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Rank 3 finite p-group actions on products of spheres

Ergün Yalçın

Abstract

Let p be an odd prime. We prove that every rank 3 finite p-group acts freely and smoothly on a
product of three spheres. To construct this action, we first prove a generalization of a theorem
of Lück and Oliver on constructions of G-equivariant vector bundles. We also give some other
applications of this generalization.

1. Introduction

One of the classical problems in transformation group theory is the problem of classifying all
finite groups that can act freely on a product of k spheres for an arbitrary positive integer k.
In one direction, there is the conjecture that states that if a finite group G acts freely on a
product of k spheres X = Sn1 × · · · × Snk , then we must have rk(G) � k, where rk(G) denotes
the rank of the group G, defined as the largest integer r such that (Z/p)r � G for some
prime p.

In the other direction, there is a conjecture by Benson and Carlson [2] in homotopy category
that states that if G is a finite group with rk(G) � k, then it acts freely on a finite complex
X homotopy equivalent to a product of k spheres. The Benson–Carlson conjecture is proved
for many groups of small rank; in particular, it is proved to be true for all rank 2 finite groups
that do not involve the group Qd(p) for any odd prime p (see [1, 6]). For p-groups the Benson–
Carlson conjecture is known to be true for all p-groups with rank at most 2, and for all rank
3 p-groups when p is an odd prime [8, Theorem 1.1].

It is shown by Milnor [12] that the rank condition rk(G) � k is not sufficient for the existence
of a free smooth action on a product of k spheres. He proves, in particular, that the dihedral
group D2p of order 2p, where p is an odd prime, cannot act freely on a manifold that has
mod-2 homology of a sphere. However, for p-groups, there are no known necessary conditions
on the group other than the rank condition for constructing free smooth actions. For example,
when G is a rank 1 p-group, then G is a cyclic group or a generalized quaternion group, and
one can find a unitary representation V of G such that G acts freely and smoothly on the unit
sphere S(V ).

It is also known that every rank 2 p-group acts freely and smoothly on a product of
two spheres. This is proved in [13, Theorem 1.1], but the construction in this case is much
more complicated. The main ingredient in the construction is a theorem of Lück and Oliver
[10, Theorem 2.6] that provides a method for constructing G-equivariant vector bundles
over a given finite-dimensional G-CW-complex. One of the assumptions of this theorem is
the existence of a finite group Γ satisfying certain properties. In [13], fusion systems and
biset theory were used to show that this finite group Γ can be explicitly constructed in
that case.
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It is reasonable to ask if the above results for rk(G) = 1, 2, hold more generally:

Conjecture 1.1. Every finite p-group G with rk(G) = k acts freely and smoothly on a
product of k spheres.

It is clear that this conjecture is true for abelian p-groups. More generally, when G is a p-
group of nilpotency class at most 2, that is, when G/Z(G) is abelian, then the conjecture holds
for G. This follows from Theorem 1.1 in [14]. In this paper, we prove the following theorem,
which gives further evidence for this conjecture.

Theorem 1.2. Let p be an odd prime. Then, every rank 3 p-group acts freely and smoothly
on a product of three spheres.

To prove Theorem 1.2, we use a strategy similar to the strategy used in the rank 2 case.
Let G be a rank 3 p-group and let V = IndG

〈c〉W denote the complex representation induced
from 〈c〉, where c is a central element of order p in G, and W is a one-dimensional non-trivial
representation of 〈c〉. The isotropy subgroups Gx of the linear sphere X = S(V ) satisfy the
property that Gx ∩ 〈c〉 = 1. In particular, rk(Gx) � 2 for every x ∈ X.

Let H denote the family of all subgroups H of G such that H ∩ 〈c〉 = 1. If χ : G → C is a
class function whose restriction to each H ∈ H is a character, then χ can be used to define
a compatible family of representations Vχ = {VH : H → U(n) : H ∈ H} (see Definition 2.1).
Moreover, if χ is an effective class function (for every elementary abelian subgroup E � G
with maximum rank, 〈χ|E , 1E〉 = 0), then for every H ∈ H, the H-action on S(VH) will have
rank 1 isotropy. It has been shown by Klaus in [8, Proposition 3.3] that there exists a class
function χ satisfying these properties (this class function was first introduced by Jackson in an
unpublished work [7, Proposition 20]).

We apply this method to the class function χ introduced by Jackson and obtain a compatible
family of representations Vχ. Using this family, we construct a G-vector bundle E → S(V )
with fiber type Vχ. Once this G-vector bundle is constructed, we take Whitney sum multiples
of this G-vector bundle and apply some smoothing techniques to obtain a smooth G-action
on a product of two spheres M = S(V ) × Sm with rank 1 isotropy. Finally, we apply [13,
Theorem 6.7] to M and obtain a free smooth G-action on a product of three spheres S(V ) ×
Sm × Sk for some m, k � 1.

The key step in this construction is the construction of a G-vector bundle over S(V ) with fiber
type Vχ. For this step, we use a generalization of the Lück–Oliver theorem on constructions
of G-vector bundles (see Theorem 3.1). The main assumption of the Lück–Oliver theorem
is that the given compatible family of representations factors through a finite group Γ (see
Definition 2.3). However, we were not able to find such a finite group Γ for the family Vχ.

On the other hand, it is possible to find a collection of subfamilies {Hd} that covers H such
that the restriction of Vχ to Hd factors through a finite group Γd. So we prove a theorem
(Theorem 3.1) that has the same conclusion as the Lück–Oliver theorem but works under
a weaker assumption that the given compatible family of representations factors through a
diagram of finite subgroups satisfying certain connectedness properties. Using this theorem,
we are able to do the G-vector bundle construction for the family Vχ and complete the proof
of Theorem 1.2.

The paper is organized as follows. In Section 2, we introduce necessary definitions and state
the Lück–Oliver theorem mentioned above. Section 3 is devoted to the proof of Theorem 3.1,
which is a generalization of the Lück–Oliver theorem. In Section 4, we prove some consequences
of Theorem 3.1. In Section 5, we prove Theorem 1.2 using the strategy described above.
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2. Constructing G-vector bundles

Let G be a finite group and X be a G-CW-complex. A G-vector bundle over X is a vector
bundle p : E → X such that p is a G-map and G acts on E via bundle isomorphisms. Note
that for each x ∈ X, there is an action of isotropy subgroup Gx on the fiber space Vx = p−1(x)
that is a vector space and the action of Gx on Vx is linear.

Let H be a family of subgroups of G. Throughout the paper ‘a family of subgroups’ always
means that it is a set of subgroups of G that is closed under conjugation and taking subgroups.
Let V = {VH}H∈H be a collection of H-representations over the family H. We say that the
G-vector bundle p : E → X has fiber type V if for every x ∈ X, the isotropy subgroup Gx lies
in the family H and there is an isomorphism of Gx-representations Vx

∼= VGx
. Note that the

collection of representations {VH} arising as fibers of a G-vector bundle satisfies the following
compatibility condition.

Definition 2.1. Let G be a finite group and H be a family of subgroups of G. A collection
of representations V = (VH)H∈H is called a compatible family if for every map cg : H → K
defined by cg(h) = ghg−1, where g ∈ G and H,K ∈ H, there is a H-vector space isomorphism
VH

∼= (cg)∗(VK).

In [10], Lück and Oliver consider the question of constructing a G-vector bundle q : E → X
over a given finite-dimensional G-CW-complex X, such that the fiber type of q is the given
compatible family V. They observe that in general these G-vector bundles may not exist, but
they also proved that if V factors through a finite group, then one can construct a G-vector
bundle over X with fiber type V⊕k for some positive integer k (see [10, Theorem 2.6]). This
theorem is the main tool for constructing smooth actions on products of spheres given in [13].
Before we state this theorem, we first introduce some necessary definitions.

Let Γ be a compact Lie group. A G-equivariant principal Γ-bundle over a G-CW-complex X
is a principal Γ-bundle p : E → X such that p is a G-map between left G-spaces and the left
G-action on E commutes with the right Γ-action. Note that as in the G-vector bundle case,
for each x ∈ X, there is a Gx-action on the fiber space p−1(x). The fiber space p−1(x) is a free
Γ-orbit e · Γ for some e ∈ E such that p(e) = x. This gives a homomorphism αGx

: Gx → Γ
defined by αGx

(h) = γ for h ∈ Gx, where γ ∈ Γ is the unique element in Γ such that he = eγ.
Note that this homomorphism is well-defined up to a choice of the element e ∈ p−1(x), so it
defines an element in Rep(Gx,Γ) := Hom(H,Γ)/Inn(Γ), where Inn(Γ) denotes the group of
conjugation actions of Γ on itself.

Definition 2.2. Let G be a finite group and H be a family of subgroups of G. A collection
of representations A = (αH : H → Γ)H∈H over H is called a compatible family if for every map
cg : H → K induced by conjugation cg(h) = ghg−1, where g ∈ G and H,K ∈ H, there exists a
γ ∈ Γ such that the following diagram commutes:

H

cg

��

αH �� Γ

cγ

��
K

αK �� Γ

This is equivalent to saying that A = (αH)H∈H is an element of the limit

lim
G/H∈OrHG

Rep(H,Γ),

where OrHG denotes the orbit category of G over the family H. Recall that the orbit category
OrHG is the category whose objects are transitive G-sets G/H with H ∈ H and whose
morphisms are given by G-maps MapG(G/H,G/K).
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Definition 2.3. Let V be a compatible family of unitary representations over a family of
subgroups H. We say that V factors through a finite group Γ if there exists a triple (Γ, ρ,A),
where Γ is a finite group, ρ : Γ → U(n) is a unitary representation of Γ, and A = (αH : H →
Γ)H∈H is a compatible family of representations such that V = ρ ◦ A.

Now we state the Lück–Oliver theorem mentioned in the introduction.

Theorem 2.4 (see Theorem 2.6 in [10]). Let G be a finite group and H be a family of
subgroups in G. Let X be a finite-dimensional G-CW-complex with isotropy subgroups in H.
Suppose that we are given a compatible family V of unitary representations over H and that
V factors through a finite group Γ. Then there is an integer k � 1 such that there exists a
G-vector bundle E → X with fiber type V⊕k.

We are interested in proving a generalization of Theorem 2.4. We will show that the
conclusion of this theorem still holds under the weaker assumption that V factors through
a diagram of finite groups instead of a single finite group Γ. We now introduce the necessary
terminology to explain exactly what we mean by this.

Let D be a finite poset considered as a category. Note that in D, there is a unique morphism
between two objects x, y ∈ D if and only if x � y. Later, we will assume that D is a one-
dimensional poset category. This means that if x � y � z is a chain in D, then either x = y or
y = z. When D is one-dimensional, the set of objects in D can be written as a disjoint union
obj(D) = D1 	 D2 where if x < y in D, then x ∈ D1 and y ∈ D2. Here x < y means that x � y
but x 
= y. Sometimes these posets are called bipartite posets.

Definition 2.5. Let D be a finite poset category.

(1) A diagram of groups Γ∗ over D is a functor from D to the category of groups. We
denote the group associated to d ∈ D by Γd and for each x � y, the corresponding group
homomorphism is denoted by μx,y : Γx → Γy. We say Γ∗ is a diagram of finite groups if for all
d ∈ D, the groups Γd are finite.

(2) Let n be a fixed positive integer. A diagram of representations of Γ∗ of degree n is a
collection of homomorphisms ρd : Γd → U(n), one for each d ∈ D, such that for every x, y in D
with x � y, the representations ρx and ρy ◦ μx,y are isomorphic.

(3) Let H be a family of subgroups of G and {Hd}d∈D be a collection of subfamilies of
H (for each d ∈ D, Hd is closed under conjugation and taking subgroups). If for every x � y
in D, Hx ⊆ Hy, then we call {Hd}d∈D a diagram of subfamilies of H over D and denote it
by H∗. A diagram of subfamilies H∗ can also be thought as a functor from D to the poset of
subfamilies of H.

Remark 2.6. In our applications, the maps μx,y : Γx → Γy are always injective, but we do
not assume this in the definition of a diagram of groups. In particular, Theorems 3.1 and 4.5
hold for the maps μx,y, which are not necessarily injective.

We do not assume that the subfamilies Hd cover H in the definition but we have a
connectedness assumption that implies that

⋃
d∈D Hd = H.

Definition 2.7. Let D be a one-dimensional poset category and H∗ be a diagram of
subfamilies of H over D. For each H ∈ H, let DH denote the full subposet {d ∈ D |H ∈ Hd}.
We say H∗ is strongly connected if for every H ∈ H, the realization of DH is simply connected
(that is, non-empty, connected, and having trivial fundamental group).
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Next, we define what we mean by a diagram of compatible family of representations.

Definition 2.8. Let H∗ be a diagram of subfamilies and Γ∗ be a diagram of groups over a
finite poset D. Suppose that for each d ∈ D, we are given a compatible family of representations

Ad = {αd
H : H → Γd | H ∈ Hd}.

We say A∗ = (Ad)d∈D is a diagram of compatible families of representations if it satisfies the
condition that for every x � y in D, the restriction of Ay to Hx is equal to μx,y ◦ Ax. We write
this condition as Ay|Hx

= μx,y ◦ Ax for all x � y.

Remark 2.9. Note that another way to define this compatibility condition is to require
that for every map cg : H → K induced by conjugation cg(h) = ghg−1, where g ∈ G, and for
every x � y in D such that H ∈ Hx and K ∈ Hy, there exists a γ ∈ Γy such that the following
diagram commutes:

H

cg

��

αx
H �� Γx

cγ◦μx,y

��
K

αy
K �� Γy

If we take x = y = d in the above diagram, then we obtain that the family Ad = (αd
H)H∈Hd

is a
compatible family of representations αH : H → Γd over Hd in the usual sense. If we take x < y
in D, then the commutativity of the diagram above is equivalent to the condition Ay|Hx

=
μx,y ◦ Ax.

Now we explain what we mean when we say a family of representations factors through a
diagram of finite groups.

Definition 2.10. Let V = (VH)H∈H be a compatible family of unitary representations
over a family of subgroups H. We say that V factors through a diagram of finite groups Γ∗ if
there exists a quadruple (Γ∗, ρ∗,H∗,A∗), where

(1) Γ∗ is a diagram of finite groups over a finite poset category D,
(2) ρ∗ is a representation of Γ∗,
(3) H∗ is a diagram of subfamilies over D, and
(4) A∗ = (Ad)d∈D is a diagram of compatible families of representations defined over H∗,

such that for each d ∈ D, the equality V|Hd
= ρd ◦ Ad holds.

Finally, we define the main assumption in our theorems.

Definition 2.11. Let V = (VH)H∈H be a compatible family of unitary representations
over a family of subgroups H. Suppose that V factors through a diagram of finite groups Γ∗
over a one-dimensional diagram D. If H∗ is strongly connected, then we say V factors through
a strongly connected one-dimensional diagram of finite groups Γ∗.

3. A generalization of the Lück–Oliver theorem

The main aim of this section is to prove the following theorem.

Theorem 3.1. Let G be a finite group, H be a family of subgroups of G, and X be a
finite-dimensional G-CW-complex with isotropy subgroups in H.
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Suppose that we are given a compatible family V of unitary representations over H that
factors through a strongly connected one-dimensional diagram of finite groups Γ∗.

Then, there is a positive integer k such that there exists a G-vector bundle E → X with
fiber type V⊕k.

The proof is obtained by modifying the proof of [10, Theorem 2.6]. We will use the notation
introduced in [10, Section 2]. In particular, throughout BH(G,V) denotes the classifying space
of G-vector bundles with fiber type V. Similarly, for each d ∈ D, BHd

(G,Ad) denotes the
classifying space of G-equivariant principal Γd-bundles with fiber type Ad. For each d ∈ D,
we can use the representation ρd : Γd → U(n) to convert a G-equivariant principal Γd-bundle
q : E → X to a G-vector bundle q̃ : E ×Γd

V → X, where V denotes Γd-vector space defined
by the representation ρd. Applying this construction to the universal principal Γd-bundle over
BHd

(G,Ad), we get a map

Bρd : BHd
(G,Ad) −→ BH(G,V)

for each d ∈ D as the classifying map of the G-vector bundle obtained by the above construction.
A similar argument can be used to show that for every non-identity map x → y in D, there is

a map Bμx,y : BHx
(G,Ax) → BHy

(G,Ay) defined by converting the universal G-equivariant
principal Γx-bundle to a Γy-bundle via the homomorphism μx,y : Γx → Γy. For this to work, one
needs the equality Ay|Hx

= μx,y ◦ Ax to hold, which we have by the compatibility assumption
on (Ad)d∈D described in Definition 2.8. Note that since D is a one-dimensional category, the
assignment d → BHd

(G,Ad) together with the assignment μx,y → Bμx,y defines a functor F
from D to the category of topological spaces.

Let Y := hocolimDF denote the homotopy colimit of the functor F : D → Top (see [3,
Subsection 4.5] for more details on homotopy colimits). Since D is a one-dimensional category,
Y can be described as the identification space

hocolimDF =

{(∐
d∈D

BHd
(G,Ad)

)
	
(∐

x<y

BHx
(G,Ax) × [0, 1]

)}/
∼ ,

where BHx
(G,Ax) × {0} is identified with BHx

(G,Ax) via the identity map, and on the other
end BHx

(G,Ax) × {1} is identified with BHy
(G,Ay) via the map Bμx,y.

For every H ∈ H, the fixed point set Y H is non-empty if and only if H ∈ Hd for some d ∈ D.
Since H∗ is strongly closed, we have

⋃
d∈D Hd = H, hence we can conclude that for every

H ∈ H, we have Y H 
= ∅. We also have the following lemma.

Lemma 3.2. For every H ∈ H, the reduced homology group H̃j(Y H) has finite exponent
for all j.

Proof. Take H ∈ H. The fixed point subspace Y H is the homotopy colimit of the functor

FH : d −→ BHd
(G,Ad)H .

The fixed point subspace BHd
(G,Ad)H is non-empty if and only if H ∈ Hd. So the space Y H

can be considered a homotopy colimit of the functor FH over the subposet DH generated
by {d ∈ D : H ∈ Hd}. It is shown in [10, Lemma 2.4] that for each d ∈ D, the fixed point
space BHd

(G,Ad)H is homotopy equivalent to the classifying space BCΓd
(αd

H), where CΓd
(αd

H)
denotes the centralizer of αd

H(H) in Γd. Since Γd is a finite group, the reduced homology group
of CΓd

(αd
H) has finite exponent, hence H̃t(BHd

(G,Ad)H) has finite exponent for all d ∈ D and
for all t � 0.

To calculate the homology groups of Y H = hocolimDH
FH , we use the Bousfield–Kan

homology spectral sequence (see [3, Theorem 4.8.7]). In this case, this spectral sequence takes
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the form

E2
s,t = colimsHt(BHd

(G,Ad)H) =⇒ Hs+t(Y H),

where the colimit is over the category DH . At this point, it is useful to consider all the
cohomology groups with coefficients in rational numbers. By the above observation for all
H ∈ H, we have Ht(BHd

(G,Ad)H , Q) ∼= Ht(pt, Q) for all t � 0. So we obtain that

Hj(Y H ; Q) ∼= colimjH0(pt, Q) ∼= Hj(|DH |; Q)

for every j � 0, where |DH | denotes the realization of the poset DH . Since D is one-dimensional
and H∗ is strongly connected, for every H ∈ H, we have H̃j(|DH |; Z) = 0 for all j. Hence the
proof of the lemma is complete.

Now we show how the proof of Theorem 3.1 can be completed using Lemma 3.2. Note that
for every x � y in D, the representations ρx and ρy ◦ μx,y are isomorphic, hence the maps
Bρx and Bρy ◦ Bμx,y are homotopic. Using these homotopies, we can extend the G-maps
Bρd : BHd

(G,Ad) → BH(G,V) to a G-map Bρ∗ : Y → BH(G,V).
The isotropy subgroups of Y are in H, so there is also a G-map from Y to the universal space

EHG for the family H (see [10, Definition 2.1]). Let us denote this map by β : Y → EHG.
Let Z denote the mapping cylinder of β. For every positive integer k, we have a G-map
fk : Y → BH(G,V⊕k) obtained as the composition

fk : Y
Bρ∗−−→ BH(G,V) wk−−→ BH(G,V⊕k)

where the second map is the map induced by Whitney sum construction on G-vector bundles.
We want to show that for every positive integer n, there is a positive integer k such that fk

can be extended to a G-map

f̃
(n)
k : Z(n) ∪ Y −→ BH(G,V⊕k),

where Z(n) denotes the n-skeleton of Z. Observe that this finishes the proof of Theorem 3.1,
because given a finite-dimensional G-CW-complex X with isotropy set H, there is a G-map
from X to EHG(n) for some n. Then composing this map with f̃

(n)
k , we get a G-map f̃X

k :
X → BH(G,V⊕k). The desired G-vector bundle over X is the one obtained by pulling back
the universal bundle over BH(G,V⊕k) via f̃X

k . The details of this argument can be found in
the proof of [10, Theorem 2.6].

To show that for every n � 0, there is an integer k such that fk can be extended to f̃
(n)
k :

Z(n) ∪ Y → BH(G,V⊕k), we first observe that f̃
(2)
1 exists since BH(G,V)H is simply connected

for all H ∈ H. Now assume that for some n � 2 there exists a k � 1 such that the map fk has
been extended to f̃

(n)
k . We will show that by replacing k with its multiple if necessary, we can

extend f̃
(n)
k to a map f̃

(n+1)
k defined on Z(n+1) ∪ Y . For this, we use equivariant obstruction

theory.
Note that the obstructions for lifting f̃

(n)
k to f̃

(n+1)
k lies in the Bredon cohomology group

Hn+1
G (Z, Y ;πn(BH(G,V⊕k)?)).

If these obstructions have finite exponent, then they can be killed by taking further Whitney
sums, that is, by making k bigger (see [10, Theorem 2.6] for details of this argument). So the
proof is complete if we show that the above cohomology groups have finite exponent for all
n � 2. Note that these cohomology groups are Bredon cohomology groups of the pair (Z, Y )
with coefficients in a local coefficient system, defined by G/H → πn(BH(G,V⊕k)H). Recall
that a coefficient system over the family H is a module over the orbit category ΓG := OrHG.
So to complete the proof of Theorem 3.1, it is enough to prove the following proposition.
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Proposition 3.3. Let Z and Y be as above and M be an arbitrary ZΓG-module. Then,
the Bredon cohomology group Hn+1

G (Z, Y ;M) has finite exponent for all n � 2.

Proof. The Bredon cohomology of a pair can be calculated using an hyper-cohomology
spectral sequence with E2-term

Ep,q
2 = Extp

ZΓG
(Hq(Z?, Y ?),M)

that converges to the equivariant cohomology group Hp+q
G (Z, Y ;M) (see [13, Proposition 3.3]).

Hence to show that the cohomology groups Hn+1
G (Z, Y ;M) have finite exponent for all n � 2,

it is enough to show that the ext-groups

Extp
ZΓG

(Hq(Z?, Y ?),M)

are finite groups for all p, q with p + q � 3.
We have that ZH � (EHG)H � ∗ for every H ∈ H. So, we can conclude that Hi(ZH , Y H) ∼=

H̃i−1(Y H) for all i � 1 and H0(ZH , Y H) ∼= Z if Y H = ∅ and zero otherwise. Since Y H 
= ∅ for
every H ∈ H, we have H0(ZH , Y H) = 0 for every H ∈ H. Moreover, by Lemma 3.2, H̃i−1(Y H)
has finite exponent for every i � 1. Hence the proof is complete.

4. Construction of free actions on products of spheres

In this section, we prove two consequences of Theorem 3.1, which are going to be main tools
for the constructions of free actions on products of spheres. Throughout the section, when we
say M is a smooth G-manifold, we always mean that M is a smooth manifold with a smooth
G-action.

Theorem 4.1. Let G be a finite group and H be a family of subgroups of G. Let M be a
finite-dimensional smooth G-manifold with isotropy subgroups lying in H.

Suppose that we are given a compatible family V of unitary representations over H that
factors through a strongly connected one-dimensional diagram of finite groups Γ∗.

Then, there exists a smooth G-manifold M ′ diffeomorphic to M × Sm for some m > 0 such
that for every x ∈ M, the Gx-action on {x} × Sm is diffeomorphic to the linear G-sphere S(V ⊕k

Gx
)

for some k � 1.

Proof. The proof is essentially the same as the proof of Corollary 4.4 in [13]. We summarize
the argument here for the convenience of the reader. By Theorem 3.1, there is a topological
G-vector bundle p : E → M with fiber type V⊕k for some k � 1. This bundle is obtained as a
pullback of a bundle over EHG(n) for some n. By taking the value of n larger than the dimension
of M , we can assume that the bundle p : E → M is non-equivariantly a trivial bundle. Note
that here we use the fact that H is closed under taking subgroups, in particular, we have 1 ∈ H,
hence EHG is contractible.

As a G-vector bundle, the bundle p : E → M is equivalent to a smooth G-vector bundle p′ :
E′ → M . This smooth G-bundle can be constructed by replacing the universal G-bundle with
a smooth universal G-bundle (see the proof of Corollary 4.4 in [13] for details). Since p is non-
equivariantly trivial, the bundle p′ is also non-equivalently trivial as a topological bundle. One
can replace continuous trivialization with a smooth trivialization to obtain a diffeomorphism
S(E′) ≈ M × Sm, where S(E′) is the total space of the sphere bundle S(E′) → M associated
to p. For every x ∈ M , the sphere {x} × Sm is mapped to S((p′)−1(x)) ⊆ S(E′) under the above
diffeomorphism. The Gx-action on (p′)−1(x) is isomorphic to Gx-action on p−1(x) as Gx-vector
spaces. Since p : E → M has fiber type V⊕k, the Gx-action on p−1(x) is isomorphic to V ⊕k

Gx
.
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Thus we can conclude that Gx-action on {x} × Sm is diffeomorphic to Gx-action on S(V ⊕k
Gx

)
for some k � 1.

As an application of Theorem 4.1, we prove the following result, which is a slight
generalization of [13, Theorem 6.7].

Theorem 4.2. Let G be a finite group acting smoothly on a manifold M such that all
isotropy subgroups Gx are rank 1 subgroups with prime power order. Then, there exists a
positive integer N such that G acts freely and smoothly on M × SN .

Proof. Let H denote the family of all rank 1 subgroups of G with prime power order, plus
the trivial subgroup. If H is a rank 1 p-group, then it has a unique subgroup of order p, denoted
by Ω1(H). Let D denote the poset of conjugacy class representatives of subgroups K � G such
that either K has prime order or K = 1. The ordering in D is given by the usual inclusion
of trivial subgroup into other subgroups, hence the realization of D is a star shaped tree. For
every 1 
= d ∈ D, let Hd denote the subfamily

Hd := {H ∈ H : Ω1(H) �G d} ∪ {1}.
Take H1 = {1}. It is easy to see that the collection of subfamilies {Hd}d∈D covers H and that
H∗ is strongly closed.

For each 1 
= d ∈ D, take Γd = NG(d), normalizer of the subgroup d in G, and let Γ1 = {1}.
For every d ∈ D, let md = |NG(d)|(p − 1)/p, where p is equal to the order of the subgroup d.
Let n be a positive integer that is divisible by md for all d ∈ D, and let nd = n/md. For each
1 
= d ∈ D, let ρd : Γd → U(n) be a nd multiple of the induced representation Vd = IndNG(d)

d W,
where W : d → U(p − 1) is the reduced regular representation of d. We take ρ1 : Γ1 → U(n) as
n copies of the trivial representation of the trivial group. It is clear that the family {ρd} is a
representation of the diagram of groups Γ∗.

Now we describe the diagram A∗ of compatible families of representations. For each 1 
= d ∈
D, and H ∈ Hd, let αd

H : H → Γd be the map defined by h → ghg−1, where g is an element in G
such that gΩ1(H)g−1 = d. Note that the choice of g is unique up to an element in Γd = NG(d),
so αd

H is well-defined as an element in Rep(H,Γd) = Hom(H,Γd)/Inn(Γd). For d = 1, we take
α1 : 1 → Γ1 as the identity map.

Let V be the compatible family of representations VH : H → U(n) over H ∈ H such that
for all H ∈ Hd, VH = ρd ◦ αd

H . The family V satisfies the conditions of Theorem 4.1, so by
applying this theorem, we obtain a smooth G-manifold M ′ diffeomorphic to M × SN for some
N � 1. Since all the representations VH in the family V are free, the G-action on M ′ is free.

Now we will prove a slightly stronger version of Theorem 4.1, which will be used in the next
section for the construction of free actions of rank 3 p-groups. We first prove a lemma.

Lemma 4.3. Let G be a finite group, H be a family of subgroups of G, and let ΓG := OrH(G)
denote the orbit category of G over H. Suppose that N is a QΓG-module such that N(H) = 0
for all H ∈ H except possibly when H is a cyclic subgroup of prime power order. Then for
every QΓG-module M, we have Exti

QΓG
(N,M) = 0 for all i � 2.

Proof. The statement is equivalent to the statement that N has a projective resolution of
the form 0 → P1 → P0 → N → 0 as a QΓG-module. Note that we need to prove this only for an
atomic functor and the general case follows by induction on the length of the module N . Recall
that a QΓG-module N is called an atomic functor if it has non-zero value only on conjugacy
classes of a fixed subgroup H. In this case, N = IHA for some rational WG(H)-module A,
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where WG(H) = NG(H)/H and IH denotes the inclusion functor (see [9, 9.29]) defined by

(IHA)(K) =

{
A ⊗QWG(H) QMapG(G/K,G/H) if H =G K,

0 otherwise.

If H = 1, then I1A is a projective QΓG-module. So assume H 
= 1. For P0 we will take EHA,
where EH denotes the extension functor defined by

(EHA)(K) = A ⊗QWG(H) QMapG(G/K,G/H)

for K ∈ H (see [9, 9.28]). Since EH takes projective QWGH-modules to projective QΓG-
modules, EHA is projective and there is a canonical map EHA → IHA that comes from
adjointness properties of the functor EH . Let XHA denote the kernel of this map. Then

(XHA)(L) = A ⊗WGH QMapG(G/L,G/H)

for L <G H and (XHA)(L) = 0 for all other subgroups L � G. There are obvious restriction
and conjugation maps between non-zero values of XHA induced by G-maps G/L → G/L′.

Let H be a cyclic group of order pn for some n � 1, and K be an index p subgroup in H.
We claim that XHA ∼= EK((XHA)(K)). Note that this will imply that XHA is a projective
QΓG-module, hence we will have the desired projective resolution.

To show the claim, observe that there is a natural map

ϕ : EK((XHA)(K)) −→ XHA

that induces an isomorphism at subgroups conjugate to K. When evaluated at L � K, this
map gives a map of WGL-modules

A ⊗WGH QMapG(G/K,G/H) ⊗WGK QMapG(G/L,G/K) −→ A ⊗WGH QMapG(G/L,G/H),

which is induced by a map of WGH-WGL-bisets

μ : MapG(G/K,G/H) ×WGK MapG(G/L,G/K) −→ MapG(G/L,G/H).

Note that μ takes the equivalence class of a pair of maps (f1, f2) to their composition f1 ◦ f2.
We claim that μ is a bijection for all L � K. This will imply that ϕ is an isomorphism.

Note that a G-map f : G/L → G/H is uniquely determined by a coset gH where f(L) = gH.
For this to make sense, the coset representative g has to satisfy the condition that g−1Lg � H.
In other words, we can identify MapG(G/L,G/H) with the set

(G/H)L = {gH | g−1Lg � H}.
The left WGH-action on MapG(G/L,G/H) becomes a right action on the set (G/H)L that is
given by gH · nH = gnH. It is easy to see that this action is free. Let G = {g1H, . . . , gmH} be
a set of WGH-orbit representatives of the free WGH-action on (G/H)L. Note that m is equal
to the number of G-conjugates of H that include L.

Since H is cyclic, L is the unique subgroup of H with order equal to |L|, so we have L �
H � NG(H) � NG(L). Also note that if gH ∈ (G/H)L, then g ∈ NG(L). So in our particular
situation, we have (G/H)L = NG(L)/H, and hence m = |NG(L) : NG(H)|.

On the left-hand side of the arrow for μ we have a cartesian product of a free WGH-set with
a free WGK-set over WGK. Let X = {x1H, . . . , xsH} be a set of orbit representatives of the
free WGH-set (G/H)K . As above we have (G/H)K = NG(K)/H and s = |NG(K) : NG(H)|.
Similarly, let Y = {y1K, . . . , ytK} be a set of orbit representatives of the free WGK-set (G/K)L.
We have (G/K)L = NG(L)/K and t = |NG(L) : NG(K)|.

After canceling the free WGK-orbits, we see that the numbers of free WGH-orbits on both
image and domain of μ are equal since st = m. Hence, to show that μ induces a bijection, it
is enough to show that μ is surjective. Note that μ maps the pair (xiH, yjK) to yjxiH. Let
gH ∈ (G/H)L. Observe that gKg−1 is the unique maximal subgroup in gHg−1, hence we have
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L � gKg−1. This means g = yjn for some yjK ∈ Y and nK ∈ WGK. Since n normalizes K,
we have K � nHn−1, so n = xin

′ for some xiH ∈ X and n′ ∈ WGH. This shows that gH is
the image of (xin

′H, yjK) under μ.

Definition 4.4. Let H∗ be a compatible family of subfamilies. We say H∗ is almost
strongly connected if the realization of the poset DH = {d ∈ D : H ∈ Hd} is simply connected
for all H ∈ H except possibly for some subgroups that are cyclic of prime power order, and for
such subgroups DH is either empty or a disjoint union of points.

If V factors through a diagram of finite groups Γ∗ over a one-dimensional diagram D and if
H∗ is almost strongly connected, then we say V factors through an almost strongly connected
one-dimensional diagram of finite groups Γ∗.

Now we state our second main result in this section.

Theorem 4.5. Let G, H, and M be as in Theorem 4.1. Suppose that we are given a
compatible family V of unitary representations over H that factors through an almost strongly
connected one-dimensional diagram of finite groups Γ∗. Then, the conclusion of Theorem 4.1
still holds.

Proof. We need to show that for every n � 0, there is G-map EHG(n) → BH(G,V⊕k) for
some k � 1. The rest of the argument follows as in the proof of Theorem 4.1.

As in the proof of Theorem 3.1, we can consider the homotopy colimit

Y = hocolim
d∈D

BHd
(G,Ad).

There is a G-map β : Y → EHG. Let Z denote the mapping cylinder of β.
For every k � 1, there is a G-map fk : Y → BH(G,V⊕k). We need to show that for every

n � 0, there is a k � 1 such that fk extends to a map f̃
(n)
k : Y ∪ Z(n) → BH(G,V⊕k). The

obstructions for extending f̃
(n)
k to (n + 1)-skeleton lie in the Bredon cohomology group

Hn+1
G (Z, Y ;πn(BH(G,V⊕k)?))

and we need these obstruction groups to be finite for all n � 2.
As before we can use the hyper-cohomology spectral sequence to calculate these cohomology

groups. The E2-term of this spectral sequence is of the form

Ep,q
2 = Extp

ZΓG
(Hq(Z?, Y ?);πn(BH(G,V⊕k)?)),

where ΓG = OrHG is the orbit category over the family H. So it is enough to show that for
every QΓG-module M , the ext-group

Ep,q
2 = Extp

QΓG
(Hq(Z?, Y ?; Q);M)

is zero for all p, q with p + q � 3.
Let Nq denote QΓG-module Hq(Z?, Y ?; Q). Repeating the argument used in the proof of

Lemma 3.2, we see that

Nq(H) = Hq(ZH , Y H ; Q) ∼= H̃q−1(|DH |; Q) = 0

for every H ∈ H except possibly when H is a cyclic group of prime power order. When H is
a cyclic group of prime power order, DH is either empty or disjoint union of points, so Nq is
non-zero only for q = 0, 1. By Lemma 4.3, Extp

QΓG
(Nq,M) = 0 for all p � 2, so we can conclude

that Extp
QΓG

(Nq,M) = 0 for all p, q with p + q � 3. This completes the proof.
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5. Construction for rank 3 p-groups

In this section, we prove Theorem 1.2. In the proof we use Theorem 4.5, but we first explain
how we can reduce the proof of Theorem 1.2 to the specific situation considered in Theorem 4.5.

Let p be an odd prime and G be a rank 3 p-group. In [13, Theorem 6.7], it is proved that
if G acts smoothly on a manifold M with rank 1 isotropy subgroups, then G acts freely and
smoothly on a manifold diffeomorphic to M × SN for some N > 0. So to prove Theorem 1.2,
it is enough to prove the following proposition.

Proposition 5.1. Let p be an odd prime and G be a rank 3 p-group. Then, there exists a
smooth G-manifold M diffeomorphic to Sn × Sm for some n,m > 0, such that for every x ∈ M,
the isotropy subgroup Gx has rk(Gx) � 1.

To prove Proposition 5.1, we use the same strategy as the one used for constructing free rank
2 p-group actions on a product of two spheres. We start with a linear G-action on X = S(V ),
where V is the induced representation IndG

〈c〉W , the element c is a central element of order p
in G, and W is a one-dimensional non-trivial representation of 〈c〉.

The isotropy subgroups of G-action on X satisfy the property that Gx ∩ 〈c〉 = 1. Let H
denote the set of all subgroups H � G such that H ∩ 〈c〉 = 1. Note that subgroups in H have
rk(H) � 2. We will prove Proposition 5.1 by applying Theorem 4.5 to the manifold X using
the family H.

There is a further reduction that allows us to focus on rank 3 p-groups with cyclic center.
We now explain this reduction. Suppose that the center Z(G) of G has rkZ(G) � 2. Then
there is a central element c′ ∈ G of order p such that c′ 
∈ 〈c〉. Using a one-dimensional non-
trivial representation W ′ : 〈c′〉 → C×, we can define an induced representation V ′ = IndG

〈c′〉W
′.

The G-action on S(V ) × S(V ′) is a smooth action and all its isotropy subgroups have trivial
intersections with the central subgroup 〈c, c′〉 ∼= Z/p × Z/p. This means that all isotropy
subgroups of this action have rank at most 1. Hence the conclusion of Proposition 5.1 holds
for the case rkZ(G) = 2. Therefore, from now on we can assume that G has cyclic center.

To prove Proposition 5.1, we need a compatible family of representations V = {VH} defined
on H = {H � G : H ∩ Z(G) = 1} satisfying the following properties.

(1) The family V factors through an almost strongly connected diagram of finite groups Γ∗
with associated quadruple (Γ∗, ρ∗,H∗,A∗).

(2) For every rank 2 elementary abelian subgroup E ∈ H, the E-representation VE is a fixed
point free representation.

Note that once we find such a compatible family, the conclusion of Theorem 4.5 gives a
smooth G-action on X × Sm for some m � 1, such that isotropy subgroups are the same as
the isotropy subgroups of H-actions on S(VH). By the condition (ii) above, this means that all
the isotropy subgroups will have rank at most 1. Therefore, once we find a compatible family
V satisfying the properties listed above, the proof of Proposition 5.1, and hence the proof of
Theorem 1.2, will be complete.

As discussed in the introduction, this compatible family comes from an effective class function
introduced by Jackson [7, Proposition 20] in an unpublished work. It was proved later by Klaus
[8, Proposition 3.3] in detail that this class function satisfies the desired properties. Klaus [8]
used this function to construct a free action on a finite CW-complex homotopy equivalent to
a product of three spheres.

Proposition 5.2. Let p be an odd prime and G be a rank 3 p-group with cyclic center. Let
H denote the family of all subgroups H in G such that H ∩ Z(G) = 1. There is a non-trivial
class function χ : G → C with the following properties: (i) the restriction of χ to a subgroup
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H ∈ H is a character of H; (ii) for every rank 2 elementary abelian p-subgroup E ∈ H the
restriction ResG

Eχ is a character of a fixed point free representation.

Proof. When p is an odd prime, every non-cyclic p-group has a normal subgroup isomorphic
to Cp × Cp (see [5, Theorem 4.10]), hence G has a normal subgroup Q ∼= Cp × Cp. Let CG(Q)
denote the centralizer of Q in G. Consider the class function χ : G → C defined by

χ(g) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

p(p − 1)|G| if g = 1,

0 if g ∈ Z(G)\{1},
−p|G| if g ∈ Q\Z(Q),
0 if g ∈ CG(Q)\Q,

−|G| if g ∈ G\CG(Q) of order p,

0 if g ∈ G\CG(Q) of order greater than p.

It can be shown by direct calculation that both statements hold for χ (see [8, Proposition 3.3]).

Let χ be the character as in the proof of Proposition 5.2, and let Vχ denote the compatible
family of representations defined over H such that for every H ∈ H, the character for the
representation VH is equal to ResG

Hχ. It is clear that the family Vχ is a compatible family
since it comes from a class function. We claim that Vχ satisfies the conditions (1) and (2)
listed above, for a suitable choice of quadruple (Γ∗, ρ∗,H∗,A∗). In the rest of this section, we
introduce the components of this quadruple and show that they satisfy the required properties.

To introduce H∗, we need to look at the subgroups in H more closely. Let Q be a normal
subgroup of G, isomorphic to Cp × Cp as in the proof of Proposition 5.2. Since Z(G) is cyclic,
Z(G) ∩ Q = 〈c〉 is a cyclic group of order p. Let a be a non-central element in Q. We have
Q = 〈c, a〉 ∼= 〈c〉 × 〈a〉.

Let CG(Q) denote the centralizer of Q in G. Since the quotient group G/CG(Q) acts faithfully
on Q ∼= Cp × Cp, it must be isomorphic to a subgroup of GL2(Fp). Since |GL2(Fp)| = (p2 −
1)(p2 − p), we can conclude that |G/CG(Q)| = p. Furthermore, we have the following lemma.

Lemma 5.3 (See Proposition 3.2 in [8]). Let G, H, and Q be as above. If H ∈ H is such
that H ∩ Q 
= 1, then H � CG(Q) and there exists g ∈ G such that Q ∩ gHg−1 = 〈a〉.

Proof. Since H ∩ 〈c〉 = 1, we have H ∩ Q = 〈aci〉 for some i. Since 〈aci〉 is a normal
subgroup of order p in H, it is a central subgroup of H. This means H centralizes aci, and
hence it centralizes Q. To prove the second statement, let b ∈ G denote an element such that
b 
∈ CG(Q). Then, by replacing b with its power we can assume that b−1ab = ac. This shows
that if we take g = bi, then Q ∩ gHg−1 = 〈a〉.

We will also need the following lemma.

Lemma 5.4. Let H ∈ H be such that H � CG(Q). Then, K = H ∩ CG(Q) is a cyclic group
and H is either cyclic or it is isomorphic to K � Cp, where Cp acts on K either trivially or by

the action k → k1+pn−1
, where pn = |K|.

Proof. Let H ∈ H be such that H � CG(Q). Then, by Lemma 5.3, H ∩ Q = 1, in particular,
K ∩ Q = 1. This implies that QK ∼= Q × K. Since Q ∼= Cp × Cp, we must have rk(K) � 1,
hence K is a cyclic group. Note that |H : K| = p, hence by [4, Theorem IV.4.1], we conclude
that H is either cyclic or it is isomorphic to K � Cp, where Cp acts on K either trivially or by
the action k → k1+pn−1

, where pn = |K|.
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Now we list all possible types of subgroups in H with respect to their relationship to Q and
CG(Q).

(1) A subgroup H ∈ H is called a type A subgroup if H � CG(Q). We define the subcol-
lection Ha ⊆ H as the family of all type A subgroups. Since CG(Q) is normal in G, this is a
family, that is, it is closed under conjugation and taking subgroups.

(2) Let H ∈ H be such that H � CG(Q). Then, by Lemma 5.4, H is either cyclic or it is
isomorphic to K � Cp, where Cp acts on K either trivially or by the action k → k1+pn−1

, where
pn = |K|. If K is cyclic we call it a type B subgroup, otherwise, we call it a type E subgroup.
Note that every type E subgroup has a unique elementary abelian subgroup of rank 2. This can
be easily checked by looking at the subgroup lattice (see also [11, Lemma 2.1]). Let E1, . . . , Em

denote the conjugacy class representatives of maximal elementary abelian subgroups of type E
subgroups. For each i, we defined the family Hei

as the family of type E subgroups such that
Ei �G H. Note that if H ∈ Hei

, then H �G NG(Ei).
(3) If H ∈ H such that H � CG(Q) and it is included in a type B or a type E subgroup,

then we call it a type C subgroup. Note that type C subgroups are necessarily cyclic.

Lemma 5.5. Let D be the discrete poset {a, e1, . . . , em}. For each d ∈ D, let Hd be the
subfamily defined as above. Then the diagram of subfamilies H∗ is almost strongly connected.

Proof. Note that the only subgroups H ∈ H that are not in the union Ha ∪ (
⋃

i Hei
) are

type B subgroups, so they are all cyclic. The intersections of families Hd for various d ∈ D are
easy to describe. We already observed above that if H ∈ Ha ∩Hei

for some i, then H is a type
C subgroup, which is again cyclic. Now suppose H ∈ Hei

∩Hej
for some i 
= j. Then H is either

cyclic or it is a type E subgroup such that Ei �G H and Ej �G H. Since all type E subgroups
have a unique elementary abelian rank 2 subgroup, this will imply that gEig

−1 = Ej for some
g ∈ G. But the subgroups Ei and Ej were chosen as distinct conjugacy class representatives,
so this is not possible. Hence, every subgroup in Hei

∩Hej
is cyclic when i 
= j. We conclude

that H∗ is almost strongly connected.

We now describe the diagram of finite groups Γ∗ and the diagram of families A∗. For each
d ∈ D, let

Γd =

{
CG(Q) if d = a,

NG(Ei) if d = ei.

Since D is a discrete category, it is clear that this is a functor from D to finite groups. For each
d ∈ D, we define a compatible family of representations

Ad = {αd
H : H → Γd | H ∈ Hd}

by taking αd
H as the composition

αd
H : H

cg−→ gHg−1 ↪→ Γd

where the conjugation map cg is defined by h → ghg−1 and the second map is the inclusion
map of gHg−1 into Γd. For type E groups, we do this by choosing an arbitrary element g ∈ G
such that gHg−1 ⊆ Γd. For type A groups, we take a g ∈ G such that Q ∩ gHg−1 = 〈a〉. Such
an element g ∈ G always exists by Lemma 5.3.

To introduce the collection of representations ρ∗, we first introduce some notation. For a
K-set X, where K � G, we denote by IX the reduced permutation representation CX − C.
For example, with this notation, I〈a〉/1 denotes the reduced regular representation of 〈a〉. For
each i = 1, . . . ,m, let Ci denote the cyclic subgroup Ei ∩ CG(Q) in Ei. Let Wi denote the
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Ei-representation IEi/Ci
+ (p − 1)IEi/1. For every d ∈ D, we define

ρd =

⎧⎨⎩naIndCG(Q)
〈a〉 I〈a〉/1 if d = a,

nei
IndNG(Ei)

Ei
Wi if d = ei.

The numbers na and nei
are chosen as positive integers such that the equalities

na(p − 1)
|G|
p2

= nei
(p − 1)|NG(Ej)| = p(p − 1)|G|

hold. Note that na = p3 and nei
= p|G|/|NG(Ei)| for all i.

Lemma 5.6. Let G and H be as above, and let Vχ denote the compatible family of
representations on H defined using the class function χ of Proposition 5.2. Then Vχ factors
through a diagram of finite groups Γ∗ with associated the quadruple (Γ∗, ρ∗,H∗,A∗) whose
components are as introduced above.

Proof. We need only to show that for every d ∈ D, the restriction of Vχ to Hd is equal to
ρd ◦ Ad. The rest of the conditions are clear from the construction of the quadruple.

If d = ei for some i, then we need to check that ResG
NG(Ei)χ = nei

IndNG(Ei)
Ei

χWi
, where χWi

denotes the character for Wi. For g ∈ NG(Ei),

(IndNG(Ei)
Ei

χWi
)(g) =

{
|NG(Ei) : Ei|χWi

(g) if g has order p;
0 if g has order greater than p.

Note that for g ∈ Ej , we have χWi
(g) = 0 if g ∈ CG(Q) and χWi

(g) = −p if g 
∈ CG(Q). Hence
the desired equality holds.

When d = a, there is a similar calculation. Observe that if H ∈ Ha, then αa
H : H → Γa is

defined by first applying conjugation map h → ghg−1 followed by the inclusion map gHg−1

into Γa = CG(Q), where the element g is chosen such that a ∈ gHg−1. So it is enough to check
whether the equality ResG

Hχ = naResCG(Q)
H IndCG(Q)

〈a〉 χa holds for a subgroup H � CG(Q) that
includes a. Here χa denotes the character for I〈a〉/1. If g ∈ 〈a〉, then

na(IndCG(Q)
〈a〉 χa)(g) = p3(|G|/p2)χa(g) =

{
p(p − 1)|G| if g = 1,

−p|G| if g 
= 1.

If g ∈ H\〈a〉, then the character value is zero. Hence the desired character equality holds.
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