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The problem of constructing semi-discrete integrable analogues of the Liouville type integrable PDE is dis-
cussed. We call the semi-discrete equation a discretization of the Liouville type PDE if these two equations
have a common integral. For the Liouville type integrable equations from the well-known Goursat list for which
the integrals of minimal order are of the order less than or equal to two we presented a list of corresponding
semi-discrete versions. The list contains new examples of non-autonomous Darboux integrable chains.
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1. Introduction

At the present time the problem of discretization of the integrable differential equations is actively
studied. In the literature one can find various approaches and techniques used to solve this problem
including the Bécklund transformation, the Hamiltonian structure, symmetries, Lax pair, finite gap
integration (see [1], [2], [S], [10], [14], [15], [17], [19]). In our previous work [7] we considered
the discretization of the Liouville type partial differential equations preserving the structure of one
of the integrals, and we constructed the semi-discrete analogues for some equations found by E.
Goursat [6]. However, semi-discrete analogues were not found there for nonautonomous differential
equations. Moreover, in [7] we did not evaluate the continuum limit equations of the chains obtained
by the discretization.

In the present paper we applied the discretization via integrals procedure to nonautonomous
cases as well. We also discuss continuum limit equations for some particular semi-discrete ana-
logues obtained via the discretization. It is verified that discretization of a given Liouville type PDE
found by some formal manipulations after evaluation of the continuum limit for vanishing of the
grid parameter € arrives at just the same PDE.

We consider semi-discrete chains of the form

d d
at(n—l— 1,x) = f(x,n,t(n,x),t(n+ 1,x), at(n,x)), (1.1)
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where unknown function t = #(n,x) depends on discrete and continuous variables n and x, respec-
tively. We use the following notations throughout the paper:
dm

tw=tn+kx), keZ, t[m]:dx—mt(n,x), m e N.

Denote by D and D, the shift operator and the operator of the total derivative with respect to x
correspondingly:

Dh(n,x) = h(n+1,x), Dyh(n,x) = dih(n,x).
X

Let us recall the necessary definitions (see [8], [9] for more details).

Definition 1.1. Functions / and F', depending on x, n, {#j, };m_1» {t}i-
n- and x-integrals of (1.1), if DI =1 and D.F = 0.

are called respectively

—0o0?

Any function depending on n only, is an x-integral, and any function, depending on x only, is
an n-integral. Such integrals are called trivial integrals. One can show that any n-integral / does not
depend on variables t,, for m € Z\{0}, and any x-integral F' does not depend on variables #},, for
mée N.

Definition 1.2. Chain (1.1) is called Darboux integrable if it admits a nontrivial n-integral and a
nontrivial x-integral.

Note that the order of the n-integral I = I(n,x,t,1,,...,D't) equals m. Starting with / we can
produce a new integral H by setting

H=H(x,1,D.I,..D"I) (1.2)

Evidently its order is k 4 m. It can be proved that chain (1.1) having a nontrivial integral admits a
nontrivial integral of the minimal order which plays the key role: any n-integral H can be represented
in the form (1.2) through the minimal order n-integral /.

It can be verified that it is possible to find autonomous x— and y—integrals of minimal order
for any Liouville type equation of the form u,, = f(u,u,uy), i.e. for an equation having no explicit
dependence on x,y. This fact is clearly illustrated by the list of equations found by E.Goursat in [6].
In the recent paper [4] the authors presented a class of discrete autonomous equations possessing
both nontrivial integrals of minimal orders depending on independent discrete variables. The exis-
tence of such examples, showing that the class of discrete equations has more complicated structure,
stimulated our interest to the discretization problem.

Chain (1.1) is a semi-discrete analogue of the well-studied hyperbolic type equation

”xy:g(XJa”aMxyuy)- (13)

Definition 1.3. Functions W (x,y,u, Uy, tyy,...) and W (x,y,u, uy, uyy, ...), are called respectively y-
and x-integrals of (1.3), if DyW = 0 and DWW =0.

Definition 1.4. Equation w1, = f(x,n,un, Un11,u, ) is called a discretization of the equation
(1.3) if these two equations have a common integral W (x,y, u, iy, Uxy, ...) =2 1(X, 1, Uy, Uy x, Up xx---)-
Here the relation W = I means that / is obtained from W by replacing y — ne, u — up, uy — y x,
Uyy — Up xx and so on.
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In [6] E.Goursat presented a list of Darboux integrable equations. We selected from the list only
those equations for which the minimal order integrals have the orders no greater than 2. The trivial
case when both x-integral W (x,y, u,uy) and y-integral W (x,y,u,u,) are of order 1 is excluded:
Dty = €, W =ty — (1/2)u2, W = uyy — (1/2)1/13,

(ID) uyy = e"uy, W=u, —e", W="22_ Uy}

Uy

_ 2
(D) 1y = 416 =4, W = e (1/2)ud = (1/2)e%, W = 72

(IV)uxy_ux”)’< +7> W:m_Zth_’_iW:m_Zuy_’_L;

Uy U—x u—x’ iy u—y u—y

(V) ey = W(u) B (w) B (uy), (Iny)" = ﬁB’ = —u,, BB = —u,,
W =y~ S0 5 B

(VD) uyy = Blec)Bile) BB +cB =—u, ﬁB’+cB

W=t - BW B

(VII) 10y = 2“;} = o povE W= S 0t

(VI = s B = B+ B, B = B3+ B2,

W = 1B (ux) — m W= ”yyﬁ(”y) - m

Throughout the paper we shortly call the list of eight equations above as the Goursat list. Note
that the work [6] contains also equations for which the minimal order integrals are of the order
higher than two.

According to Definition 1.4 in order to discretize a Darboux integrable equation of the form (1.3)
we have to solve a kind of the inverse problem: search the equation of the form (1.1) possessing the
given integral.

In [7] we made a discretization of equations (1.3) preserving the structure of y-integrals in
each of eight equations from the list (I)-(VIII). The discretization in [7], where it is supposed that
n-integrals are functions not depending on », did not provide semi-discrete equations for each func-
tion B(¢,) in three cases, namely cases V, VI and VIII. Also, in cases IV and VII, where y-integrals
depend on x and y, the obtained in [7] semi-discrete chains did not have the corresponding continu-
ous limit equations.

2. Statements of the results

In the present paper we allow n-integral and function f explicitly depend on x and n, and with this
modification in the discretization algorithm we again study all cases I - VIIIL. In cases V, VI and VIII
the n-integrals depend on functions f that are solutions of some differential equations. Below we
give semi-discrete versions of these equations in the Goursat list.

Theorem 2.1. (Case V) Semi-discrete chain ti, = f(x,t,t),t,) possessing a minimal order n-integral
1= gl + YU B (1, n), where (ny)" =y and B (te,n) B(te,n) = —ty is

tix = A(t,t1,n)te + u(t,ty,n) B (t,n)
with A and W satisfying the equations

2 2 . ‘I’/(Ib”‘i’l) l[//(t,l’l) _ . W,(t7n) _
A=y A A e 0 M T e T )
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where V(n) is some constant depending on n only.
This semi-discrete chain has x-integral F = y(t;,n+ 1)E(t,t;,t2), where E;, =

1 _ Anpntl)  Alnnn)  y(rntl)
VAT N By = = Suir ) T vata ) win At T)

1 —
ﬂ(’ﬁﬂa")’ Etz o

Note that the overdetermined systems of the differential equations for defining A and, respec-
tively E, are compatible (see section 3 below).

Theorem 2.2. (Case VI) Semi-discrete chain t\y = f(n,t,t1,t) possessing a minimal order n-
integral [ = ﬁ(ttn,n) — ﬁ(t’” ), where B (tx,n) B (ty,n) +CB(ty,n) = —ty is

tie = A(t, 0, n)t 4+ u(t,t1,n) B(ty,n)

with
2+AZ —CAp A
A= C” 4 e (2.1)
2’)‘1 +7
where
(BA— )% (A~ Bu) = v(n), B=CC4 o>,
In(A% - CAp+pu?) — \/%arctani%:v(n), if C*<4,
In(%— 1)+ 725 = Vi) iy Cc=2,
(A + ) — 24 = v(n), iy Cc=-2,

and v(n) is some constant depending on n only.
1
) 5 wu(ty i, n+1)
_ pE(t 0 ) A (8,0 ,n) —CA (2,11 ,n) (2,01 ,1) Aty,a,n4+1) At ty,n)
E="" Wi and By = — o — i O L E.

This semi-discrete chain has x-integral F = LE(t,t,,t,), where E,, =
3] 2

Theorem 2.3. (Case VIII) Semi-discrete chain ty = f(x,n,t,t1,t;) possessing a minimal order n-

integral I = B(ty,n)t — m where B’ (t.,n) = B3(t,,n) + B*(tr,n) and a(n) is some con-

stant depending on n only, is

t 1=K +1,4 (—K+InK)
Ix = —
T Ben)
with function K (x,n,t,t1) satisfying the following system of equations
Kl‘ + Kll — O7
_ K K 1
Kn == {x+a(n+1) B x+a(n)} ’ (2.2)
_ K K 1 (K—1)K
K= K-1 {x+a(n+l) T xta(n) } (K_ an) T xta(ntl)
This semi-discrete chain has x-integral F = mE(x,t,tl,tg), where E, = K(lling) 11 lr}(ll(n +
mE ETIZI K’ET2_ l%KlWl.thflztl—tandTZth—tl.

Let us now present one particular case described in Theorem 2.1 corresponding to B(t,) = /1 —12
and y(r) = —1.
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Example 2.1. Semi-discrete chain
rvn)?  v(n)t -1}

Ix = X

2tt

— 12 2.3
2tt " (2:3)

/1—¢2 n)t2—12 .

has n-integral I = \/tl**iﬂ — lt % and x-integral F = % for any constant v(n) depending on n
72 2

only. If in (2.3) one substitutes « and u + g¢") with ¥ = 1 /B, instead of t and #; correspondingly,

B (ux) B (uy)

and let € approach 0, continuous Liouville equation analogue u,, = would be obtained.

In cases IV and VII the y-integrals depend on the variables x and y. We consider these special
nonautonomous cases, allowing explicit n-dependence of n-integral and of the function f, and obtain
some new semi-discrete chains.

Theorem 2.4. (Cases IV and VII) (a) Semi-discrete equation (1.1) possessing an n-integral
Ixx 2ty
I=—=— +

th f—x ft—x

is

(1 M) (1 —x)
T T M () () @9

(I+6M(n+1))(t; —1)
(1+tM(n))(t) —12)

he | 2V
+
Vv x+é€n

where M(n) is an arbitrary function of n. Function F =

(2.4).

is an x-integral of

(b) Semi-discrete equation (1.1) possessing an n-integral I = is

B B ety —1)
e = (Vi @), “_\/(x+en)(x+e(n+1))' 2:5)

Function F = (x+en)a — (x+ &(n+2))Da is an x-integral of (2.5).

Theorem 2.5. (Cases I-1V and VII) Below we display continuum limit equations and x-integrals
for semi-discrete equations obtained by discretization of the continuous equations from the Goursat
list.
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Semi — discrete equation Continuum limit equations

and its x — integral F and x — integrals F

e = 1o+ Cell/204) € = ¢ ey — "

F=eti0/2 1 pln-n)/2 lim 26 2(2—F) =uy— (1/2)u} = F
ty=t,—¢é +¢é" Uyy = €Uty

F = (et —etz)(et‘ —€t3)(et _etg)fl(et] _etz)fl

lim 12(1— )= —2F, + F?,

e—0 €

oty
F_u), Uy

tix =K(t,t1)t,, K =1+ €eh

F=e"+ege

Uyy = " Uy

lime Y{(1—-F)=u,—e*=F
sm ( )=uy—e

fix =t + VeX +Re'th + 21 R= —2 —4¢?
F = arcsinh(ae" ™2 + b) + arcsinh(ae" ' + b)

a=(—4e*—4e?)"'? b= —(1+28%a

Uy = €" u% —4

o2 .
lime ! (—F +4In2) = @2 20% _ f
£—0

fe = \/Rzez(wm) +2Re! N\ /12 — 4+

(1+Re)1, . R=2""¢?

F = V/Re2 +-2¢l1—1 4 \/Re21 + 2112

uz—4

— Ll
Uy =€ X

hm (4= V2F) = uyy — i(” + &)

(M), 1y
i) o M =
F— (I+6oM (n+1)) (2, —t)
T (1+tM(n))(t1—12)

Hy = en

1 1
Uyy = Uylly (T + E)

lim L ((1+n )F+1)="120 4
e—0°¢ 4

e(t—t)
(x-+en)(x+e(n+1))

(x+€e(n+2))D

lix = (\/a+a)2’ o=

F=(x+en)a—

\/ Uxlly
x+y

lim—2—£+l
e—0 € ry 2

Uy =2

uyy

In the present paper we concentrate mainly on the “discretization” i.e. on the evaluation of the

Remark 2.1. Let us find all equations ty, = f(x,y,1,1,1,) possessing a y-integral ] =
that is, we are looking for a continuous analogue of semi-discrete chain ¢,
(A)) preserving the structure of its n-integral. Equality D,/ = 0 becomes t,,y
equation searched t,, = f(x,y,,t,t,) we obtain ty = fi + fitx + fi.te + fi, f . Therefore,

fx + fttx + ftxtxx + ft‘f -

discrete versions preserving the structure of the integrals. The inverse operation is also meaningful.
According to Definition 1.4 we can look for PDE of the form (1.3) starting with the known integral
of a Darboux integrable chain (1.1). Another way to find the continuous counterpart is connected
with the evaluating the continuum limit. Remark that these two methods give one and the same
answer. Let us give an illustrative example.

tXX

t.f=0.
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Evidently, the coefficient before f,, in (2.6) vanishes, that is f;, = 0. Now collection of the coef-
ficients before 7, in (2.6) gives f; — f = 0, or f = A(x,y,1,)e’. We substitute the expression
f=A(x,y,t,)e" into (2.6) and get A’ —i—A,yez’ = 0 which immediately implies A, = A, = 0. There-
fore, the equation searched is of the form z, = A(y)e’ which coincides with the Liouville equation up
to a point transformation y — § = [;A(6)d6. It is remarkable that usual continuum limit with small
€ = C > 0 approaching zero gives the same answer: equation (r, —,) /& = e(1/2)(+1) becomes the
Liouville equation.

Remark convinces that the problem of evaluating the PDE by its known integral is trivially
solved. For the semi-discrete chain it is not the case. The matter is that in this case instead of the
differential relation D,W = 0 we have a functional equation DI = I.

It is widely known that integrable discretization is closely connected with the Bicklund trans-
formation. We discuss this connection in section 8. It is shown that some of the discrete models
coincide with the Bécklund transformation for the continuous counterparts, while the others do not.

We prove Theorems 2.1 - 2.4 in sections 3 - 6, and present the proof of Theorem 2.5 in two
special cases F and G in section 7. Other cases from Theorem 2.5 can be proved in a similar way.

3. Proof of Theorem 2.1

Discretization: Let us find all chains t1, = f(x,n,t,t|,t,) with n-integral I = (t;;‘_n) + W’j") B(te,n),
where / '

Ix

B(t,n)’

f

B,(f’n—i_l):_ﬁ(f,n—i-l)

(ny)"=y?  B'(t,n)=—
DI = I implies

fx‘i‘fttx"i‘ftlf_}'ftxtxx W’(t17l’l+1)[3(fn+1): Tyx —|—1Iﬂ(t’n)ﬁ([x l’l) (32)

B(f,n+1) y(t,n+1) B(tx,n) — wi(t,n)
We compare the coefficients before ¢,, and get
fi 1
x = , 3.3)
Bt D) Bln) (
or
1
Y(f,n+1) = y(te,n) + A(x,n,t,t1), where Y (te,n) = Blen)”

We have, ¥ (f,n+1)f, = Ay, or fi, = A, B(f,n+1). Similarly, f; = A,B(f,n+1) and f, =
A.B(f,n+1). Substitute these expressions for f, f; and f;, into (3.2) and get

Ac+0A + A fHnB(f,n+1) =rB(t,n), 3.4)
where
/ /
poYitn o Wit ) (3.5)
y(r,n) v(t,n+1)
Differentiate with respect to #, equality (3.4), use (3.3) and (3.1), and get
AB(te,n) +A, B(fon+1)—rif = —rtx. (3.6)
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Differentiate with respect to z, equality (3.6), use (3.3) and (3.1), and obtain
LA+ AL+ B(f,n+1) =rB(t,n). (3.7

One can see from (3.4) and (3.7) that A, = 0. We express B(f,n+ 1) from (3.7), substitute it into
(3.6) and get

[ =2t +up(te,n), (3.8)
where
rrl _A[At rlAt+rA[
= = (3.9)
1 151 1 -

Note that f,, = A + pp/(ty,n) = A — figrss by (3.8) and (3.1). On the other hand, f,, = 3}{(’;’:)“,
by (3.3). Hence, ’

B(f,n+1)=—uty+AB(t:,n). (3.10)
It follows from (3.1) that
B*(trn) ==t} +C(n),  B*(fin+1)=—f>+C(n+1), (3.11)
where C(n) and C(n+ 1) are some constants. Since

f2 = Aztf +2Aut,f (txan) +“2B2(txan) )

B2(f.n+1) = AB(te,n) — 22t B (1, m) + 21
then
B (fin+1) = (A2 +p?)(7 + B2 (12,m))
and, therefore, due to (3.11),
A rut=v, (3.12)

where v = C(n+1)/C(n) is some constant depending on n only.
Let us show that

A =v(T+A7). (3.13)
Indeed,

v 12 N u2 _ rzr% +At2At21 + rletz + rzAtzl
(ri +A47)?

can be rewritten as
V(Al‘zI )2 + (ZVr% —? —A,2)At21 + (v;"l1 — r2r% — r%Atz) =0,
that implies

—(2vr? —r? —A2) + 12 + A?
2v ’

A} =
that is equivalent to (3.13).
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We substitute expressions f = Aty + uf(ty,n) and B(f,n+1) = —ut,+AB(t,n) into (3.2) and
get

Mt + e B (e )+ (A b+ oy B (12,m) ) (At + BB (12,m))

= (rB(ty,n) — riAB(te,n) + riuty) (AP (te,n) — Uty) .

In the last equality we first replace 82(t,n) by —t2 +C(n) due to (3.11), and then we compare the
coefficients before linearly independent functions ¢?, t2 and ¢, (t,,n). We obtain,

ot = Ar— A%y, (3.14)
A+ A A= g b = —Ar+ A% —pu?ry, (3.15)

and
M+ A L+ Uy A = —pr+2A1ry . (3.16)

Since A2+ u? = v, then u, u + A, A = 0, and equation (3.14) becomes

A, —riA+r=0. (3.17)
We subtract (3.14) from (3.15), use (3.17) and (3.12), and get

A —rA+vr =0. (3.18)

One can check that equations (3.14)-(3.16) are satisfied if and only if equations (3.17) and (3.18)
hold. Note that equations (3.17) and (3.18) are compatible, since A, = A, is equivalent to v(r? —
w?) = r? — y?. The last one holds because (r> — y?)' = 2rr —2yy’ = 2% v 2yy' =0asr = y?
by (3.1).

One can solve the system of equations (3.17) and (3.18) and get that

A = VB(1)B(n) () y (1) (W (1) = (1) +Ci(n) = r(t)B(1)w (1) = vr()B(1) w(t) + Ca(n) w() (1),

where B' = 1/y.
Note that equation (3.8) can be written also as

Y(fvn_‘_l):}/(tmn) —|—A(l,l‘1,l’l), (3.19)
where, due to (3.9) and (3.13), we have

,}/(t)ﬁn) - ﬁ(txﬂ’l)’ Al] - v_lZ ’ At -

and A satisfies (3.17) and (3.18).

(Vl‘l — 7Lr)2
v—AZ
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Finding x-integral: Now we are looking for an x-integral F(t,t1,t;) of equation (3.8) satisfying
(3.12), (3.17) and (3.18). Equality D,F = 0 implies

Fit+ Fy (At + 1B (t0,m)) + Foy (M A — )ty + (aft + pi ) (t3,m)) = 0,

By comparing the coefficients before z, and B(z,,n) in the last equation we get the system of two
equations

{Ft+/lFt1 +(MA = wp)F, =0,
WEF, + (Mp+mA)F, =0,

that can be rewritten as

FE — VvEE =0,
{ ! wo" (3.20)

Fy+ (M +ALF, =0.
J W 9 My 0 | A A U J _
Note that | — v 50, i + (4 +7LI])372} = <u1 (E)z —-vu (“—i)t2 +v (ﬁ)t > 35, = 0 due to
(3.12), (3.17) and (3.18). Define function E(,t,1,) to be such that

1 1 A A

Etzia Etzzia Etlz_il_i_rlE- (321)
u Vi v, vu

Such function exists since E;;, = 0 = E,; and Ey, = E; s, Ey1, = Eyyy, by (3.12), (3.17) and (3.18).
In new variables 7 = E(t,t1,1;), fj = t1, f; = t; system (3.20) becomes

1

Fy =0,
i = i 1 =0.

that implies that x-integral can be taken as F (¢,t,,t,) = y(t1)E(t,t1,12), where E satisfies (3.21).

4. Proof of Theorem 2.2

Discretization: Consider chains 71, = f(n,1,1,t,) with n-integral I = (ttiin) _B (”;’"), where
B(te,n)B (te,n) + CB(tr,n) = —t,. 4.1)
Equality DI = I implies
ﬁtX+ﬁ1f+ﬁxtxx_ﬁ(f7n+l) — txx _B(tx7n) (42)
B(fan+1) I ﬁ(lx,l/l) t ‘ .
By comparing the coefficients before 7, in (4.2) we get
Ji. _ 1 _ b
= or y(f,n+1)—7y(ty,n) =A(t,t;,n) withy =1/8. 4.3)

B(fn+1)  Blton)’

It follows from (4.3) that f; = B(f,n+1)A; and f;, = B(f,n+1)A,,. We substitute these expressions
for f; and f;, into (4.2) and obtain
B(f,n+1) P(te,n)

At +A f = — . 4.4)
1 t
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The next system of two equations is the results of differentiation of (4.4) with respect to ¢, conse-
quently and usage of (4.1) and (4.3).

Ay + )ﬁ(f,n+1)+t,f Lo (S - 4) Bltn),
CA, + )ﬂqm+4y+Qm+n) =(S—A)t ( cm)ﬁ@my
)

This system of two linear equations with respect to B(f,n+ 1) and f implies that f can be written
as

f=A00)t+ u(t,0)B(t,n), 4.5)
where

_h- 117 A A, — Ctti A, thA, + 124,
and u=- .
CthA, +C?t +t CtiA,, +C?t +t

It follows from (4.5) and (4.1) that f;, = A +upf'(te,n) =1 —pu (C—i— ﬁ) On the other hand,
by (4.3), we have f,_ = B(f,n+1)/B(ts,n). Therefore,

B(f,n+1)=—ut,+ (A —Cu)B(t,n). (4.6)
We substitute f = At, + uf(t,,n) and B(f,n+1) = (A —Cu)B(tx,n) — ut, into (4.2) and get
A'Tt)% +[.L;Ixﬁ (tx,fl) +l)l,,] t)% —|—lﬁuﬁ(tx,n)tx+utlltxﬁ(tx,n) +aut1.uﬁ2(tx7n)

_ A—CupBem) 20— CuutBlin) R (A —CRBn) | pnBln)
n n hn t t

I

that implies, after comparing coefficients before linearly independent functions ¢2, #.3(t,,n) and
B2 (t.,n), the following system of equations on A and u takes place

Mt Ady, =1,
2Cu—Mp | p
ﬂt+ﬂ4ﬂ+ﬂtll—T+7, 4.7
2 _
g = BCHE y CUoR

Note that the Wronskian of functions ¢2, £, (,,n) and B?(t,,n) is equal to 2(t, 8/ (t,n) — B(ts,n))>.
It is equal to O if and only if B(¢;,n) = %mtx provided that function B satisfies (4.1). In this
case, due to (4.5), we would have 71, = K(t,11)t,. Otherwise, the Wronskian is not 0 that implies
that functions 2, £, 8 (t,,n) and B2(t,n) are indeed linearly independent.

Let us find the relation between A and u. Denote by

_ B (t:,n)
e
Equation (4.1) becomes

wdw dt,
_ = 4.8
w2+ Cw+1 ty (4.8)

We study this equation in three different cases.
Case 1) is when C? > 4 and, therefore, w? + Cw+1 = (w+ %)2 — #.
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) +42.

)

Case 2) is when C? < 4 and, therefore, w> + Cw+1 = (w+
Case 3) is when C? = 4 and, therefore, w?> + Cw+1 = (w +

Q)

In Case 1) the solution of (4.8) is

1 /oo
(w—i—B)_B2 (w+ B> t;_Bz = Consty(n) with  B= % ,
that can be rewritten as
(B(t,n) +Bt,) "% (BB (t:,n) +1.) = Const; . (4.9)
Also,
(B(f,n+1)+Bf) B (BB(f,n+1)+f) = Const, . (4.10)

We substitute (4.6) into (4.10), use (4.9), and get that in Case 1) there is the following relation
between A and u:

C—VC?—4

(BA— ) B (A —Bu) = v(n), B=——"F—. @.11)
Differentiation of (4.11) with respect to ¢ and #; gives the following equations
phy = (Cp = 2A) Ay,
(4.12)
{ phy = (Cu—2A)A, .

In Case 2) the solution of (4.8) is

In(w?2 +Cwt? +12) — arctan

2C w—+
V4 —C2 V4 —C?

= Consty ,

that can be rewritten as

2B(t Ct
arctan M = Consty . 4.13)

In(B%(te,n) 4+ Ct B (te,n) +12) — \/42_7@ e

Also,
) ,  2C 2B(f,n+1)+Cf
In(B°(f,n+1)+CfB(f,n+1)+ ) marctan P/ =Const,. (4.14)

We substitute (4.6) into (4.14), use (4.13), and get that in Case 2) there is the following relation
between A and u:

2C 2L —Cu
arctan ——— = v(n). 4.15)
V4 —C? uv4a—C? ()
Differentiation of (4.15) with respect to ¢ and #; gives (4.12).
We study Case 3) in the same way as Cases 1) and 2) and get the following relation between A
and u:

In(A% —CAu+pu?) —

{ln(l—u)—l—lﬁuzv(n), if  C=2, “.16)

In(A +u) — = = v(n), if  C=-2.
Differentiation of (4.16) with respect to ¢ and #; gives (4.12).
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In all three cases we substitute the expressions for u; and y,, from (4.12) into (4.7) and have
(2.1). Note that system (2.1) is compatible, i.e. Ay, = A, if and only if equations (4.12) hold.
Finding x-integral: Let us find function F(z,t;,f2) such that 0 = D.F = Fit, + F, ti1x + F,tx.
Due to (4.5) and (4.6), we have t1, = Aty + uP(tx,n) and try = (MA — )ty + (A + A —
Cupy)B(ty,n), where A; = DA and u; = Du. By comparing the coefficients in D,F = 0 before ¢,
and B (t,,n) we get the following system of two equations

{E“FA'E] +(All _ulu)Ez = 07
WF, + Mg+ A —Cpp)F, =0,

that can be rewritten as

{uEJrul(Clu—uz—?tz)Ez:O, @17
WE, + A+ A —Cup)F, =0.
Let E(t,11,12) be such that E; = “ZHZ;CA“, E, = —% - % +C+ %E and E,, = i Such function
E exists since Ey, = 0 = E;; and Ey, = Ey s, Ey,, = Eyyy, provided equations (4.12) hold.
In new variables 7 = E(t,t1,12), f; =11, f, = t, the system (4.17) becomes
ENQ = 07
- - 4.18
{ th+6F; =0. ( )
One can see that x-integral then can be taken as F(z,11,1;) = %E (t,t1,12).
5. Proof of Theorem 2.3
Discretization: Consider chains ¢, = f(x,n,t,t1,t,) with n-integral I = B(ty,n)ty — W,
where '
B'(t,,n) = B3 (te,n) + B?(t,,n). (5.1
Denote by
B=B(t.n), B=B(fn+l), a=a(m), om=am+]).
Since DI = I then
_ 1 1
t ty) — ——————= =Bty — ——— . 5.2
B(fe+ fite+ fo [+ fotex) Cranp Bt T o)p (5.2)
By comparing the coefficients in (5.2) before ¢, we have
Bﬁxzﬁﬂ or }/(f,n—i-l)—}/(tx,n):A(x,n,t,tl) with ’)/:B (5.3)

It follows from (5.3) that f; = A, /B, fo =44/ B and f, = A,/B. Substitute these expressions for f,,
fi, fi, into (5.2) and get

At At A = -, (5.4)
where
1 B 1
B M TR 6
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Note that equation (5.1) in terms of { can be rewritten as
—up =1+4+p. (5.6)
Therefore,
W(ty,n) —In(1+ p(te,n)) +14, =Cy, (5.7)

where Cj is some constant depending on n only.
We differentiate (5.4) with respect to t,, use (5.3), (5.5), (5.6) and get

[i 1 1+0 1 1
Acva b= —TE, TR (58)
u x+oa U x+a u
that is equivalent to
(x+o) 1 —A4, (x+0) ' —(x40y)7!
1) = —F——ulty, ) 59
“(f7n+ ) (x+al)7l+A[1u( n)+ Atl_i_(x_i_al)—l ( )

orA, =—(x+oy)",A = (x+a) ' and a = o (in this case y(t1,) = Y(t,) + (t —t;) (x+a) ! by
(5.3)).
Differentiate (5.8) with respect to t,, use (5.3), (5.5) and (5.6), and get

_ 1+ 14p
A (Q— -
n (A “)+x+a1 x+o
or
Az+@+ar‘> (x+a)' —(x+a)”!
n+l)=--—"-——"— te,n)+ 5.10
By comparing the last equation with (5.9) we get
A1+At| :0 (511)
Note that, by (5.10), we have
_ A+ (x+ OC)71
l+p=—""—"7—"—(14pu). 5.12
T A,1+(x+a1)*1( ) (5.12)
It follows from (5.7) that
u(fin+1)—In(1+u(f,n+1))+f=0Cs. (5.13)
Substitute (5.12), (5.10) into (5.13), use (5.7) and obtain
Ay +(x+a)’!
=1 -K)u(t,n)+ty+(InK—-K)+C,—C;+1, where K=-—"1———"— (514
f= (1=Kl 1+ (K —K)+ G =Ci+ 1, w yhen e = BNCRE

Observe that

nt

K = <1+ ()H‘O‘)l—(x‘i‘al)l) _ to) ' —(to)!

A+ (x+oy)7! (A + (x+0y)1)?
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_ (x4+o) "= (x+a)’! (x4+o) ' = (x+a)”!

Ay = — P
(A + (x+0y)~1)?2 th (A, + (x+ap)~1)2 Ht f

by (5.11), i.e.
K +K, =0. (5.15)

Substitute (5.14) into (5.2), use (5.10) and (5.15), compare the coefficients in the obtained equality
before linearly independent functions ¢°, u and p? (the Wronskian of 0, u and u? is equal to
—2(1+pu)>u=3 # 0 unless 4 = —1), and get that function K(x,n,t,¢;) must satisfy (2.2). One can
check that system (2.2) is consistent since (K —1)?(InK);,x = (K — 1)?(InK),, i.e. K;,x = Ky, -
Finding x-integral: Let us find function F (x,7,7;,,) such that

OZDxF :Fx+Etx+Elt1x+Ft2t2x-

Note that, due to the fact that 7, = (1 — K)u(ty,n) +t,+ (—K+InK) and u(f,n+1) = Ku(ty,n) +
(K —1) by (5.10), we have

ty = (1= KK1)p(tr,n) +te+ (=1 = KKi +In(KK1)).

Functions ¢0, t, and p(t,,n) are linearly independent since their Wronskian is equal to —(1+
)3 # 0 unless 4 = —1. We compare the coefficients before ¥, £, and w(t,n) in D,F = 0 and
get

F+ (an—K)F,1 + (ln(KKl) — (KKl) — I)F,2 =0,
F+F, +F,=0, (5.16)
(1—K)F, +(1—KK)F, =0.

In new variables T =¢, T) =t; —t and T, = f, —t1 the system (5.16) can be written as

1-K
F,=0 (5.17)
B(F)=(1—K)Fy +K(1 —K{)F;, =0.

A(F) = o+ { KRG g — 1} R, =0,

One can check that the last system is closed since [A,B] = (1 — K~')K;A + K,K~2B. Note that

K = K(711) and then K; = K(12). Define function E(x,t,t1,t;), where E, = K(II:II?K) - 11__11}!1(‘ +

mE, E; = %, E;, = —ﬁ. Such function exists since Eq, ¢, = 0 = E,7, and Eyy; = Eqx,
Ey1, = Er,x due to (2.2) and the fact that K¢, (71) = K;, (¢,11).

Introduce 7 = 7 and 75 = E(x, 71, o). The first and the third equations of (5.17) become

,r*
Bt wahs =0, (5.18)
F»ri* — 0,
that implies that x-integral can be taken as F = ﬁE (x,71,T2).
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6. Proof of Theorem 2.4

Discretization, Part(a): We consider semi-discrete equations 71, = f(x,n,t,t;,t,) with n-integral

t 2t 1
== - —= 4+ — (6.1)
1 r—x t—x

From DI =1 we get

ot St fuf +hutee 20 1 te 2, 62)
f tH—x H—x t, t—x —X

By comparing the coefficients in (6.2) before #,, we obtain f; /f = 1/t,, or f = t,K, where K is
some function depending on x, n, t and ;. Substitute f = ¢,K into (6.2) and find

K., + K12+ K, K> 2Kt 1 2t 1
xx"’ tx+ na™tx d + - — X + (63)
Kt, h—x ti—x f—x I—x

Compare the coefficients before ¢, and ¢ in (6.3) and get

-— 6.4)

A _ L (6.5)

We solve (6.5) and have K = C(t; —x)/(t —x), where C is some function depending on n, f and f;.
Substitute this expression for K into (6.4) and obtain

Ti-vrcm-=c-1 (©6)

By comparing the coefficients before x and x” in (6.6) we get the system of equations

C
Et+Ct1 :O7

G
Eft+c,1t1:c7—1

whose solution is C = (1 + M(n)t;)/(1 + M(n)t). Thus, equation 71, = f(x,n,t,t1,t;) possessing
n-integral (6.1) is
(1 +M(l’l)t1)(l‘1 —x)

M= T M) —x) (©7)

where M(n) is an arbitrary function depending on n only.
Finding x-integral, Part(a): Let us find an x-integral of equation (6.7) of minimal order if it exists.
First, assume that equation (6.7) possesses an x-integral F(x,n,t,t;) of the first order. The equality
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D\F(x,n,t,t;) = 0 can be rewritten as

(1 +M(n)t1)(t1 —x)

Fot Bt By o= e =0 (68)
By comparing the coefficients before 10 and #, we get
F.=0 (6.9)
and
Fo g MO =) (6.10)

(1+M(n)t)(t —x)

We differentiate equation (6.10) with respect to x, use (6.9), and get a contradictory equality

0 nH—x
ax{t—x}_o'

It means that equation (6.7) does not possess an x-integral F (x,n,t,#;) of the first order.
Now let us see whether equation (6.7) possesses an x-integral F(x,n,t,t;,t;) of the second order.
Since D, F = 0 then

(1 —I—M(I’l)l‘l)(ll —x)

F+Ft.+F x
A T M) (=)
(6.11)
(I+M(n+ 1)) (t —x)(1 +M(n)t;)(t; —x)
+E2 tx — 0
(I1+M(n+1)t1)(t; —x)(1+M(n)t)(t —x)
By comparing the coefficients before ¢ and #, we get
F,=0 (6.12)
and
1+M — 1+M 1 —x)(1+M
pa g, (MO0 =) (LM D)6 00 E M)
(1+M(n)t)(t —x) (1+M(n+1)t;)(1+M(n)t)(t —x)
We differentiate equation (6.13) with respect to x and get
1+Mn+1)t)(tr —t
Ryl — 1)+ F, LT ME Dn) 20 (6.14)

(1+M(n+1)t)

One can check that the system of partial differential equations (6.12), (6.13) and (6.14) is closed.
To solve this system of equations we use the famous Jacobi Method: we first diagonalise the system
(that is, we make it normal) and then we do the necessary changes of variables using the first
integrals of the equations from the system. The calculations are standard but rather long. That is
why we omit these straightforward steps and present an x-integral immediately. It is

(1+M(n+1)tp)(t; —1)
(I+M(n)t)(t; — 1)

For the readers familiar with the characteristic rings (see [22], [8], [9]) we would like to note
that the existence of a nontrivial x-integral for equation (6.7) implies that the characteristic ring L,

F(x7n7tatlat2) —

(6.15)
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in x-direction for this equation is of finite dimension. It is not difficult to see that for equation (6.7)
characteristic ring L, is generated by three vector fields

)

Xlzav

0= 0 (LM —2) 9 (1+M(n+ D) (o ~2)(1+ M)
2T ot (1+Mm)(t—x) o (1+M(n+ Dr)(1+M(n))(t —x)

9
3 (616

B d (1+Mn+1)n)(ta—t) d
X3_(“_t)371+ (1+M(n+11) o

In partiacular, it means that the dimension of L, for equation (6.7) is 3.
Discretization, Part (b): Let us consider semi-discrete equations (1.1) possessing n-integral

Lex 2./tx
I = 6.17
\/t;—i_x—&-sn ©.17)

Since DI = I then

fx+fttx+fl1f+flxtxx+ 2\/7 — Fax + 2\/5 (6.18)

Vf x+en+1) /ty x+en

We compare the coefficients before 7,y in (6.18) and get f;. /v/f = 1/\/ty, or \/f = \/ty + L, where
L is some function depending on x, n, t, ;. We substitute f = (1/, —i—L)2 into (6.18) and have

Vi+L Wk

L.+ Lt +L, (Vi +L)? =
x Lty + tl(\/;"‘ ) +x+8(n+l) Yten

that implies that function L(x,n,t,t;) satisfies the following three differential equations
L+L,=0 (6.19)

1 1

2LL =
. +x+8(n+1) x+€n

(6.20)

L
Lo+L*L, +——— =0 6.21
ot t'+x+8(n+1) 6.21)
Equation (6.20) gives that
1 1
L’ = — t+M 6.22
<x+8n x+8(n+1)> 1 (6.22)

where M is some function depending on x, n and ¢. We substitute the expression for L? from (6.22)
into the equation (6.19) rewritten as LL, + LL;, = 0 and obtain

M= ! - t+K
x+e(n+1) x+en
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where K is some function depending on x and n only. Thus,

L2_< ! ! )>(t1—t)—|—l(

x+en x+e(n+1

Substitute this expression for L? into the equation (6.21) multiplied by 2L and have

B 1 1 B C(n)
Kx= <x+8(n+l)_x—|—8n>K - k= (x+en)(x+e(n+1))’

where C(n) is an arbitrary function of n. Therefore,

2 8(t1—t)+C(n)
© (x+en)(x+e(n+1))

and then

2
f(x,n,z,n,tx)=<\/t}+\/( el 1) +Cln) ) (6.23)

x+éen)(x+en+1))

Let us note that one can eliminate function C(n) in (6.23) by the change of variable ¢(x,n) = 7(x,n) +
d(n), where d(n) satisfies €(d(n+ 1) —d(n)) + C(n) = 0. Equations possessing n-integral (6.17)
become

2
B ety —1t)
A= (V’}\/(Hen)(ﬁe(nﬂ))) (6.24)

Finding x-integral, Part (b): Let us find x-integral of equation (6.24). Denote by

_ e(n —1) o e(tr—1)
a\/(x+£n)(x+s(n+1)) BDa\/(x+8(n+1))(x+£(n+2)) (6.25)

We find an x-integral of the minimal order of equation (6.24) in the same way as we did for
equation (6.7). We look for function F(x,n,t,t1,t;) such that DyF = 0. We have,

F+Et 4+ F, (t+o? +2/na) +F,(Vi,+a+B)> =0 (6.26)
Compare the coefficients before ¢, v/Z, and ¥ in (6.26) and get the following system of equation

F+F +F =0
aEl +(a+B)Fl2 =0
Fx+a2Fll +(a+ﬁ)2Flz =0
that can be rewritten as
Fe+p(a+p)F, =0
OCF}_ﬁEzZO
aEl +(a+B)Ez =0

One can check that the system is closed and its solution is

F=(x+en)o—(x+e(n+2))B. (6.27)
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7. Continuum limits. Proof of Theorem 2.5

Case F: In semi-discrete equation (6.7) we rewrite ¢(x,n) as u(x,y), t; as u(x,y) + €uy(x,y), M(n)
as 1/R(en) = 1/R(y), and get

R(y) +u+¢€u, U+ Euy—x
M+8“f‘((2@ywty>( = )”“
or
Eu Eu,
Uy + Ellyy = (1+M+Ry(y)> <1+uyx> Uy,
or

. :Mu( 1 N 1 >+£ ufux
Xy Y\ u—x M—l-R(Y) (M—x)(”+R(y))

Now we let € approach 0 to get continuous equation analogue

1 1
= " 7.1
Uy (u—x+u+R(y))uuy 7.1

Note that after the change of variable § = —R(y) equation (7.1) becomes

1 1
Uyy = ( + —i) Uyl . (7.2)

u—x u

In x-integral €' (14 (1 +n"")F) of semi-discrete equation (6.7), where F is taken as (6.15) we
substitute u, u + €uy + (1/2)€%uyy, 1/R(y) and y instead of ¢, #;, M(n) and en correspondingly, and
let € approach 0 to get its continuous analogue

Fo i, RO) 2

uy u+R(y) u+R(y) (7-3)

Note that continuous equation (7.1) possesses y-integral (6.1) and x-integral (7.3)
Case G: In semi-discrete equation (6.24) we substitute u, u + €u, and y instead of ¢, ¢; and &n
correspondingly, and let € approach O to get its continuous Liouville equation analogue

A (7.4)

In x-integral (6.27) multiplied by —2&~2> we substitute u, 1+ euy,+(1/ 2)82uyy and y instead of ¢, 1

and en correspondingly, and let € approach O to get its continuous analogue

- Uyy 2
F=—"24 —
Viby Xty
Note that continuous equation (7.4) possesses y-integral
I = Mxx 4 27\/@
iy x+y

which is a continuous analogue of (6.17) and x-integral (7.5)

(7.5)
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8. Discretization and the Bicklund Transformation

Recall the definition of the Bécklund transformation for the PDE (see [16]). Suppose that u(x,#) and
ii(x,t) satisfy respectively differential equations

Elul=0 8.1
and
Eld] =0. (8.2)

Here the expression E[u] denotes the fact that E depends on « and a finite number of its derivatives.
Then the set of the relations

Rjfu,d] =0,  j=1,2,....k (8.3)

defines the Béacklund transformation if these relations satisfy the following conditions: & exists and
solves (8.2) whenever u exists and solves (8.1) and vice versa. When u and i are solutions of one
and the equation then (8.3) defines the Bécklund autotransformation. In that case we exclude the
trivial autotransformation u = .

It is well-known that iterations of the Béacklund autotransformation of a PDE define a semidis-
crete equation. Semi-discrete models constructed in such a way are also called discretizations.
Below we examine the question whether the semi-discrete equations found above by discretiza-
tion preserving integrals do realize the Bécklund autotransformation. The answer is stated in the
following proposition.

Proposition 8.1. In cases A, B, C, D, E, F from Theorem 2.5 the semi-discrete equations realize
the Biicklund autotransformations for their continuum limits, but in the case G does not.

Scheme of the proof. For the case B the proof is very simple. By differentiation of the equation
Ul = Uy — e + el (8.4)
with respect to y we find the equation
Ulyy — €M U1y = Uy — €Uty (8.5)

which is satisfied identically by means of the equation (II) from the Goursat list: u,, = e"u,. Equa-
tion (8.5) immediately shows that all requests of the definition of the Bicklund transformation are
satisfied.

Concentrate on the case A :

Uiy = g+ Cel /2 (8.6)
which is a discretization of the Liouville equation
Uy = €" (8.7)
Differentiate (8.6) with respect to y and get

Uiy = €'+ (1/2)Ce™ /2 (uy, 4 uy) (8.8)
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By differentiating (8.8) with respect to x and simplifying by means of (8.6)-(8.8) we get
Ulxry — Ulyylt1y = 0. (8.9)
Reduce it to the convenient form d(—u; +loguiyy)/dx = 0 and then integrate
Uy = Ci(y)e" . (8.10)
Due to (8.10) equation (8.8) is rewritten as
uyy = —ity +Cy (y)e17/2 — glumm)/2 (8.11)

Reasonings above result in the statement: relations (8.6), (8.11) define the Backlund transforma-
tion between equations (8.7) and (8.10). Choose C;(y) = 1 then this transformation becomes the
Bicklund auto-transformation for the Liouville equation which has been found by A.V.Bicklund
himself (see [11]).

Consider the case G. Let us prove that

e(uy —u)
Vilix =/ 8.12
e ”"+\/(x+en)(x+s(n+1)) (8.12)
does not realize the Bicklund autotransformation for the equation
2, /ux\/u
Uy = ~— V2 (8.13)

x+y

Assume contrary and differentiate (8.12) with respect to y. After simplification we get

2 /xFeny/ i
NCTEo X+Z+;)J:/§("+ ) =, (8.14)

Now differentiate (8.14) with respect to x and simplify by means of (8.12)-(8.14). As a result one
gets a contradictory equation

Vi —u \/x+8(n+1)+ Vx+en _2\/x+8n\/ﬁm _0
Ve \ varen ' rremin Xty =0

This proves that (8.12) does not realize the Béacklund autotransformation for (8.13). Other state-
ments of the Proposition 8.1 are proved in a similar way.

9. Conclusion

Darboux integrable equations or equations of Liouville type constitute a very well studied subclass
of hyperbolic type PDE. The problem of complete description of this subclass was formulated and
partly solved by E.Goursat in 1899 (see [6]). Since then many authors have investigated the classi-
fication problem (see [3], [12], [13], [18], [20] - [23]). To the best of our knowledge the problem
up to now is still unsolved. The similar problem for the semi-discrete chains (1.1) and the fully
discrete models is less studied. We can mention only particular classes of the equations investigated
in [4], [8], [9], [20] and [21]. In the present article we discussed the problem of discretization via
integrals and presented some new non-autonomous examples of the Darboux integrable chains.
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