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Fluctuation-dissipation and energy properties of a finite bath
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This paper expands a recent proposal by the authors to rederive the Langevin equation for a test particle in
a finite-size thermal bath using a perturbation approach that yields a cascade of Langevin-type equations. Such
an approach produces a different viewpoint for the fluctuation-dissipation duality by expressing them on similar
scales. General properties of energy sharing between the test particle and the bath are outlined, investigating the
resonant and nonresonant conditions.
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I. INTRODUCTION

Advances in fluctuation theorems continue to be reported
in different contexts ranging from classical to quantum dy-
namics and contribute to our understanding of nonequilibrium
thermodynamics (viz. [1] and references in it). With increasing
emphasis on nanoscale devices, thermal baths have also gained
attention with a focus on fluctuation and dissipation in finite
baths.

The motion of nanoscale devices is affected, and in
some cases disturbed, by Brownian motion of molecules in
their environment. Frequently, sensors and energy harvesting
devices utilize micro- and nanoresonators. Examples include
use of tunable particles as local probes [2] and use of micro
and nanoresonators interacting optically with the electro-
magnetic field [3,4] to produce modulators, filters, delayers,
and switches. Moreover, new devices that use deformable
optical cavities [5], or wave-pump lasers to interact with
microresonators [6] rely on opto-mechanical interactions in
nanoresonators [7,8]. Interactions of a resonator in a bath can
involve capturing of energy form environment and filtering
the noise associated with fluctuations while also sensing. The
interaction between a single mechanical resonator and a bath
also forms the theoretical basis to model damping processes,
for example, that of metallic resonators carrying free electrons
[9]. The paradigm of the interaction between a single test
particle and a molecular bath as described by Langevin’s
equation is used not only to investigate energy exchange
between a simple oscillator and a complex system, but also to
study such diverse topics as swarm robotics and the analysis
of individuals belonging to a complex population [10].

Micro- and nanoresonators with characteristic dimensions
between 10−1 and 104 micron, with corresponding natural
frequencies in the kHz to GHz range [11–13], can be tuned to
bath fluctuations that may contain frequencies from the radio-
wave or near-infrared regime up to ultraviolet range. The very
small size of the environment with a limited bandwidth makes
the number of the particles contained in the bath “countable,”
straining the approximation about infinite number of particles
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in the standard Langevin solutions. The approach developed
in this paper does not employ such an approximation.

In Langevin equations, the fluctuations in a bath are
represented stochastically and the dissipation by a reduced
variable. In other words, fluctuations represent microscopic
behavior through probabilistic descriptions, whereas dissi-
pation is usually characterized as a macroscopic behavior.
Conventionally, under equilibrium conditions, dissipation is
expressed in terms of autocorrelation of fluctuations by
invoking equipartitioning (viz., [14]). In such approaches,
dynamics of particles in a heat bath are often modeled
using independent linear oscillators attached to a test particle
[15–22]. Assuming a large number of oscillators, N → ∞, and
an appropriate choice of frequency distribution, such as that
given by Caldeira-Leggett, the fluctuation can be shown to be
Markovian, satisfying the assumptions upon which Langevin
equation is derived, viz. [18,20].

When the bath has a finite number of oscillators, and thus a
finite bandwidth, fluctuation and dissipation conditions deviate
from that described by the idealized Langevin equation (N →
∞). For example, fluctuations are no longer Markovian and
exhibit recurrence except for special frequency distributions
(viz., [23]) and the kernel of the dissipative term cannot be
represented by an integral. Our approach here is to recast
the Langevin equation through a perturbation of its classical
form, as we had briefly reported earlier [24]. The perturbation
approach projects the fluctuation and dissipation terms at
similar scales to avoid mixing the micro- and macroscales
discussed above. Using the resulting equations, we consider a
heat bath that consists of a finite number of oscillators in which
a test particle is placed and examine the energy distribution and
transfer between the test particle and the bath.

The remainder of the paper is organized as follows. In Sec. II
we apply perturbation to Langevin equation, including the
forcing and dissipation terms in it. In Sec. III, the dissipation
and fluctuation terms are modified for finite-size baths. Modifi-
cations show that the purely dissipative character of the infinite
bath is now accompanied by a reactive component, along
with corresponding changes in the fluctuation expression. In
Sec. IV, we derive the expression for the energy of the test
particle using the results derived for a finite bath and examine
the effects of bandwidth size and the location of the test particle
frequency relative to the bandwidth using electromagnetic
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analogies. Corresponding effects on energy distribution in the
bath are examined in Sec. V.

II. LANGEVIN PERTURBATIONS FOR
THE FINITE BATH, ε = 1/N

Consider the Langevin equation for a test particle denoted
by its coordinate q(t), mass M , and natural frequency � in a

finite bath of N particles,

Mq̈(t) + M�2q(t) +
∫ t

0
�(τ )q̇(t − τ )dτ = �(t), (1)

together with the equations of the bath particles, described by
xi ,

ẍi(t) + ω2
i xi(t) = ω2

i q(t), i = 1, . . . ,N, (2)

and

�(t) =
N∑

i=1

miω
2
i cos ωit, �(t) =

N∑
i=1

miω
2
i

[
xi(0) cos ωit + ẋi(0)

ωi

sin ωit

]
, t � 0, (3)

where the test particle is initially at rest. We note here that in the original and subsequent widespread formulations of the
Langevin equation, an integral form of � is utilized to describe dissipation and yet the summation is retained when expressing
the fluctuations �(t). We show below that a perturbation-based analysis can make fluctuation and dissipation expressions more
self-consistent and also allows examination of energy distribution in the bath.

Introducing the perturbation expansions for the general case of a large number of particles, N , in the bath,

�(t) = �0(t) + ε�1(t) + ε2�2(t) + · · · ,

�(t) = �0(t) + ε�1(t) + ε2�2(t) + · · · ,

q(t) = q0(t) + εq1(t) + ε2q2(t) + · · ·
xi(t) = xi0(t) + εxi1(t) + ε2xi2(t) + · · · ,

t � 0,

(i = 1, . . . ,N),
(4)

where the subscript zero represents the value that corresponds to the infinite size case, reached as ε = 1/N tends to zero while
retaining the finite bandwidth of the spectrum. Specifically, �0 and �0 represent the case for N = ∞ (ε = 0) of Eq. (3) for a
finite bandwidth, leading to the corresponding integral forms:

�0(t) =
∫ ωmax

ωmin

dm

dω
ω2 cos ωt dω,

�0(t) =
∫ ωmax

ωmin

dm

dω
ω2

[
xω(0) cos ωt + ẋω(0)

ω
sin ωt

]
dω,

t � 0. (5)

In Eq. (5), xω(0) and ẋω(0) represent the continuous forms of the initial conditions xi(0) and ẋi(0), respectively, and dm/dω

represents the mass spectral density of the bath, which has a finite total mass mb. The integration limits represent the lowest and
the highest frequencies of the bath. Substitution of the expansions in Eq. (4) into Eq. (1) produces the perturbation Langevin
equation [24]:

Mq̈0(t) + M�2q0(t) +
∫ t

0
�0(τ )q̇0(t − τ )dτ = �0(t) (k = 0),

Mq̈k(t) + M�2qk(t) +
∫ t

0
�0(τ )q̇k(t − τ )dτ = �k(t) −

k∑
j=1

∫ t

0
�j (τ )q̇k−j (t − τ )dτ (k = 1,2,3, . . . ). (6)

Additionally for the bath we have

ẍik(t) + ω2
i xik(t) = ω2

i qk(t) (k = 1,2,3, . . . , i = 1, . . . ,N). (7)

Explicit representations of Eqs (6) and (7) for orders k = 0 and k = 1 produce

Mq̈0(t) + M�2q0(t) +
∫ t

0
�0(τ )q̇0(t − τ )dτ = �0(t), (8)

ẍi0(t) + ω2
i xi0(t) = ω2

i q0(t), (9)

Mq̈1(t) + M�2q1(t) +
∫ t

0
�0(τ )q̇1(t − τ )dτ = �1(t) −

∫ t

0
�1(τ )q̇0(t − τ ) dτ, (10)

ẍi1(t) + ω2
i xi1(t) = ω2

i q1(t). (11)
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Equation (8)–(11) are valid for both transient and asymp-
totic conditions and, together with their solutions described
later, represent the main result of this paper.

Asymptotic expansion of Eq. (5) with respect to time shows
that the zeroth-order terms �0(t),�0(t) asymptotically vanish
as t → ∞ [24,25] as does q0(t), indicating energy transfer
from the test particle to bath particles and to higher-order
fluctuations of the test particle. Consequently, (i) in the long-
time range q0 does not contribute to q(t), but does so only to
the transient part and yet (ii) q0 contributes to both transient
and asymptotic evolution of xi0(t) since there is no damping
in the equation of bath for any order.

Note that even Eq. (8) does not represent the conventional
form of Langevin equation since �0(t) in Eq. (8) is an integral
and vanishes at long times. Nevertheless, these equations are
essential in the study of bath energy distribution. Equation (8)
yields q0 and its substitution in Eq. (9) produces xi0. Then by
substituting for q̇0 in Eq. (10) we can solve for q1 and x1. In
these calculations, xi0 is the first nonzero contribution to xi(t)
and q1 is the first nonzero contribution to q(t) in long times.

Equations (6) and (7) form the basis for a generalized form
of the Langevin equation, which we simplify by limiting the
analysis to long-time behavior of the test particle where we
note that for k � 2, the fluctuations on the right-hand side
depend also on dissipation through the terms �j even in the
long times, in addition to the initial conditions of the bath.

The following sections show analytical solutions to Eqs. (6)
and (7) for long times in a finite-size bath with a finite
bandwidth. Consistent with the fluctuation-dissipation concept
we (i) derive a relationship between the fluctuations and the
dissipation, (ii) find closed-form expressions for the energy
of the test particle and for the oscillators of the bath, and
(iii) illustrate different energy sharing scenarios.

III. FLUCTUATION AND DISSIPATION

A. Dissipation

As noted above, in the long-time limit, q0 vanishes, making
q ≈ εq1. Similarly, � ≈ ε�1 and � ≈ ε�1, since �0 and �0

also vanish in the long-time limit.
In order to examine the response q in the long time, we

multiply both sides of Eq. (10) by ε:

Mεq̈1(t) + M�2εq1(t) +
∫ t

0
�0(t − τ )εq̇1(τ )dτ

= ε�1(t) −
∫ t

0
ε�1(t − τ )q̇0(τ )dτ. (12)

Substitution for the long-time approximations from above
leads to

Mq̈(t) + M�2q(t) +
∫ t

0
�0(t − τ )q̇(τ )dτ

= �(t) −
∫ t

0
�(t − τ )q̇0(τ ) dτ. (13)

The last term in Eq. (13) represents an additional fluctuation
source compared to the conventional forms of Langevin
equation. Since, as shown in the Appendix, the last term
vanishes with respect to �(t) in the long time, it can be

neglected simplifying (13):

Mq̈(t) + M�2q(t) +
∫ t

0
�0(t − τ )q̇(τ )dτ = �(t). (14)

The Fourier transform F of Eq. (14) yields

[M(�2−ω2)+jω[D(ω)+jR(ω)]]Q(ω) = F{�(t)}, (15)

with the dissipative and reactive parts of the convolution given
as

D(ω) = Re{F{�0}}, (16)

R(ω) = Im{F{�0}}. (17)

Although in physical systems, the spectral density dm/dω

is defined for ω > 0, it can be folded symmetrically with
respect to the frequency origin making it an even function
about ω = 0. With this assumption, the expressions for D and
R are related by the Hilbert transfromH [26] (Kramers-Kronig
relations):

D(ω) = π

2

dm

dω
ω2, (18)

R(ω) = −H
{

π

2

dm

dω
ω2

}
. (19)

Finally, the finite mass of the bath implies that D satisfies
the condition

mb = 2

π

∫ ωmax

ωmin

D(ω)

ω2
dω. (20)

B. Fluctuation

In the absence of other sources, fluctuations in the bath
are due to the oscillation of the bath particles. Using Eq. (3),
the fluctuation force can be expressed in terms of the initial
conditions of the particles in the bath:

� =
N∑

i=−N

Aie
jωi t , (21)

with

Ai = 1

2
miω

2
i

[
x2

i
(0) + ẋ2

i
(0)

ω2
i

]1/2

ejφi ,

where A−i = A∗
i .

The spectrum ei(0) of the energy Eb of the bath associated
with its initial conditions can be expressed as

ei(0) = 1

2
ω
miω

2
i

[
x2

i
(0) + ẋ2

i
(0)

ω2
i

]
,

which, together with the dissipation function, leads to the
expression

|Ai |2 = 1

π
D(ωi)ei(0)(�ω)2, (22)

where �ω = (ωmax − ωmin)/N is the average frequency spac-
ing. Expression (22) represents the fluctuation-dissipation
relation.
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For the above derivation, we have not imposed any
randomness to the initial conditions. However, if ei(0) is
a random vector, using ensemble averages we can express
fluctuation-dissipation relationship (22) in terms of power
spectral density:

S�(ωi) = |Ai |2

ω

= 1

π
D(ωi)ei(0)�ω. (23)

Equation (23) represents a rather general form of the
fluctuation-dissipation theorem relating the fluctuation spec-
trum to dissipation through the initial energy distribution.

As a special case, if energy equipartitioning is assumed
within the bath, i.e., ei(0) = e, with temperature T ∝
e �ω/kB , where kB is the Boltzmann’s constant, Eq. (23)
reduces to S�(ω) ∝ kBT D(ω). In this case the autocorrelation
takes the form 〈�(t)�(t + τ )〉 ∝ 1

π
kBT �(τ ).

The form of FDT expressed in Eq. (23) is used later in
the paper when examining different energy sharing scenarios
between the bath and the test particle. Inspection of Eq. (23)
shows that in an infinite bath, but with a finite bandwidth
and finite mass, as N → ∞, (
ω) → 0 and the fluctuations
of the test particle vanish, demonstrating that fluctuations
appear only under the hypothesis of a finite bath (finite
N ). In contrast, the associated dissipation is described by
a continuous (integral) representation. A rationale for this
twofold nature of the problem is revealed from the perturbation
approach presented here. In the next section, we will examine
solutions of Eqs. (8)–(11) for different conditions.

IV. ENERGY OF THE TEST PARTICLE

Here we examine the influence of the initial energy of the
bath on the test particle and the means of energy conveyance
from the bath to the particle. Using Eq. (15), the spectral
density of the fluctuation q(t) at first order can be found as the
solution to Eq. (14):

Sq(ωi) = S�(ωi)∣∣M(
�2 − ω2

i

) − ωiR(ωi) + jωiD(ωi)
∣∣2 . (24)

Substitution for S�(ωi) from Eq. (23) produces

Sq(ωi) = �ω

π

ei(0)D(ωi)∣∣M(
�2 − ω2

i

) − ωiR(ωi) + jωiD(ωi)
∣∣2 .

(25)

The corresponding asymptotic energy of the test particle is

Eq = 2M

N∑
i=1

ω2
i Sq(ωi)
ω. (26)

With the introduction of expression (25), the energy expression
(26) for a test particle takes the form

Eq = 2M�ω

π

×
N∑

i=1

ω2
i ei(0)D(ωi)∣∣M(

�2 − ω2
i

) − ωiR(ωi) + jωiD(ωi)
∣∣2 
ω.

(27)

Under the perturbation hypothesis invoked here for small
ε = 1/N (e.g., for small values of 
ω 
= 0), consistent with
the first-order analysis employed, the contributions of orders
(
ω)2 and higher can be neglected and the summation can be
approximated by an integral:

Eq = 2M�ω

π

∫ ωmax

ωmin

ω2 eω(0)D(ω)

|M(�2 − ω2) − ωR(ω) + jωD(ω)|2 dω

= 2M�ω

π

∫ ωmax

ωmin

eω(0)D(ω)

|Z(ω)|2 dω, (28)

where

Z(ω) = (ωD(ω) + j [−M(�2 − ω2) + ωR(ω)])/ω. (29)

Eq now displays the product of particle response and bath
spectrum [Eq. (23)]. Z(ω) represents the combined impedance
of the uncoupled particle and the bath through R(ω) and D(ω).
It is the coupling of the particle and the bath that gives rise
to energy exchange at frequencies other than the uncoupled
particle resonance. This property is the basis for energy
exchange even when the uncoupled resonant frequency of the
particle falls outside of the bath bandwidth, as discussed later.

Analogous to a simple oscillator, the test particle behavior
can be examined through the energy expression above in terms
of familiar nondimensional terms:

Eq = 2

π

∫ ω̃max

ω̃min

eω(0) �ω
ω̃2ζ (ω̃)

|(1 − ω̃2) − ω̃χ (ω̃) + jω̃ζ (ω̃)|2 dω̃,

(30)

where χ (ω̃) = R(ω)/M� and ζ (ω̃) = D(ω)/M� respec-
tively describe the normalized values of reactive component
and the damping ratio, and the normalized frequency is
ω̃ = ω/�.

For a direct comparison with an infinite bath, we assume an
initial energy in the bath with a Caldeira-Leggett distribution,
ei(0) = e, which implies a constant value for D(ω) within
the bandwidth and can be described by a rectangular window
function W:

D(ω) = CDW(ωmin,ωmax).

The one-sided bandwidth is the physical representation
of the symmetrically folded bandwidth D = CDW(−ωmax,

− ωmin) + CDW(ωmin,ωmax). From Eq. (19) follows a general
expression for the reactive part of a finite bandwidth [27]

χ (ω̃) = − ζ

π

[
ln

∣∣∣∣ ω̃ − ω̃min

ω̃ − ω̃max

∣∣∣∣ − ln

∣∣∣∣ ω̃ + ω̃min

ω̃ + ω̃max

∣∣∣∣
]
, (31)

with

ζ = π

2

Nm

M

ω̃minω̃max

ω̃max − ω̃min
= π

2

mb

M

ω̃max

ρ − 1
, ρ = ω̃max

ω̃min
,

where ζ = CD/M� was evaluated using Eq. (20) to obtain
CD = (π/2)mb(ω̃minω̃max)/(ω̃max − ω̃min).

With the hypotheses that ei(0) = e constant, the energy
integral (30) becomes

Jq = Eq

eω(0) �ω
= Eq

Eb/N

= 2ζ

π

∫ ω̃max

ω̃min

ω̃2

|(1 − ω̃2) − ω̃χ (ω̃) + jω̃ζ |2 dω̃, (32)
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which depends only on the nondimensional parameters: ζ ,
ω̃min, ω̃max, and mb/M , where only three are independent.
In this discussion we consider only ζ , ω̃min, ω̃max, and
the mass ratio mb/M follows as mb/M = (2/π )ζ (ω̃max −
ω̃min)/(ω̃minω̃max). In the next section, we investigate the
relevant physical scenarios based on Jq(ζ,ω̃min,ω̃max).

A. Infinite bandwidth

For ω̃max � 1 and ω̃min ≈ 0, the reactive component dis-
appears, χ ≈ 0, leaving a purely resistive bath. For such an
extended bath, expression for the energy absorbed by the test
particle is then obtained from Eq. (32):

Jq = 2

π
ζ

∫ ω̃max

ω̃min

ω̃2

(1 − ω̃2)2 + ω̃2ζ 2
dω̃, (33)

Completing the integration using limits ω̃min = 0 and ω̃max =
N�ω/� produces

Jq = 2

πγ

[
α arctan

(√
2

α

M

m

)
+ β arctan

(√
2

β

M

m

)

−α arctan

(√
2

α

M

Nm

)
− β arctan

(√
2

β

M

Nm

)]
,

α =
√

1 − 2

(
π

2ζ

)2

+ γ√
2
, (34)

β =
√

1 − 2

(
π

2ζ

)2

− γ√
2
,

γ√
2

=
√

1 −
(

π

ζ

)2

.

The extended bandwidth case implies ω̃max � 1 (this
condition can also be reached with � → 0) approaching
infinity, resulting in the expression for the test particle energy:

Jq ≈ 2

π
arctan(M/m). (35)

The absorbed energy by the test particle shows it to be an
asymptotically increasing function of M/m; the heavier the
test particle, the more energy it asymptotically absorbs. More-
over, energy absorption shows a saturation as M increases,
approaching its maximum value Jq = 1 (i.e.,Eq = Eb/N ).

B. Finite bandwidth, ωi ∈ (ωmin,ωmax)

For a finite N , the integral has a finite upper bound and a
nonvanishing lower bound, producing a reactive term χ in the
denominator of the integrand in Eq. (32). Substitution for χ

from (31) in Eq. (32) yields

Jq = 2
ζ

π

∫ ω̃max

ω̃min

∣∣∣∣(1 − ω̃2) + ω̃ζ

π

[
ln

∣∣∣∣ ω̃ − ω̃min

ω̃ − ω̃max

∣∣∣∣
− ln

∣∣∣∣ ω̃ + ω̃min

ω̃ + ω̃max

∣∣∣∣
]

+ jζ ω̃

∣∣∣∣
−2

ω̃2dω̃. (36)

In its present form, integral (36) does not admit closed-form
solutions. However, as shown below, useful approximate
expressions can help explain the salient features of the energy

sharing process between the particle and bath for several cases
of interest.

C. Resonant region, � ∈ [ωmin,ωmax]

For small values of ζ , the integrand in Eq. (36) develops a
sharp peak, which permits approximation of the integral as a
product of the integrand amplitude at ω = � and its effective
bandwidth, πζ/2:

Jq =
(

1 + 1

π2

[
ln

∣∣∣∣ 1 − ω̃min

1 − ω̃max

∣∣∣∣ − ln

∣∣∣∣ 1 + ω̃min

1 + ω̃max

∣∣∣∣
]2)−1

. (37)

The infinite bandwidth case follows as Jq = 1 by substituting
for ω̃min → 0 and ω̃min → ∞. As an illustration of the
effect of a finite bandwidth, consider the test particle with
frequency � = (ωmax + ωmin)/2 and half-bandwidth BW =
(ωmax − ωmin)/2:

Jq =
(

1 + 1

π2

[
ln

(
2 + ˜BW

2 − ˜BW

)]2)−1

→ 0.88 < Jq < 1, (38)

revealing a reduction of energy absorbed for larger values
of ˜BW = (ωmax − ωmin)/2�. However, the results suggest
that for ζ 
 1, in the resonant region the test particle is in
thermal equilibrium with the bath, with some overcooling
effect observed when the value of the bandwidth BW becomes
comparable with that of �.

In the case of large values of ζ ,

Jq ≈ 1

π

ω̃max − ω̃min

ζ
= 2

π2

M

mb

(ρ − 1)2

ρ
, (39)

which shows that the retained energy by the test particle, even
in the resonant region, is very small due to the mass ratio,
(M/mb) 
 1.

D. Nonresonant region

Integral expression for energy absorbed by the test particle
Jq can be approximated by retaining the first-order term in the
Taylor expansion of the ln terms in χ (ω̃):

χ (ω̃) ≈ χC + χ ′
C(ω̃ − ω̃C), ω̃C = 1

2 (ω̃min + ω̃max), (40)

where

χC = ζ

π
ln

(
ω̃C + ω̃min

ω̃C + ω̃max

)
= ζ

π
φ,

χ ′
C = ζ

π

2(ω̃max − ω̃min)
(
ω̃2

C + ω̃minω̃max
)

(
ω̃2

C − ω̃2
min

)(
ω̃2

C − ω̃2
max

) = ζ

π
ψ

and, in terms of ρ,

φ = ln

(
3 + ρ

3ρ + 1

)
, ψ = 8(ρ − 1)(ρ2 + 6ρ + 1)

ω̃min(ρ2 + 2ρ − 3)(−3ρ2 + 2ρ + 1)
,

ρ = ω̃max

ω̃min
,

which, when substituted in Eq. (32), produce a more tractable
form of the integral:

Jq = 2ζ

π

∫ ω̃max

ω̃min

ω̃2dω̃

(1 − A ω̃2 − B ω̃)2 + ζ 2ω̃2
, (41)

with A = 1 + ζψ/π and B = (ζ/π )[φ − ψω̃min(1 + ρ)/2].
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When evaluating the expression Jq for energy absorption
by a test particle, say a MEMS or a NEMS resonator immersed
in a bath, the nonresonant cases can be described using
the electromagnetic wave analogy: radio waves or infrared
(IR) when � 
 ωmin and ultraviolet (UV) when � � ωmax,
respectively.

1. Radio-waves or IR approximation, ω̃min � 1

In this case, the test particle frequency falls below the bath
frequencies, simplifying the denominator of the integrand in
Eq. (32) with (1 − ω̃2) ≈ −ω̃2, which then can be evaluated in
closed form using Eq. (41) to yield the nondimensional energy
ratio Jq = Eq/(Eb/N):

Jq = 2ζ

π

∫ ω̃max

ω̃min

ω̃2dω̃

(A ω̃2 + B ω̃)2 + ζ 2ω̃2

= 2

π

1

A

[
arctan

(
Aω̃max + B

ζ

)
− arctan

(
Aω̃min + B

ζ

)]
.

(42)

For ρ � 1, we can approximate A ≈ 1, B ≈ ζ/3π , and ζ ≈
(π mb ω̃min)/2M , to obtain

Jq ≈ 2

π

[
arctan

(
2

π

M

mb

ρ + 1

3π

)
− arctan

(
2

π

M

mb

+ 1

3π

)]
.

(43)

The energy Jq has a simple dependence on the mass
ratio mb/M that displays an increase up to a maximum after
which the energy decreases with increasing mb/M . The value
(mb/M)IR at which Jq attains its maximum value can be
found as (

mb

M

)
IR

≈ 2

π

√
ρ

1 + a2
, a = 1

3π
. (44)

The corresponding peak value of the nondimensional energy
takes the form

Jq ≈ 2

π

[
arctan(

√
ρ(1+a2) + a) − arctan

(√
1+a2

ρ
+ a

)]
.

(45)

With these approximations, the peak value of Jq shows
that when the bandwidth of the bath is such that for ρ =
ω̃max/ω̃min > 50, then the peak value of the nondimensional
energy falls between 0.88 < Jq < 1. This result suggests that
for cases ρ � 1, the test particle reaches a temperature close to
that of the bath and that energy exchange takes place between
the particle and the bath even outside the bandwidth due to
their coupling that appears in Z(ω), as long as the mass ratio
is near (mb/M)IR . For vastly different mass ratios, the particle
overcools and its temperature becomes much lower than that
of the bath. We also note that for a given mass ratio and
bandwidth, the particle energy is not affected by the exact value
of the particle natural frequency � within the infrared region.

2. Ultraviolet approximation, ω̃max � 1

For low frequencies, such that ω̃ 
 1, the integral for Jq in
Eq. (41) can be approximated for the case when ζ 
 1 as

Jq ≈ 2ζ

3π

(
ω̃3

max − ω̃3
min

) = mb

3M

ρ3 − 1

ρ − 1
ρω̃4

min (ζ 
 1).

(46)

For cases where ζ � 1, products of small and large
quantities appear in the denominator and to approximate the
integral (41), we first define orders of magnitude of the terms.
For ω̃ = O(ε) and ζ = O(1/εp) with p > 0 and integer, order
of the terms in the denominator of (41) are

Aω̃2 = O(ε2−p), Bω̃ = O(ε1−p), ζ 2ω̃2 = O(ε2−2p).

With such orders of magnitudes, we can approximate the
denominator as follows:

(1 − Aω̃2 − Bω̃)2 + ζ 2ω̃2

≈
{

(1 − Bω̃)2 + ζ 2ω̃2 for p = 1,

ζ 2ω̃2 for p � 2.
(47)

Approximation of the integral (41) for p = 1 produces

Jq ≈ 2

π

1

(B2 + ζ 2)2

{
B ln(B2ω̃2 − 2Bω̃ + ω̃2ζ 2 + 1)

+ ω̃(B2 + ζ 2) + (B2/ζ − ζ )

× arctan

(
B2ω̃ − B + ω̃ζ 2

ζ

)}∣∣∣∣
ω̃max

ω̃min

(ζ � 1). (48)

Since for values ρ � 1, B ≈ ζ/3π = aζ :

Jq ≈ 2

π

1

ζ 4(a2 + 1)2
{−aζ ln[ζ 2ω̃2(a2 + 1) + 2aζ ω̃ + 1]

+ ω̃ζ 2(a2 + 1) + ζ (a2 − 1)

× arctan[ζ ω̃(a2 + 1) + a]}|ω̃max
ω̃min

(ζ � 1), (49)

which is a monotonically decreasing function of ζ (∝mb/M).
A simpler expression can be obtained for only the p � 2

case for which

Jq ≈ 2

π

ω̃max − ω̃min

ζ

=
(

2

π

)2
M

mb

(
1 − 1

ρ

)
(ρ − 1) (ζ � 1). (50)

Equations (46), (49), and (50) show opposing trends in
terms of ζ for values ζ 
 1 and ζ � 1, respectively. These
trends suggest that a maximum for Jq should exist during
the transition from ζ 
 1 to ζ � 1, which can be roughly
determined for p � 2 as the intersection of the equations (46)
and (50):

(
mb

M

)
UV

=
√

3

ω̃2
min

2

π

√
(ρ − 1)3

ρ2(ρ3 − 1)
, (51)

which again demonstrates energy exchange outside the band-
width for specific values of the mass ratio.

032142-6



FLUCTUATION-DISSIPATION AND ENERGY PROPERTIES . . . PHYSICAL REVIEW E 93, 032142 (2016)

TABLE I. Summary of normalized energy absorption Jq scenarios between a test particle and a bath that has Caldeira-Leggett frequency
distribution (with the approximations specified in Sec. IV). ρ = ω̃max/ω̃min; a = 1/3π .

Energy scenarios ζ 
 1 ζ � 1 Critical mass ratio

RW/IR 1 
 ω̃min < ω̃max Jq ≈ 2
π

arctan ( 2
π

M

mb
ρ + a) − 2

π
arctan ( 2

π

M

mb
+ a) ( mb

M
)
IR

≈ 2
π

√
ρ

1+a2

Resonant ω̃min < 1 < ω̃max Jq ≈ (1 + 1
π2 [ln | (1−ω̃min)(1+ω̃max)

(1−ω̃max)(1+ω̃min) |]
2
)
−1

Jq ≈ 2
π2

M

mb

(ρ−1)2

ρ
None

UV ω̃min < ω̃max 
 1 Jq ≈ ω̃4
min

ρ

3
mb

M

(ρ3−1)
(ρ−1) Jq ≈ ( 2

π
)
2 M

mb

(ρ−1)2

ρ
( mb

M
)
UV

≈ 2
√

3
πω̃2

min

√
(ρ−1)3

ρ2(ρ3−1)

A summary of scenarios for energy exchange between the
test particle and bath are given in Table I.

V. ENERGY DISTRIBUTION IN THE BATH

The zeroth-order equation (9) describing a bath particle
response yields a nonzero solution even in the long-time range
when q0(t) vanishes asymptotically, and xi0 can be expressed
as

xi0(t) = ωi sin ωit

∫ t

0
q0(τ ) cos ωiτ dτ − ωi cos ωit

∫ t

0
q0(τ )

× sin ωiτ dτ + xi(0) cos ωit + ẋi(0)

ωi

sin ωit, (52)

where xi(0) and ẋi(0) denote the initial conditions that
represent the fluctuations in the bath. For long times, where
q0 vanishes, the upper limit t of the integrals can be replaced
by infinity, leading to real, QR

0 (ωi), and imaginary, QI
0(ωi),

parts of the Fourier transform of q0 evaluated at ω = ωi ;
Q0(ωi) = QR

0 (ωi) + jQI
0(ωi). The bath particle displacement

(52) becomes

lim
t→∞ xi0(t) =

√[
ẋi(0)

ωi

+ ωiQ
R
0 (ωi)

]2

+ [
xi(0) + ωiQ

I
0(ωi)

]2

× sin(ωit + φi). (53)

The corresponding energy within the bath can also be
expressed for long times as

lim
t→∞ ei(t) = 1

2

dm

dω

∣∣∣∣
ω=ωi

ẋ2
i0(t) + 1

2

dm

dω

∣∣∣∣
ω=ωi

ω2
i [xi0(t) − q0(t)]2

= 1

2

dm

dω

∣∣∣∣
ω=ωi

[
ẋ2

i0(t) + ω2
i x

2
i0(t)

]
. (54)

Substituting for xi0(t) from above gives the energy spectrum
in the bath as

lim
t→∞ ei(t) = 1

2

dm

dω

∣∣∣∣
ω=ωi

ω2
i

[(
ẋi(0)

ωi

)2

+ x2
i (0) + ω2

i |Q0(ωi)|2

+ 2ẋi(0)QR
0 (ωi) + 2ωixi(0)QI

0(ωi)

]
.

The first two terms in the bracket represent the initial energy
density ei(0)

lim
t→∞ ei(t) = ei(0) + 2

π
D(ωi)

[
1

2
ω2

i |Q0(ωi)|2

+QR
0 (ωi)ẋi(0) + ωiQ

I
0(ωi)xi(0)

]
. (55)

The term Q0(ωi) can be calculated from Fourier transform F
of Eq. (8)

Q0(ωi) = F{�0}ω=ωi

M
(
�2 − ω2

i

) + jωiD(ωi) − ωiR(ωi)
. (56)

Substitution of Eq. (56) into (55) yields the bath energy for long times:

lim
t→∞ ei = ei(0) + 2

π

D(ωi)

|Z(ωi)|2
{

1

2

([
ReF{�0}ω=ωi

]2 + Im
[
F{�0}ω=ωi

]2)
−xi(0)

([
ReF{�0}ω=ωi

]
ReZ∗(ωi) + ImF{�0}ω=ωi

ImZ∗(ωi)
)

+ ẋi(0)

ωi

(
ReZ∗(ωi)Im

[
F{�0}ω=ωi

] + [
ReF{�0}ω=ωi

]
ImZ∗(ωi)

)}
, (57)

where Z(ω) is the coupled particle impedance, given by Eq. (29).
A simplified form of Eq. (57) can be obtained with certain assumptions. Since virial theorem suggests that the average values

of kinetic and potential energies are equal, we assume the initial energy to be entirely potential and thus set ẋi(0) = 0; Eq. (57)
simplifies to

lim
t→∞ ei = ei(0) + 2

π

D(ωi)

|Z(ωi)|2
{

1

2

([
ReF{�0}ω=ωi

]2 + [
ImF{�0}ω=ωi

]2)

− xi(0)
([

ReF{�0}ω=ωi

]
ReZ∗(ωi) + [

ImF{�0}ω=ωi

]
ImZ∗(ωi)

)}
, (58)
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where F{�0} follows from Eqs. (5) analogous to Eqs. (16)
and (17):

Re[F{�0}] = D(ω)xω(0),

Im[F{�0}] = −H{D(ω)xω(0)}.
Equation (58) is further simplified by invoking the relation-

ship H{D(ω)xω(0)} = xω(0)H{D(ω)} = −xω(0)R(ω) if the
conditions for the use of the modulation theorem hold [27].
Under this condition, using xω(0) = √

π eω(0)/D(ω) from
Eq. (54) with ẋ = 0, we can express

Im[F{�0}] =
√

πeω(0)

D(ω)
R(ω), Re[F{�0}] =

√
πeω(0)D(ω)

and rewrite Eq. (58) as

lim
t→∞ Ji

=1− ω̃2
i [ζ 2(ωi) + χ2(ωi)] − 2

(
1 − ω̃2

i

)
ω̃iχ (ω̃i)

ω̃2
i [ζ 2(ωi) + χ2(ωi)] − 2

(
1 − ω̃2

i

)
ω̃iχ (ω̃i) + (

1 − ω̃2
i

)2 ,

(59)

where Ji = ei
ω/(EB/N ). The above equation can be sim-
plified to isolate the terms that represent deviation from
equipartitioning:

lim
t→∞ Ji =

[
1

1 + �i

]
, (60)

where

�i = ω̃2
i ζ

2(ω̃)[1 + χ2(ω̃i)/ζ 2(ω̃i)] − 2
(
1 − ω̃2

i

)
ω̃iχ (ω̃i)(

1 − ω̃2
i

)2

(61)

represents the deviation.

A. Infinite bandwidth

Expressing Eq. (61) for infinite bandwidth with a Caldeira-
Leggett distribution results in

�i = ω̃2
i ζ

2(
1 − ω̃2

i

)2 .

Inspection of �i and (60) shows equipartitioning at all
frequencies except in the neighborhood of ω̃i = 1, where the
bath has zero energy since all the energy at that frequency is
absorbed by the test particle. These results show that, in an
infinite bath, equipartitioning is reached for small values of
ζ , except near the resonance where there is localized energy
absorption by the test particle from the bath.

B. Finite bandwidth

To investigate how a finite-bandwidth influences the
equipartitioning process in a bath, we continue with the
Caldeira-Leggett distribution within the range of bath fre-
quencies ωi ∈ (ωmin,ωmax) that yields a constant dissipation
D(ω) = CD .

In this case, the reactive part given in Eq. (31) is nonzero
(χ 
= 0) and is retained in Eq. (61):

�i = ω̃2
i ζ

2(
1− ω̃2

i

)2

[
1+ 1

π2

(
ln

∣∣∣∣ ω̃i −ω̃min

ω̃i −ω̃max

∣∣∣∣ − ln

∣∣∣∣ ω̃i +ω̃min

ω̃i +ω̃max

∣∣∣∣
)2

+ 2
(
1 − ω̃2

i

)
πω̃iζ

(
ln

∣∣∣∣ ω̃i −ω̃min

ω̃i −ω̃max

∣∣∣∣ − ln

∣∣∣∣ ω̃i +ω̃min

ω̃i +ω̃max

∣∣∣∣
)]

. (62)

For a finite-bandwidth bath, the location of the resonator
frequency matters. For instance, in the infrared regime, where
1 
 ωmin < ωi < ωmax, the denominator is very large, making
�i vanishingly small:

�i = −2
ζ

πω̃i

(
ln

∣∣∣∣ ω̃i − ω̃min

ω̃i − ω̃max

∣∣∣∣ − ln

∣∣∣∣ ω̃i + ω̃min

ω̃i + ω̃max

∣∣∣∣
)

≈ 0. (63)

Such small values of �i suggest the presence of a small
distortion to equipartition, implying that a test particle in the
IR region does not otherwise alter equipartition significantly.

A further effect of having a finite bandwidth is the
development of sharp peaks at the bandwidth boundaries.
These peaks stem from the singularities in the arguments of the
ln expressions in �i and are expected to distort the equiparti-
tioned energy distribution at the bandwidth boundaries. We
refer to these singularities as “edge effects” that occur in
conjunction with the reactive component of the impedance
and can supply energy to the test particle even when outside
of the frequency band.

When the resonator frequencies are in the ultraviolet region
such that ωmin < ωi < ω̃max 
 1, �i again nearly vanishes,
except at the “edges”, as in the IR case:

�i = −2
ζ ω̃i

π

(
ln

∣∣∣∣ ω̃i − ω̃min

ω̃i − ω̃max

∣∣∣∣ − ln

∣∣∣∣ ω̃i + ω̃min

ω̃i + ω̃max

∣∣∣∣
)

≈ 0. (64)

Finally, in the case of the so-called resonant region, ω̃min <

1 < ω̃max, energy distribution in the bath is no longer expected
to be equipartitioned, because the test particle now interacts
locally with the resonating oscillators in the bath, altering
their energy distribution. These results suggest existence of an
energy absorption path for the test particle outside the resonant
bandwidth that depends on certain mass ratios. Considering
Eq. (61), in the IR range, while small, �i , decreases with
frequency, see Eq. (63), and thus the bath energy increases.
Conversely, in the UV regime, �i , shown in Eq. (64), increases
with frequency and the bath energy decreases.

VI. DISCUSSION

We developed a cascade of Langevin-like equations with
a perturbation approach. The resulting equations allow sepa-
ration of the mix of scales in the classical Langevin equation
where the dissipation and forcing terms represent macroscopic
and microscopic quantities, respectively.

The equations derived here are also used to examine the
transient and asymptotic, or steady-state, conditions. Two pairs
of equations are obtained by retaining the zeroth-order and
first-order terms in the equations of motion for a test particle
and for the finite heat bath it is immersed in. The zeroth-order
term for the particle response vanishes in long times but it is
the source of excitation of the first- and higher-order terms in
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the bath and thus is still necessary to investigate the transient
cases.

The present formulation is also amenable to closed-form
solutions in certain cases to show how energy is distributed
among the degrees of freedom of the bath and the energy
sharing between the test particle and the bath.

Energy sharing between the test particle and the bath are
examined according to the relative value of the resonant
frequency of the test particle with respect to the bandwidth
of the bath: (i) the resonant behavior describes the cases
when the particle frequency falls within bath bandwidth,
(ii) the radio-waves or infrared response refers to test particle
frequency much lower than the frequencies in the bath, and
(iii) the ultraviolet case when the test particle frequency is
much higher than the bath frequencies.

As discussed above, all three cases of energy sharing
processes can be completely described by three nondi-
mensional parameters ω̃max = ωmax/�, ω̃min = ωmin/�, ζ =
(πω̃max)(mb/M), which represent the test particle natural
frequency, bandwidth limits, and the mass ratio, respectively.
For each scenario we provide simple closed-form expressions
that describe the energy retained by the test particle in terms
of these parameters.

The resonant regime displays two different behaviors
depending on whether ζ , indicating the mass ratio, is very
small or very large. For small values of ζ , energy absorbed by
the test particle is close to that expected at equilibrium under
equipartition conditions. Also, as long as ζ 
 1, the energy
absorption does not depend on the specific value of the ratio
mb/M .

For ζ � 1 or large mb/M , the energy retained asymptoti-
cally by the bath is small and much lower than that predicted
by equipartition, and inversely depends on the ratio mb/M .
Equilibrium is not reached in this case.

The out-of-bandwidth cases are characterized by a nonres-
onant response of the test particle, which interacts with the
bath by a different mechanism. A test particle with frequency
�, outside of the bandwidth, still extracts energy from the
bath, primarily at the edge frequencies, as a result of the

coupling of bath and particle at certain mb/M values, while a
test particle with a frequency that falls within the bandwidth
has both resonance effects as well as edge effects.

APPENDIX

In order to estimate the magnitude of the additional
fluctuation represented by the last term in Eq. (13), we rewrite
it explicitly:

∫ t

0
�(t − τ )q̇0(τ ) dτ

≈
N∑
i

miω
2
i

∫ +∞

−∞
cos ωi(t − τ )q̇0(τ )dτ

= −
N∑
i

miω
2
i Re[jωiQ

∗
0(ωi)e

jωi t ]

=
N∑
i

miω
3
i |Q0(ωi)| cos(ωit + φ0i

), (A1)

and the power spectral density of the convolution

S�∗q̇0 = (
miω

3
i

)2 |Q0(ωi)|2

ω

where the upper integral limit represents the long-time ap-
proximation since q̇0(t) vanishes as t → ∞ and the lower
limit is allowed since q̇0(t) = 0 for all values of t < 0. As a
result, SQ0 (ωi) = |Q0(ωi)|2
ω, and using Eq. (56) SQ0 (ωi) =
S�0 (ωi)/ω2

i |Z(ωi)|2, we have

S�∗q̇0 =
[

2

π

D(ωi)

|Z(ωi)|
]2

S�0 (ωi).

Since from Eq. (23), we have S�0 (ωi) = lim
ω→0 S�(ωi) =
0, S�∗q0 is small compared to S� and, therefore, the last term
in Eq. (13) can be neglected.
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