm 1 + w_{11} \in J(R)$. If $s \in J(R)$, then either $E \sim \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ or $E \sim \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ by Lemma 2.4. Using the previous argument, one can easily show that either $A \sim \begin{pmatrix} v & 0 \\ 0 & w \end{pmatrix}$ or $\begin{pmatrix} w & 0 \\ 0 & v \end{pmatrix}$ where $v \in \pm 1 + J(R)$ and $w \in J(R)$. Case 2. If A + E is in $U(K_s(R))$, then A + E = V and EV = VE, where $V \in U(K_s(R)).$ If $s \in U(R)$, then $E \sim \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ by Lemma 2.5. Then there exists $P \in U(K_s(R))$ such that $PAP^{-1} + PEP^{-1} = PVP^{-1}$. Let $W = [w_{ij}] = PVP^{-1}$ and $PEP^{-1} = F$. Since $WF = \begin{pmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{pmatrix} =$ FW, we find $w_{12} = w_{21} = 0$ and $w_{11}, w_{22} \in U(R)$. Thus $A \sim \begin{pmatrix} w_{11} - 1 & 0 \\ 0 & w_{22} \end{pmatrix} =$ B. Note that $A \in U(K_s(R))$ if and only if $PAP^{-1} \in U(K_s(R))$. This gives that $B \notin U(K_s(R))$ and $I \pm B \notin U(K_s(R))$. Since R is local, we have $w_{22} \in \pm 1 + J(R)$ and $1 + w_{11} \in J(R)$. If $s \in J(R)$, then either $E \sim \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ or $E \sim \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ by Lemma 2.5. In this case, using the previous argument, one can easily show that either $A \sim \begin{pmatrix} w_{11} - 1 & 0 \\ 0 & w_{22} \end{pmatrix}$ or $A \sim \begin{pmatrix} w_{11} & 0 \\ 0 & w_{22} - 1 \end{pmatrix}$.

3 Very *J*-clean element

Let R be a ring. In [2], an element $a \in R$ is said to be strongly J-clean provided that there exists an idempotent $e \in R$ such that $a - e \in J(R)$ and ae = ea. A ring R is strongly J-clean in case every element in R is strongly J-clean. We say that an element $a \in R$ is very J-clean if there exists an idempotent $e \in R$ such that ae = ea and either $a - e \in J(R)$ or $a + e \in J(R)$. A ring R is very J-clean in case every element in R is very J-clean. A very J-clean ring need not be strongly J-clean. For example $\mathbb{Z}_{(3)}$ is very J-clean but not strongly J-clean.

Lemma 3.1 Every very J-clean element is very clean.

Proof. Let $e^2 = e \in R$ and $w \in J(R)$. If x - e = w, then $x - (1 - e) = 2e - 1 + w \in U(R)$ since $(2e - 1)^2 = 1$. Similarly if x + e = w, then $x + (1 - e) = 1 - 2e + w \in U(R)$ since $(1 - 2e)^2 = 1$.

The converse statement of Lemma 3.1 need not hold in general.

Example 3.2 Let S be a commutative local ring and $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ be in $R = M_2(S)$. A is an invertible matrix and it is very clean. Since R is a 2-projective-free ring, by [6, Proposition 2.1], it is easily checked that any idempotent E in R is one of the following :

$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & x \end{bmatrix}$	$\begin{bmatrix} 1 & x \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \end{bmatrix}$
$\begin{bmatrix} 0 & 0 \end{bmatrix}$,	$\begin{bmatrix} 0 & 1 \end{bmatrix}$,	$\begin{bmatrix} 0 & 0 \end{bmatrix}$,	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

where $x \in S$. But A is not very J-clean since neither of the above mentioned idempotents E does not satisfy $A - E \notin J(R)$ or $A + E \notin J(R)$.

Lemma 3.3 Let R be a ring and $s \in C(R)$. Then $A \in K_s(R)$ is very J-clean if and only if $PAP^{-1} \in K_s(R)$ is very J-clean for some $P \in U(K_s(R))$.

Proof. ": \Rightarrow " Assume that $A \in K_s(R)$ is very *J*-clean. Then there exists $E^2 = E \in K_s(R)$ such that $A - E = W \in J(K_s(R))$ or $A + E = W \in J(K_s(R))$ and EW = WE. Let $F = PEP^{-1}$ and $V = PWP^{-1}$. Then $F^2 = F$, $V \in J(K_s(R))$ and FV = VF. If $A - E = W \in J(K_s(R))$, then $PAP^{-1} - F = V \in J(K_s(R))$. Thus PAP^{-1} is very *J*-clean. The same result is obtained when $A + E \in J(K_s(R))$.

" \Leftarrow : "Assume that PAP^{-1} is very *J*-clean for some $P \in U(K_s(R))$. Then by using a similar argument, *A* is very *J*-clean.

Lemma 3.4 Let R be a local ring and $s \in C(R)$. Then $A \in K_s(R)$ is very J-clean if and only if either

(1)
$$I \pm A \in J(K_s(R))$$
, or
(2) $A \sim \begin{pmatrix} v & 0 \\ 0 & w \end{pmatrix}$, where $v \in \pm 1 + J(R)$, $w \in J(R)$ and $s \in U(R)$, or

(3) either
$$A \sim \begin{pmatrix} v & 0 \\ 0 & w \end{pmatrix}$$
 or $A \sim \begin{pmatrix} w & 0 \\ 0 & v \end{pmatrix}$, where $v \in \pm 1 + J(R)$, $w \in J(R)$ and $s \in J(R)$.

Proof. " \Leftarrow :" If either $I \pm A \in J(K_s(R))$, then A is obviously very J-clean. If $A \sim \begin{pmatrix} v & 0 \\ 0 & w \end{pmatrix}$, where $v \in \pm 1 + J(R)$, $w \in J(R)$ and $s \in U(R)$, then $\begin{pmatrix} v+1 & 0 \\ 0 & w \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} v & 0 \\ 0 & w \end{pmatrix} \in J(K_s(R))$. Then by Lemma 3.3, A is very J-clean. Similarly, if either $A \sim \begin{pmatrix} v & 0 \\ 0 & w \end{pmatrix}$ or $A \sim \begin{pmatrix} w & 0 \\ 0 & v \end{pmatrix}$, where $v \in \pm 1 + J(R)$, $w \in J(R)$ and $s \in J(R)$, then A is very J-clean. " \Rightarrow :" Assume that A is very J-clean and $I \pm A \notin J(K_s(R))$. Then either A - E or A + E is in $J(K_s(R))$ where $E^2 = E \in K_s(R)$ is a non-trivial

idempotent. Case 1.If A - E is in $J(K_s(R))$, then A - E = M and EM = ME, where $M \in J(K_s(R))$. If $s \in U(R)$, then $E \sim \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ by Lemma 2.4. Then there exists $P \in U(K_s(R))$ such that $PEP^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = F$. From Lemma 3.3, $PAP^{-1} - PEP^{-1} = PMP^{-1}$ is very *J*-clean. Let $v = [v_{ij}] = PMP^{-1}$. Since VF = FV, we find $v_{12} = v_{21} = 0$ and $v_{11}, v_{22} \in J(R)$. Hence $A \sim \begin{pmatrix} v_{11} + 1 & 0 \\ 0 & v_{22} \end{pmatrix}$. If $s \in J(R)$, then either $E \sim \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ or $E \sim \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ by Lemma 2.4. Using the previous argument, one can easily show that either $A \sim \begin{pmatrix} v & 0 \\ 0 & w \end{pmatrix}$ or $\begin{pmatrix} w & 0 \\ 0 & v \end{pmatrix}$ where $v \in \pm 1 + J(R)$ and $w \in J(R)$.

Case 2. If A + E is in $J(K_s(R))$, then A + E = M and EM = ME, where $M \in J(K_s(R))$.

If $s \in U(R)$, then $E \sim \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ by Lemma 2.4. Then there exists $P \in U(K_s(R))$ such that $PAP^{-1} + PEP^{-1} = PVP^{-1}$. Let $V = [v_{ij}] = PVP^{-1}$ and $PEP^{-1} = F$. Since VF = FV, we find $v_{12} = v_{21} = 0$ and $v_{11}, v_{22} \in J(R)$. Thus $A \sim \begin{pmatrix} v & 0 \\ 0 & w \end{pmatrix}$, where $v = v_{11} - 1 \in \pm 1 + J(R), w = v_{22} \in J(R)$. Similarly, if $s \in J(R)$, then either $E \sim \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ or $E \sim \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ by Lemma 2.4. In this case, using the previous argument, one can easily show that either $A \sim \begin{pmatrix} v_{11} - 1 & 0 \\ 0 & v_{22} \end{pmatrix}$ or $A \sim \begin{pmatrix} v_{11} & 0 \\ 0 & v_{22} - 1 \end{pmatrix}$.

Theorem 3.5 Let R be a local ring, and let $s \in C(R)$. Then $A \in K_s(R)$ is very clean if and only if $A \in U(K_s(R)), I \pm A \in U(K_s(R))$ or $A \in K_s(R)$ is very J-clean.

Proof. The proof is clear by combining Lemma 2.6 and Lemma 3.4. \Box

Lemma 3.6 Let R be a local ring with $s \in C(R) \cap J(R)$, and $A \in K_s(R)$ be very J-clean. Then either $I \pm A \in J(K_s(R))$ or $A \sim \begin{pmatrix} w & 1 \\ v & u \end{pmatrix}$ or $A \sim \begin{pmatrix} u & 1 \\ v & w \end{pmatrix}$, where $u \in \pm 1 + J(R)$, $v \in U(R)$ and $w \in J(R)$. **Proof.** Assume that $I \pm A \notin J(K_s(R))$. By Lemma 2.6 either $A \sim \begin{pmatrix} v_1 \pm 1 & 0 \\ 0 & w_1 \end{pmatrix}$ or $A \sim \begin{pmatrix} v_1 & 0 \\ 0 & w_1 \pm 1 \end{pmatrix}$, where $v_1, w_1 \in J(R)$ and $s \in J(R)$. Case 1 : Let $B = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$ where $a = v_1 \in J(R), b = w_1 \pm 1 \in \pm 1 + J(R)$. Clearly $b - a \in \pm 1 + J(R) = U(R)$. $B \sim \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a & b - a \\ 0 & b \end{pmatrix}$ $\sim \begin{pmatrix} 1 & 0 \\ -b & b - a \end{pmatrix} \begin{pmatrix} a & b - a \\ 0 & b \end{pmatrix} \begin{pmatrix} 1 & 0 \\ (b - a)^{-1}b & (b - a)^{-1} \end{pmatrix}$ $= \begin{pmatrix} a + sb & 1 \\ (b - a)b(b - a)^{-1}b - ba - sb^2 & (b - a)b(b - a)^{-1} - sb \end{pmatrix}$, where $u = a + sb \in J(R), v = (b - a)b(b - a)^{-1}b - ba - sb^2 \in U(R)$ and $w = (b - a)b(b - a)^{-1}b - ba - sb^2 \in U(R)$ and $w = (b - a)b(b - a)^{-1}b - ba - sb^2 \in U(R)$ and $w = (b - a)b(b - a)^{-1}b - ba - sb^2 \in U(R)$ and $w \in \pm 1 + J(R)$. Case 2. Let $\begin{pmatrix} c & 0 \\ 0 & d \end{pmatrix}$, where $c = 1 + v_1 \in \pm + J(R), d = w_1 \in J(R)$. Similarly, we show that $A \sim \begin{pmatrix} u & 1 \\ v & w \end{pmatrix}$ where $u \in \pm 1 + J(R), v \in U(R)$ and $w \in J(R)$.

Acknowledgment

The author would like to thank the referee for his/her valuable comments which helped to improve the manuscript.

References

- H. Chen, B. Ungor and S. Halicioglu. Very clean matrices over local rings. Accepted for publication in An. Stiint. Univ. Al. I. Cuza Iasi.Mat. (S.N)
- [2] H. Chen. On strongly J-clean rings. Comm. Algebra 2010; 38: 3790-3804.
- [3] P.A. Krylov. Isomorphism of generalized matrix rings. Algebra Logic 2008; 47(4): 258-262.

- [4] P.A. Krylov, A. A. Tuganbayev. Modules over formal rings. J.Math.Sci. 2010; 171(2): 248-295.
- [5] W. K. Nicholson. Strongly clean rings and fitting's lemma. Comm. Algebra 1999; 27: 3583-3592.
- [6] M. Sheibani, H. Chen and R. Bahmani. Strongly J-clean ring over 2projective-free rings. http://arxiv.org/pdf/1409.3974v2.pdf
- [7] G. Tang, Y. Zhou. Strong cleanness of generalized matrix rings over a local ring. Linear Algebra Appl., 2012; 437(10): 2546-2559.