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1. Introduction

In the present paper we are considering integrability of hyperbolic type semi-discrete equations.
There exist many different approaches to define and classify integrable equations: symmetry
approach, Peinlevé analysis, method of algebraic entropy and other methods. For classification of
hyperbolic type equations the approach based on the notions of characteristic rings turns out to be
very effective.

The notion of a characteristic ring was introduced by Shabat to classify hyperbolic systems of
exponential type

ui
xy = e(ai1u1+ai2u2+···+ainun) i = 1,2, . . .n, (1.1)

such system has a finite dimensional characteristic ring if and only if A = (ai, j) is a Cartan matrix of
a semi-simple Lie algebra, see [1]. Then in [2] it was shown that a system of hyperbolic equations

ui
xy = f i(u1,u2, . . .un) i = 1,2, . . .n (1.2)

can be integrated in quadratures if its characteristic ring is finite dimensional.
Zhiber and his collaborators considered application of the characteristic ring to classification

problems of general hyperbolic equations

uxy = f (u,ux,uy). (1.3)
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In particular the classification of equations Eq(1.3) admitting two dimensional, three dimensional
or four dimensional (for some special form of function f ) characteristic rings was considered in [3]-
[5]. For other classification results based on the notion of the characteristic ring see [6]- [9] and a
review paper [10].

Later Habibullin extended the notion of characteristic ring to semi-discrete and discrete equa-
tions and applied this notion to solve different classification problems for such equations (see [11]-
[19]).

Let us give necessary definitions. Consider a hyperbolic type semi-discrete equation

t1x = f (x, t, t1, tx), (1.4)

where the function t(n,x) depends on discrete variable n and continuous variable x. We use the
following notations tx = ∂

∂x t, t1 = t(n+ 1,x), and t[k] =
∂ k

∂xk t, where k ∈ N and tm = t(n+m,x),
m ∈ Z.

Definition 1.1. A function F(x, t, t1, . . . , tk) is called an x-integral of the equation Eq.(1.4) if

DxF(x, t, t1, . . . , tk) = 0

for all solutions of Eq.(1.4). The operator Dx is the total derivative with respect to x.
A function G(x, t, tx, . . . , t[m]) is called an n-integral of the equation Eq.(1.4) if

DG(x, t, tx, . . . , t[m]) = G(x, t, tx, . . . , t[m])

for all solutions of Eq.(1.4).

The equation Eq.(1.4) is called Darboux integrable if it admits non trivial x- and n- integrals (see
[12]).

Example 1.1. For example the equation

t1x =
tt1
tx

(1.5)

has an x-integral F =
t2
t

and an n-integral I =
t
tx
+

tx
t

. Hence the equation is Darboux integrable.

We note that a Darboux integrable equation can be reduced to a pair of ordinary equations:
ordinary differential equation and ordinary difference equation.

In [12] an effective criterion for the existence of x- and n-integrals was given.

Theorem 1.1. [12] An equation Eq.(1.4) admits a non-trivial x-integral if and only if its character-
istic x-ring is of finite dimension.
An equation Eq.(1.4) admits a non-trivial n-integral if and only if its characteristic n-ring is of finite
dimension.

It is generally believed that a finite dimensional characteristic x-ring can not have dimension
larger than five. The examples of Darboux integrable semi-discrete equations known to us support
this hypothesis. On the other hand one can construct examples of Darboux integrable semi-discrete
equations with characteristic n-ring of an arbitrary large finite dimension. So we study semi-discrete
equation Eq.(1.4) with five dimensional characteristic x-ring. The case of three and four dimensional
rings were considered in [15] and [21] respectively.
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In general it is not easy to determined the dimension of the characteristic ring. In our paper
we give the necessary and sufficient conditions for the characteristic x-ring to be five dimensional.
The derived conditions are checked by straightforward calculations and can be effectively used
to determine if the the characteristic x-ring is five dimensional. We also present two examples of
equations that have five dimensional characteristic x-ring.

The paper is organized as follows. In Section 2 we introduce the characteristic x-ring for a
general equation Eq.(1.4). In Section 3 we derive necessary and sufficient conditions for the char-
acteristic x-ring to be five dimensional and give two example of an equation with five dimensional
x-ring. Equation Eq.(3.23) was introduced in [20]. The second equation Eq.(3.25) we believe to be
new. Note that equation Eq.(1.5) possesses four dimensional characteristic x-ring.

2. Characteristic ring of a hyperbolic type equation

The characteristic x-ring Lx of the equation Eq.(1.4) is generated by two vector fields (see [12])

X =
∂

∂ tx
,

and

K =
∂

∂x
+ tx

∂

∂ t
+ f

∂

∂ t1
+g

∂

∂ t−1
+ f1

∂

∂ t2
+ ...

where function g is determined by

t−1x = g(x, t−1, t, tx). (2.1)

To obtain above equality we apply D−1 to Eq.(1.4) and then solve the resulting equation for t−1x.
Let us introduce some vector fields from Lx.

C1 = [X ,K] and Cn = [X ,Cn−1] n = 2,3, . . . (2.2)

and

Z1 = [K,C1] and Zn = [K,Zn−1] n = 2,3, . . . (2.3)

To write this vector fields it is convenient to define the following quantities

p =
fx + tx ft + f ft1

ftx
, v = ft + ftx ft1 , w = fxtx + tx ftxt + f ftxt1 , h = ftxtxtx ftx−3 f 2

txtx . (2.4)

We have

C1 =
∂

∂ t
+ ftx

∂

∂ t1
+gtx

∂

∂ t−1
+ . . .

C2 = ftxtx
∂

∂ t1
+gtxtx

∂

∂ t−1
+ . . .

Z1 = (w− v)
∂

∂ t1
+ ....

and so on.
Let us determine what vectors can form a basis of Lx assuming that dimLx = 5.
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First assume that ftxtx 6= 0. We have that vector fields X , K, C1 and C2 are linearly independent.
Also, as was shown in [21], if C3 and Z1 belong to the linear span of X , K, C1 and C2 then Lx is four
dimensional algebra. To have a five dimensional algebra one of the vectors C3, Z1 must be linearly
independent of X , K, C1 and C2. Hence if ftxtx 6= 0 the five dimensional algebra Lx is generated either
by X , K, C1, C2 and Z1 or by X , K, C1, C2 and C3.

If ftxtx = 0 then Cn = 0, n = 2,3 . . . and the algebra is spanned by X , K, C1, Z1 and Z2.
To check that a vector admits the expansion with respect to a particular basis we use the follow-

ing Remark.

Remark 2.1. One can check equalities between vector fields using the automorphism D( )D−1.
Direct calculations show that

DXD−1 =
1
ftx

X , DKD−1 = K− pX .

The images of other vector fields under this automorphism can be obtained by commuting DXD−1

and DKD−1.

3. Five dimensional characteristic x-rings

3.1. Case 1

Let us find conditions for the characteristic algebra Lx to be generated by linearly independent vector
fields X , K, C1, C2 and Z1. (We assume that ftxtx 6= 0.)

As the next lemma shows to check that vector fields X , K, C1, C2 and Z1 form a basis of Lx it
is enough to check that the vectors fields C3, [K,C2] and [K,Z1] have unique expansions. Also we
note that if C3, [K,C2] and [K,Z1] can be expended with respect to X , K, C1, C2 and Z1 then they are
linear combinations of C2 and Z1 only

C3 = αC2 +βZ1, (3.1)

[K,C2] = γC2 +µZ1, (3.2)

[K,Z1] = ηC2 +σZ1, (3.3)

for some functions α, β , γ, µ, η and σ . This follows from the fact that

X =
∂

∂ tx
, K =

∂

∂x
+ tx

∂

∂ t
+ . . . C1 =

∂

∂ t
+ . . .

but vector fields C3, [K,C2] and [K,Z1] do not contain ∂

∂ tx
, ∂

∂x and ∂

∂ t in their representations.

Lemma 3.1. The vector fields X, K, C1, C2 and Z1 form a basis of the characteristic x-ring Lx if
and only if vectors fields C3, [K,C2] and [K,Z1] admit a unique linear representations with respect
to the basis vector fields.

Proof. We need to prove that if vectors fields C3, [K,C2] and [K,Z1] admit a unique linear represen-
tations with respect to the basis then all other commutators of the basis vector fields, in particular
[Z1,X ], [C1,C2], [C1,Z1] and [C2,Z1], also admit unique linear representations. Assume that C3,
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[K,C2] and [K,Z1] have unique linear representation with respect to the basis vector fields. That is
equalities Eq(3.1)-Eq(3.3) hold.

Let us show that vector field [Z1,X ], has unique expansion with respect to the basis. Using
definitions of vector fields Z1, C1, C2 and Jacobi identity we can write

[Z1,X ] = [[K,C1],X ] =−([[C1,X ],K]+ [[X ,K],C1]) = [C2,K]− [C1,C1] =−[K,C2].

Thus from Eq(3.2) it follows that

[Z1,X ] =−[K,C2] =−γC2−µZ1. (3.4)

Let us show that the vector field [C1,C2] has unique expansion with respect to the basis.
Using the definition of vector fields C1, C3 and Jacobi identity we can write

[C1,C2] = [[X ,K],C2] =−([[K,C2],X ]+ [[C2,X ],K]) = [X , [C2,K]]+ [C3,K]

Then from Eq(3.1) and Eq(3.3) it follows that

[C1,C2] = [X ,γC2 +µZ1]+ [αC2 +βZ1,K]

= X(γ)C2 + γC3 +X(µ)Z1 +µ[X ,Z1]

−K(α)C2 +α[C2,K]−K(β )Z1 +β [Z1,K]

= X(γ)C2 + γ(αC2 +βZ1)+X(µ)Z1 +µ(γC2 +µZ1)

−K(α)C2−α(γC2 +µZ1)−K(β )Z1−β (ηC2 +σZ1).

Hence,

[C1,C2] = eC2 +qZ1, (3.5)

where e = (X(γ)+ γα +µγ−K(α)−αγ−βη) and
q = (γβ +X(µ)+µ2−αµ−K(β )−βσ).

Let us show that the vector field [C1,Z1] has unique expansion with respect to the basis. Using
the definition of C1 and Jacobi identity we can write

[C1,Z1] = [[X ,K],Z1] =−([[K,Z1],X ]+ [[Z1,X ],K])

Using equalities Eq(3.3) and Eq(3.4) we have

[C1,Z1] = [X ,ηC2 +σZ1]+ [γC2 +µZ1,K]

= X(η)C2 +ηC3 +X(σ)Z1 +σ [X ,Z1]

−K(γ)C2 + γ[C2,K]−K(µ)Z1 +µ[Z1,K]

= X(η)C2 +η(αC2 +βZ1)+X(σ)Z1 +σ(γC2 +µZ1)

−K(γ)C2− γ(γC2 +µZ1)−K(µ)Z1−µ(ηC2 +σZ1)

Hence,

[C1,Z1] = rC2 + sZ1, (3.6)

where r = (X(η)+αη + γσ −K(γ)− γ2−µη) and
s = (αβ +X(σ)+µσ − γµ−K(µ)−µσ).
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Let us show that the vector field [C2,Z1] has unique expansion with respect to the basis. Using
the definition of C2 and Jacobi identity we can write

[C2,Z1] = [[X ,C1],Z1] =−([[C1,Z1],X ]+ [[Z1,X ],C1])

Using definition of C3 and equalities Eq(3.1) and Eq(3.4)-Eq(3.6) we have

[C2,Z1] = [X ,rC2 + sZ1]+ [γC2 +µZ1,C1]

= X(r)C2 + rC3 +X(s)Z1 + s[X ,Z1]

−C1(γ)C2 + γ[C2,C1]−C1(µ)Z1 +µ[Z1,C1]

= X(r)C2 + r(αC2 +βZ1)+X(s)Z1 + s(γC2 +µZ1)

−C1(γ)C2− γ(eC2 +qZ1)−C1(µ)Z1−µ(rC2 + sZ1)

Hence,

[C2,Z1] = mC2 +nZ1, (3.7)

where m = (X(r)+αr+ sγ−C1(γ)− γe−µr) and
n = (rβ +X(s)+ sµ− γq−C1(µ)−µs).

Now let us find under what conditions the equalities Eq(3.1)- Eq(3.3) hold.

Remark 3.1. Each of the equalities Eq.(3.1), Eq.(3.2) and Eq.(3.3) leads to a certain system for the
coefficients and one obtains the coefficients by solving the corresponding system. Hence the vector
fields X , K, C1, C2 and Z1 form a basis if and only if the solutions of the systems, that determine
coefficients, exist and unique.

This remark holds for other cases as well.
Let us write the systems corresponding to equalities Eq.(3.1), Eq.(3.2) and Eq.(3.3).

Lemma 3.2. The equality Eq.(3.1) holds if and only if the coefficients α and β satisfy the following
system

E(1)
11 β + E(1)

12 (Dβ ) = F(1)
1

E(1)
22 (Dβ ) + E(1)

23 α + E(1)
24 (Dα) = F(1)

2

E(1)
32 (Dβ ) + E(1)

34 (Dα) = F(1)
3

(3.8)

where

E(1)
11 =

1
f 2
tx
, E(1)

12 =−1, F1
1 = 0, E(1)

22 = p, E(1)
23 =

1
f 2
tx
, E(1)

24 =− 1
ftx
, F(1)

2 =
3 ftxtx

f 3
tx

,

E(1)
32 = w− v− p ftxtx , E(1)

34 =
ftxtx

ftx
, F(1)

3 =
h
f 3
tx
.
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Proof. Applying the automorphism D(·)D−1 to Eq.(3.1) we get

DC3D−1 = (Dα)DC2D−1 +(Dβ )DZ1D−1. (3.9)

Direct calculations show that

DC2D−1 =
1
f 2
tx

C2−
ftxtx

f 3
tx

C1 +
ftxtx ft

f 4
tx

X ,

DC3D−1 =
1
f 3
tx

C3−
3 ftxtx

f 4
tx

C2−
h
f 5
tx

(
C1−

ft
ftx

X
)
,

DZ1D−1 =
1
ftx

Z1−
p
ftx

C2 +

(
v−w+ p ftxtx

f 2
tx

)(
C1−

ft
ftx

X
)
.

Substituting these expressions for DC3D−1, DC2D−1, DZ1D−1 into Eq.(3.9) and comparing coeffi-
cients of C1, C2 and Z1 we obtain Eq.(3.8).

Lemma 3.3. The equality Eq.(3.2) holds if and only if the coefficients γ and µ satisfy the following
system

E(2)
11 µ + E(2)

12 (D µ) = F(2)
1

E(2)
22 (D µ) + E(2)

23 γ + E(2)
24 (Dγ) = F(2)

2

E(2)
32 (D µ) + E(2)

34 (Dγ) = F(2)
3

(3.10)

where

E(2)
11 =

1
ftx
, E(2)

12 =−1, F(2)
1 =

ftxtx

f 2
tx

+
pβ

ftx
, E(2)

22 = p, E(2)
23 =

1
ftx
,

E(2)
24 =− 1

ftx
, F(2)

2 =
2w− p(3 ftxtx− ftxα)

f 2
tx

, E(2)
32 = w− v− ftxtx p E(2)

34 =
ftxtx

ftx
,

F(2)
3 =

−3 ftxtxw+ ft ftxtx− ph
f 2
tx

+
fxtxtx + tx fttxtx + f ftxtxt1

ftx

Proof. Applying the automorphism D(·)D−1 to Eq.(3.2) we get

D[K,C2]D−1 = (Dγ)DC2D−1 +(Dµ)DZ1D−1 (3.11)

Direct calculations show that

D[K,C2]D−1 =
1
f 2
tx
[K,C2]+

3p ftxtx−2w
f 3
tx

C2−
p
f 2
tx

C3−
ftxtx

f 3
tx

Z1

+

(
3 ftxtxw− ftxtx ft + ph

f 4
tx

− fxtxtx + tx fttxtx + f ft1txtx

f 3
tx

)
C1 + ...X

Substituting the expressions for D[K,C2]D−1, DC2D−1, DZ1D−1 into Eq.(3.11) and comparing coef-
ficients of C1, C2 and Z1 we obtain Eq.(3.10).
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Lemma 3.4. The equality Eq.(3.3) holds if and only if the coefficients η and σ satisfy the following
system

E(3)
11 σ + E(3)

12 (Dσ) = F(3)
1

E(3)
22 (Dσ) + E(3)

23 η + E(3)
24 (Dη) = F(3)

2

E(3)
32 (Dσ) + E(3)

34 (Dη) = F(3)
3

(3.12)

where

E(3)
11 = 1, E(3)

12 =−1, F(3)
1 = p

(
2µ− pβ − 2 ftxtx

ftx

)
+

2w− v
ftx

,

E(3)
22 = p, E(3)

23 = 1, E(3)
24 =− 1

ftx
,

F(3)
2 = p(2γ− pα)+K(p)+

3p2 ftxtx−3pw
ftx

, E(3)
32 =− ftxtx p− v+w, E(3)

34 =
ftxtx

ftx
,

F(3)
3 =−(K− pX){ ftxtx p+ v−w}+( ftxtx p+ v−w)

2w− ft −2p ftxtx

ftx

Proof. Applying the automorphism D(·)D−1 to Eq.(3.3) we get

D[K,Z1]D−1 = (Dη)DC2D−1 +(Dσ)DZ1D−1

Direct calculations show that

D[K,Z1]D−1 =

(
σ −2pµ + p2β

ftx
+

2p ftxtx + v−2w
f 2
tx

)
Z1

+

(
−(K− pX)

{
p
ftx

}
+

η−2pγ + p2α

ftx
− p(p ftxtx + v−w)

f 2
tx

)
C2

+

(
(K− pX)

{
p ftxtx + v−w

f 2
tx

}
+

ft(p ftxtx + v−w)
f 3
tx

)
C1 + ...X

Substituting the expressions for D[K,Z1]D−1, DC2D−1, DZ1D−1 and comparing coefficients of C1,
C2 and Z1 we obtain Eq.(3.12).

All the systems in the above lemmas have similar form, in particular,

E11u + E12(Du) = F1

E22(Du) + E23v + E24(Dv) = F2

E32(Du) + E34(Dv) = F3

(3.13)

where u, v are unknowns.
We need conditions for existence of a unique solution for such systems. The conditions are given

in the following lemma.
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Lemma 3.5. The system Eq.(3.13) has a unique solution if E11, E12, E22, E23, E24, E32, E34 and F1,
F2, F3 satisfy(

−E11E22E34(D−1E34)+E11E24E32(D−1E34)−E12E23E34(D−1E32)
)
6= 0 (3.14)

and

(DH) =
F1

E12
− E11

E12
H, (3.15)

where

H = ((F1E24E32−F1E22E34−F2E12E34−F3E12E24)(D−1E34)+(D−1F3)E12E23E34)

(−E11E22E34(D−1E34)+E11E24E32(D−1E34)−E12E23E34(D−1E32))
−1 (3.16)

Proof. In the system Eq.(3.13) the coefficients and variables depend on the discrete variable n ∈ Z.
So we can rewrite the system as follows

E11(n)u(n) + E12(n)u(n+1) = F1(n)
E22(n)u(n+1) + E23(n)v(n) + E24(n)v(n+1) = F2(n)
E32(n)u(n+1) + E34(n)v(n+1) = F3(n)

(3.17)

The above equalities must hold for all values of n. Applying D−1 to the last equation above we
obtain

E32(n−1)u(n)+E34(n−1)v(n) = F3(n−1).

Now we have a linear system to find u(n), v(n), u(n+ 1) and v(n+ 1) independently. The system
has a unique solution if condition Eq.(3.14) holds. Solving the system we find

u(n) = H, u(n+1) =
F1

E12
− E11

E12
H (3.18)

and

v(n) =
(D−1F3)

(D−1E34)
− (D−1E32)

(D−1E34)
H, v(n+1) =

F3

E34
− E32F1

E34E12
+

E32E11

E34E12
H (3.19)

The condition Eq.(3.14) shows that Du(n) = u(n+1) and Dv(n) = v(n+1). Hence the system
Eq.(3.17) has a unique solution.

Now we can give necessary and sufficient conditions for the algebra to be generated by vector
fields X , K, C1, C2 and Z1.

Theorem 3.1. The characteristic x-ring of Eq.(1.4) is generated by vector fields X, K, C1, C2 and
Z1 if and only if the following conditions are satisfied
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(
−E(i)

11 E(i)
22 E(i)

34 (D
−1E(i)

34 )+E(i)
11 E(i)

24 E(i)
32 (D

−1E(i)
34 )−E(i)

12 E(i)
23 E(i)

34 (D
−1E(i)

32 )
)
6= 0 (3.20)

and

(DH(i)) =
F(i)

1

E(i)
12

−
E(i)

11

E(i)
12

H(i), (3.21)

where

H(i)=
((

F(i)
1 E(i)

24 E(i)
32 −F(i)

1 E(i)
22 E(i)

34 −F(i)
2 E(i)

12 E(i)
34 −F(i)

3 E(i)
12 E(i)

24

)
(D−1E(i)

34 )+(D−1F(i)
3 )E(i)

12 E(i)
23 E(i)

34

)
(
−E(i)

11 E(i)
22 E(i)

34 (D
−1E(i)

34 )+E(i)
11 E(i)

24 E(i)
32 (D

−1E(i)
34 )−E(i)

12 E(i)
23 E(i)

34 (D
−1E(i)

32 )
)−1

(3.22)

where i = 1,2,3.

Proof. By Lemma 3.5 the conditions Eq.(3.20), Eq.(3.21) imply that the systems Eq.(3.8),
Eq.(3.10) and Eq.(3.12) have unique solutions. Hence equalities Eq.(3.1), Eq.(3.2) and Eq.(3.3)
hold and the characteristic ring Lx is generated by vector fields X , K, C1, C2 and Z1.

Example 3.1. Consider an equation

t1xtx = t + t1 (3.23)

introduced by Adler and Startsev in [20]. For this equation one can easily check that the conditions
of the Theorem 3.1 are satisfied. Hence the characteristic ring Lx is five dimensional and generated
by vector fields X , K, C1, C2 and Z1. We have

C3 =−
3
tx

C2, [K,C2] =−
1
tx

Z1, [K,Z1] =−
1
tx

Z1. (3.24)

The x-integral and n-integral for the above equation are

F =
(u3−u1)(u2−u)

(u2 +u1)
, I =

(uxx−1)2

u2
x

.

Example 3.2. Consider an equation

t1x = cosh(t1− t)tx + sinh(t1− t)
√

t2
x −1 (3.25)

For this equation one can easily check that the conditions of the Theorem 3.1 are satisfied. Hence
the characteristic ring Lx is five dimensional and generated by vector fields X , K, C1, C2 and Z1. We
have

C3 =−
3tx

t2
x −1

C2, [K,C2] =−
tx

t2
x −1

Z1, [K,Z1] = (t2
x −1)

1
2 Z1. (3.26)

The x-integral and n-integral for the above equation are

F̂ =
(et2− et1)(et3− et)

(et2− et)(et3− et1)
, Î = e−t

(
tx +

√
t2
x −1

)
.
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3.2. Case 2

Let us find conditions for the characteristic algebra Lx to be generated by vector fields X , K, C1, C2

and C3. (We assume that ftxtx 6= 0.)
As the next lemma shows to check that vector fields X , K, C1, C2 and C3 form a basis of Lx it

is enough to check that the vectors fields Z1, [C1,C2] and C4 have unique expansions. Also we note
that if Z1, [C1,C2] and C4 can be expended with respect to X , K, C1, C2 and C3 then

Z1 = λ̃C2, (3.27)

[C1,C2] = α̃C2 + β̃C3, (3.28)

C4 = µ̃C2 + η̃C3. (3.29)

for some functions λ̃ , α̃, β̃ , µ̃ and η̃ . This follows from the form of Z1, [C1,C2] and C4. Note that if
Z1 = λ̃1C2 + λ̃2C3 with λ̃2 6= 0 we have the Case 1.

Lemma 3.6. The vector fields X, K, C1, C2 and C3 form a basis of the characteristic x-ring Lx if
and only if vectors fields Z1, [C1,C2] and C4 admit unique linear representations with respect to the
basis vector fields.

The above Lemma is proved in the same way as Lemma 3.1.
Let us write the systems corresponding to equalities Eq.(3.28) and (3.29). The condition for the

equality Eq.(3.27) was obtained in [21].

Lemma 3.7. The equality Eq.(3.28) holds if and only if the coefficients α̃ and β̃ satisfy the following
system

Ẽ(2)
11 β̃ + Ẽ(2)

12 (D β̃ ) = F̃(2)
1

Ẽ(2)
22 (D β̃ ) + Ẽ(2)

23 α̃ + E(2)
24 (D α̃) = F̃(2)

2

Ẽ(2)
32 (D β̃ ) + Ẽ(2)

34 (D α̃) = F̃(2)
3

(3.30)

where

Ẽ(2)
11 = 1, Ẽ(2)

12 =−1, F̃(2)
1 =

v
ftx
,

Ẽ(2)
22 =

3 ftxtx

f 2
tx

, Ẽ(2)
23 =

1
ftx
, Ẽ(2)

24 =−1, F̃(2)
2 =

2( fttx + ftx ft1tx)

f 2
tx

− 3 ftxtxv− ftxtx ft
f 3
tx

,

Ẽ(2)
32 =

h
f 2
tx
, Ẽ(2)

34 = ftxtx , F̃(2)
3 =

fttxtx + ftx ft1txtx−3 ftxtx ft1tx

ftx
− 2 ftxtx fttx

f 2
tx
−

f 2
txtx ft + vh

f 3
tx

.
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Proof. Applying the automorphism D(·)D−1 to Eq.(3.28) we get

D[C1,C2]D−1 = (Dα̃)DC2D−1 +(Dβ̃ )DC3D−1.

Direct calculations show that

D[C1,C2]D−1 =
1
f 3
tx
[C1,C2]−

v
f 4
tx

C3 +

(
−2( fttx + ftx ft1tx)

f 4
tx

− ftxtx ft
f 5
tx

+
3v ftxtx

f 5
tx

)
C2

+

(
ftxtx ft1tx

f 4
tx
− 1

ftx
C1

(
ftxtx

f 3
tx

)
− ftxtx( fttx + ftx ft1tx)

f 5
tx

+
f 2
txtx ft
f 6
tx

+
vh
f 6
tx

)
C1 + ...X

Substituting the expressions for D[C1,C2]D−1, DC2D−1, DC3D−1 and comparing coefficients of C1,
C2 and C3 we obtain Eq.(3.30).

Lemma 3.8. The equality Eq.(3.29) holds if and only if the coefficients µ̃ and η̃ satisfy the following
system

Ẽ(3)
11 η̃ + Ẽ(3)

12 (D η̃) = F̃(3)
1

Ẽ(3)
22 (D η̃) + Ẽ(3)

23 µ̃ + Ẽ(3)
24 (D µ̃) = F̃(3)

2

Ẽ(3)
32 (D η̃) + Ẽ(3)

34 (D µ̃) = F̃(3)
3

(3.31)

where

Ẽ(3)
11 =

1
ftx
, Ẽ(3)

12 =−1, F̃(3)
1 =

6 ftxtx

f 2
tx

,

Ẽ(3)
22 =

3 ftxtx

f 2
tx

, Ẽ(3)
23 =

1
f 2
tx
, Ẽ(3)

24 =−1, F̃(3)
2 =

4h−3 f 2
txtx

f 4
tx

,

Ẽ(3)
32 =

h
f 2
tx
, Ẽ(3)

34 = ftxtx , F̃(2)
3 =

ftxtxtxtx ftx−5 ftxtx ftxtxtx

f 3
tx

− 5 ftxtxh
f 4
tx

.

Proof. Applying the automorphism D(·)D−1 to Eq.(3.29) we get

DC4D−1 = (Dµ̃)DC2D−1 +(Dη̃)DC3D−1.

Direct calculations show that

DC4D−1 =
1
f 4
tx

C4−
6 ftxtx

f 5
tx

C3−

(
3( ftxtxtx ftx−4 f 2

txtx)

f 6
tx

+
h
f 6
tx

)
C2−

1
ftx

X
(

h
f 5
tx

)
C1 + ...X .

Substituting the expressions for DC4D−1, DC2D−1, DC3D−1 and comparing coefficients of C1, C2

and C3 we obtain Eq.(3.31).

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

362



K. Zheltukhin and N. Zheltukhina / Semi-discrete hyperbolic equations

Theorem 3.2. The characteristic x-ring of Eq.1.4 is generated by vector fields X, K, C1, C2 and C3

if and only if the following conditions are satisfied

D
(

ftxtxtx

ftxtx

)
=

ftxtxtx ftx−3 f 2
txtx

ftxtx f 2
tx

, (3.32)

(
−Ẽ(i)

11 Ẽ(i)
22 Ẽ(i)

34 (D
−1Ẽ(i)

34 )+ Ẽ(i)
11 Ẽ(i)

24 Ẽ(i)
32 (D

−1Ẽ(i)
34 )−E(i)

12
˜̃E(i)

23 Ẽ(i)
34 (D

−1Ẽ(i)
32 )
)
6= 0 (3.33)

and

(DH̃(i)) =
F̃(i)

1

Ẽ(i)
12

−
Ẽ(i)

11

Ẽ(i)
12

H̃(i), (3.34)

where

H̃(i)=
((

F̃(i)
1 Ẽ(i)

24 Ẽ(i)
32 − F̃(i)

1 Ẽ(i)
22 Ẽ(i)

34 − F̃(i)
2 Ẽ(i)

12 Ẽ(i)
34 − F̃(i)

3 Ẽ(i)
12 Ẽ(i)

24

)
(D−1Ẽ(i)

34 )+(D−1F̃(i)
3 )Ẽ(i)

12 Ẽ(i)
23 Ẽ(i)

34

)
(
−Ẽ(i)

11 Ẽ(i)
22 Ẽ(i)

34 (D
−1Ẽ(i)

34 )+ Ẽ(i)
11 Ẽ(i)

24 Ẽ(i)
32 (D

−1Ẽ(i)
34 )−E(i)

12
˜̃E(i)

23 Ẽ(i)
34 (D

−1Ẽ(i)
32 )
)−1

(3.35)

for i = 2,3.

Proof. The condition Eq.3.32 implies that the equality Eq.(3.27) holds , see [21]. By Lemma 3.5
the conditions Eq.(3.33) and Eq.(3.34) imply that the systems Eq.(3.30) and Eq.(3.31) have unique
solutions. Hence equalities Eq.(3.27), Eq.(3.28) and Eq.(3.29) hold and the characteristic ring Lx is
generated by vector fields X , K, C1, C1 and C3.

3.3. Case 3

Let us find conditions for the characteristic algebra Lx to be generated by vector fields X , K, C1, Z1

and Z2. (We assume that ftxtx = 0.)
As in the previous cases to check that X , K, C1, Z1 and Z2 form a basis it is enough to check that

[C1,Z1] and [K,Z2] have unique expansion. Also we note that if [C1,Z1] and [K,Z2] can be expended
with respect to X , K, C1, Z1 and Z2 then

[C1,Z1] = ᾱZ1, (3.36)

[K,Z2] = λ̄Z1 + µ̄Z2 (3.37)

for some functions ᾱ, λ̄ and µ̄ . This follows from the form of [C1,Z1] and [K,Z2]. In general one
should write [C1,Z1] = ᾱZ1 + β̄Z2 but we show that β̄ is zero in the next lemma.

Lemma 3.9. Let ftxtx = 0 then if the vector field [C1,Z1] admits linear representation with respect
to vector fields X, K, C1, Z1 and Z2 then equality Eq(3.36) holds.
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Proof. From the form of [C1,Z1] it follows that [C1,Z1] = ᾱZ1 + β̄Z2. Let us show that β̄ is zero.
We have ftxtx = 0 and ftxtx = 0 if and only if

C2 = 0. (3.38)

Using definition of Z1, Z2 and Jacobi identity we have

[X ,Z1] = [X , [K,C1]] =−[K, [C1,X ]]− [C1, [X ,K]] = [K,C2]− [C1,C1] = 0 (3.39)

and

[X ,Z2] = [X , [K,Z1]] =−[K, [Z1,X ]]− [Z1, [X ,K]] = [C1,Z1] (3.40)

Since ftxtx = 0 then ftx does not depend on tx and coefficients of vector field

C1 =
∂

∂ t
+ ftx

∂

∂ t1
+gtx

∂

∂ t−1
+ . . .

do not depend on tx. The equality [X ,Z1] = 0 implies that the coefficients of Z1 also do not depend
on tx. Thus if [C1,Z1] = ᾱZ1 + β̄Z2 then functions ᾱ and β̄ do not depend on tx, that is X(ᾱ) = 0
and X(β̄ ) = 0. Consider [X , [C1,Z1]], from one hand, by Eq(3.38) and Eq.(3.39)

[X , [C1,Z1]] =−[C1, [Z1,X ]]− [Z1, [X ,C1]] =−[C1, [Z1,X ]]− [Z1,C2] = 0,

from the other hand,

[X , [C1,Z1]] = [X , ᾱZ1 + β̄Z2] = (X(ᾱ)+ ᾱβ̄ )Z1 +(X(β̄ )+ β̄
2)Z2 = ᾱβ̄Z1 + β̄

2Z2

Therefore, ᾱβ̄Z1 + β̄ 2Z2 = 0 or β̄ = 0.

The next lemma shows that equalities Eq.(3.36) and Eq.(3.37) imply that vector fields X , K, C1,
Z1 and Z2 form a basis of Lx.

Lemma 3.10. The vector fields X, K, C1, Z1 and Z2 form a basis of the characteristic x-ring Lx if
and only if vectors fields [C1,Z1] and [K,Z2] admit a unique linear representations with respect to
the basis vector fields.

The above Lemma is proved in the same way as Lemma 3.1.
Let us write the systems corresponding to equalities Eq.(3.36) and Eq.(3.37).

Lemma 3.11. The equality Eq.(3.36) holds if and only if the ᾱ and (Dᾱ) satisfy the following
system

1
ftx

ᾱ− (Dᾱ) =
fttx + ftx ftxt1

f 2
tx

, (3.41)

(v−w)(Dᾱ) =
fttx +2 ftx ftxt1

f 2
tx

(w− v)+
1
ftx

C1(v−w). (3.42)

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

364



K. Zheltukhin and N. Zheltukhina / Semi-discrete hyperbolic equations

Proof. Applying the automorphism D(·)D−1 to Eq.(3.36) we get

D[C1,Z1]D−1 = (Dᾱ)DZ1D−1,

Direct calculations show that if ftxtx = 0 then

D[C1,Z1]D−1 =
1
f 2
tx
[C1,Z1]−

fttx + ftx ftxt1

f 3
tx

Z1 +
1
f 3
tx

(
fttx +2 ftx ftxt1

ftx
(w− v)+C1(v−w)

)
C1 + ...X

Substituting the expressions for D[C1,Z1]D−1, DZ1D−1 and comparing coefficients before C1 and
Z1 we obtain Eq.(3.41) and Eq.(3.42) .

Lemma 3.12. The equality Eq.(3.37) holds if and only if the coefficients µ̄ and λ̄ satisfy the follow-
ing system

Ē11µ̄ + Ē12(D µ̄) = F̄1

Ē22(D µ̄) + Ē23λ̄ + Ē24(D λ̄ ) = F̄2

Ē32(D µ̄) + Ē34(D λ̄ ) = F̄3

(3.43)

where

Ē11 = 1, Ē12 =−1, F̄1 =
3w− v

ftx
,

Ē22 =
2w− v

ftx
, Ē23 = 1, Ē24 =−1,

F̄2 = pᾱ− ftxK
(

v−2w
f 2
tx

)
− K(v−w)

ftx
− 2w(w− v)

f 2
tx

− ft(v−w)
f 2
tx

− p
ftx
( fttx + ftx ftxt1),

Ē32 =
K(v−w)

f 2
tx

− 2w(v−w)
f 3
tx

+
ft(v−w)

f 3
tx

, Ē34 =
v−w

f 2
tx

,

F̄3 = K
(

K(v−w)
f 2
tx

+
2w(w− v)

f 3
tx

+
2 ft(v−w)

f 3
tx

)
+ pX

(
K(w− v)

f 2
tx

+
2w(v−w)

f 3
tx

)
+

2p fttx(w− v)− f 2
tx Z1(p)+ ftx(w− v)C1(p)+ ft(v−w)X(p)

f 3
tx

. (3.44)
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Proof. Applying the automorphism D(·)D−1 to Eq.(3.37) we get

D[K,Z2]D−1 = (Dλ̄ )DZ1D−1 +(Dµ̄)DZ2D−1.

Direct calculations show that if ftxtx = 0 then

DZ2D−1 =
1
ftx

Z2 +
v−2w

f 2
tx

Z1 +
1
f 3
tx
( ftxK(v−w)−2w(v−w)+ ft(v−w))C1 + ...X

and

D[K,Z2]D−1 =
1
ftx
[K,Z2]+

v−3w
f 2
tx

Z2 +T Z1−
p
ftx
[X ,Z2]+RC1 + ...X ,

where

T = K
(

v−2w
f 2
tx

)
+

1
f 3
tx
( ftxK(v−w)−2w(v−w)+ ft(v−w)+ p ftx( fttx + ftx ftxt1)),

R = (K− pX)

{
1
f 3
tx
( ftxK(v−w)−2w(v−w)+2 ft(v−w))

}

− 1
ftx

Z1(p)+
w− v

f 2
tx

C1(p)+
ft
f 3
tx
(v−w)X(p).

Note that [X ,Z2] = [C1,Z1]. Substituting the expressions for D[K,Z2]D−1, DZ1D−1, DZ2D−1 and
comparing coefficients of C1, Z1 and Z2 we obtain Eq.(3.43).

Theorem 3.3. The characteristic x-ring of Eq.1.4 is generated by vector fields X, K, C1, Z1 and Z2

if and only if the following conditions are satisfied

D
(
− ftxtx +

C1(v−w)
v−w

)
=− ftxt +2 ftx ftxt1

f 2
tx

+
C1(v−w)
ftx(v−w)

, (3.45)

, (
−Ē11Ē22Ē34(D−1Ē34)+ Ē11Ē24Ē32(D−1Ē34)− Ē12Ē23Ē34(D−1Ē32)

)
6= 0 (3.46)

and

(DH̄) =
F̄1

Ē12
− Ē11

Ē12
H̄, (3.47)

where

H̄ =
(
(F̄1Ē24Ē32− F̄1Ē22Ē34− F̄2Ē12Ē34− F̄3Ē12Ē24)(D−1Ē34)+(D−1F̄3)Ē12Ē23Ē34

)(
−Ē11Ē22Ē34(D−1Ē34)+ Ē11Ē24Ē32(D−1Ē34)− Ē12Ē23Ē34(D−1Ē32)

)−1
(3.48)

Proof. In Lemma 3.11 we can easily find ᾱ and (Dᾱ) independently. The condition that (Dᾱ) is
the shift of ᾱ leads to Eq.(3.45). By Lemma 3.5 the conditions Eq.(3.46) and Eq.(3.47) imply that
the system Eq.(3.43) have unique solution. Hence equalities Eq.(3.36) and Eq.(3.37) hold and the
characteristic ring Lx is generated by vector fields X , K, C1, Z1 and Z2.
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