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Abstract

To date, the effects of interface in-plane damage on the thermo-mechanical response of a thermally general imperfect

(GI) and mechanically coherent energetic interface are not taken into account. A thermally GI interface allows for a

discontinuity in temperature as well as in the normal heat flux across the interface. A mechanically coherent energetic

interface permits a discontinuity in the normal traction but not in the displacement field across the interface. The tem-

perature of a thermally GI interface is a degree of freedom and is computed using a material parameter known as the

sensitivity. The current work is the continuation of the model developed in [21] where a degrading highly-conductive

(HC) and mechanically coherent energetic interface is considered. An HC interface only allows for the jump in normal

heat flux and not the jump in temperature across the interface. In this contribution, a thermodynamically consistent

theory for thermally general imperfect and mechanically coherent energetic interfaces subject to in-plane degradation

is developed. A computational framework to model this class of interfaces using the finite element method is estab-

lished. In particular, the influence of the interface in-plane degradation on the sensitivity is captured. To this end the

equations governing a fully non-linear transient problem are given. They are solved using the finite element method.

The results are illustrated through a series of three-dimensional numerical examples for various interfacial parame-

ters. In particular, a comparison is made between the results of the intact and the degraded thermally GI interface

formulation.

Keywords: Thermo-mechanically energetic interfaces, Interface elasticity, General imperfect (GI) interfaces,

Non-local damage, Nanomaterials, Finite element method.

1. Introduction

Interfaces possess different thermo-mechanical properties from those of the bulk which becomes dominating as the

length scale reduces. Note that the smaller the scale, the larger the interface area to bulk volume ratio [8, 16, 19].
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This dominating influence motivates one to devise a more realistic model to better capture the physics of interface

materials. In addition, the followings are a few additional motivations to develop a more general interface model:

• increasing applications of thermal interfaces [38],

• unusual thermal behavior of surface and interfaces at the nano-scale [6, 7, 10, 37],

• the study of interface mechanical characteristics by the vast majority of the literature is mainly based on cohesive

zone models.

Therefore, in this contribution, we follow the work of [28, 33] where the interface theory was extended to mechanically

coherent energetic and thermally general imperfect (GI) interfaces. A thermally general imperfect (GI) interface

permits discontinuities in both temperature and normal heat flux. The extreme cases of thermally GI interfaces are

highly conductive (HC) and lowly conductive (LC) interfaces, where the former allows a discontinuity in the normal

heat flux but not in the temperature across the interface, and the latter permits a discontinuity in the temperature but not

in the normal heat flux across the interface. Among the various thermal interfaces introduced above, a HC interface

is termed thermally coherent due to the vanishing temperature jump. We point out that the thermally GI interface

presented here may be specialized to all the other types of thermal interfaces. For further details on the different types

of thermal imperfections see [20, 21, 28, 33] and references therein.

A mechanically coherent energetic interface is based on the interface elasticity theory proposed by [25, 36].

Note that the coherence of the interface refers to the continuity in the displacement field across the interface. This

manuscript is limited to mechanically coherent energetic interfaces. For further details see for instance, [1, 4, 5, 11,

12, 15–19, 22–24, 26, 27, 31, 34, 35, 40, 42, 46] and references therein. A restriction of the interface elasticity theory

is that it only captures elastic interface behavior.

The nucleation of micro-voids and strong discontinuities such as cracks can act as shields or amplify stress in-

tensity in other regions of an interface. Consequently, this can influence the temperature distribution and thus the

thermo-mechanical response of a body. Noting that the interface elasticity theory can only capture elastic behavior of

energetic interfaces, the development of a more general interface model, in which interface inelasticity is taken into

account, seems necessary.

Very recently in [21] we have considered thermally highly-conductive (HC) interfaces in a thermomechanical

body, whereby due to the highly conductive property the (otherwise mechanically coherent) interfaces allow for jumps

in the normal heat flux. Moreover they are equipped with interface stresses that are coupled to in-plane damage. In

this contribution, we formulate a follow up version of [21] that generalizes the thermal part of the above interfaces to

the thermally general imperfect case, whereas the mechanical part is as before. Thereby this formulation embraces the
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two limiting cases of the previous HC interfaces (jump in normal heat flux) and the lowly-conductive (LC) Kapitza

interfaces [see 20] that allow for a jump in the temperature. Thus arbitrary combinations of HC and LC (jump in

normal heat flux and jump in the temperature) are analyzed numerically.

JΘK , 0, JQK · N , 0 JxK = 0, JPK · N , 0

Figure 1: (a) Thermally general imperfect interface and (b) mechanically coherent energetic interface. The interface in this work is mechanically
coherent, thus no jump in deformation is allowed across the interface, ~ϕ� = 0, ~x� = 0, and energetic, thus the jump of the normal traction across
the interface does not vanish, i.e. ~P� · N , 0. A thermally GI interface allows for the jump in temperature ~Θ� , 0, and in normal heat flux
~Q� · N , 0 across the interface. The bulk and interface are denoted here by B and I. The normal to the interface is denoted by N, see Fig. 2.
The in-plane degradation of the interface causes the degradation of mechanical and thermal properties of the interface through a tangential damage
variable D‖.

To take into account the in-plane damage, a non-local continuum damage approach is utilized. For further details

on this approach with application to bulk materials see for instance [9, 13, 14, 32, 39, 45], among others. There are

a few reasons to use a non-local damage model: first, mesh-objective finite element simulation of strain softening

materials; second, determination of growth of micro-cracks by the energy release from the volume encompassing

the micro-crack [3]; third, the influence of the presence of a micro-crack on the stress level of other neighboring

micro-cracks; and finally capturing size effects [2]. The non-locality in this work is of integral-type which then

requires the use of an interactive (cut-off) radius, capturing size effects. The interactive radius is a function of the

molecular structure of the intact material and distribution and growth of the micro-cracks in the damaging material.

It is not yet well-established how to determine the interactive radius from experiments. See [2] for further details.

The degradation of the interface material here is measured using a tangential (in-plane) damage variable denoted by

D‖. Consequently, as the damage variable evolves all the mechanical and in-plane thermal properties of the interface

are reduced. However, the out-of-plane thermal properties, i.e. interface Kapitza resistance coefficient r0
Q and the

sensitivity s0 will increase with damage evolving. The damage variable here is a function of the interface effective
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(undamaged) free energy Ψ0, which in turn depends on both the interface temperature Θ and the interface deformation

gradient F. Here no distinction between thermal and mechanical damage has been made for the sake of simplicity

and the fact that such distinction has not yet been physically motivated.

In summary, the key contributions of this work are as follows:

• To derive the governing equations of a thermo-mechanical solid possessing thermally GI and mechanically

coherent energetic interface subject to in-plane degradation, within the fully-nonlinear three dimensional setting.

• To present a thermodynamically consistent formulation and derive the dissipation inequality on the interface.

• To account for the effects of in-plane damage on thermo-mechanical properties of the interface.

• To derive the thermal and mechanical weak forms.

• To derive the consistent tangent stiffness matrices in the bulk and on the interface.

• To present details of the computation of solids possessing thermally GI and mechanically coherent energetic

interfaces within the three-dimensional, non-linear and transient setting.

• To illustrate the theory with the help of numerical examples using the finite element method.

This manuscript is organized as follows. First the notation and certain key concepts are briefly introduced. Sec-

tion 2 summarizes the kinematics of non-linear continuum mechanics. The local governing equations including the

additional contributions from the interface, together with the constitutive relations are given in section 3. A numerical

framework for the interface is established in section 4. The framework includes the weak formulation of the governing

equations, the corresponding finite element implementation and the derivation of the consistent stiffness matrices. A

series of numerical examples, based on the finite element approximation of the weak form, is presented in section 5

to elucidate the theory. Section 6 concludes this work.

2. Problem definition

This section summarizes the kinematics of non-linear continuum mechanics including thermally general imperfect

and mechanically coherent energetic interfaces and introduces the notation adopted here. Further details on the kine-

matics of deformable interfaces can be found in [30]. All over-lined quantities correspond to the interface.1 Table 1

gathers a list of notations frequently used in this manuscript. Consider a continuum body B that takes the material

1 Direct notation is adopted throughout. Occasional use is made of index notation, the summation convention for repeated indices being implied.
The three-dimensional Euclidean space is denoted by E3. The scalar product of two vectors a and b is denoted by a · b = [a]i[b]i. The scalar

4



Table 1: List of important notations. Over-lined quantities {•} correspond to the interface.

F bulk material deformation gradient F interface material deformation gradient

ϕ bulk deformation map ϕ interface deformation map

X bulk material coordinates X interface material coordinates

x bulk spatial coordinates x interface spatial coordinates

Θ bulk temperature Θ interface temperature

Θ0 bulk initial temperature Θ0 interface initial temperature

N bulk material normal to surface N interface material normal to interface

n bulk spatial normal to surface n interface spatial normal to interface

Ψ bulk Helmholtz energy Ψ interface nominal Helmholtz energy

Ξs bulk specific entropy Ξs interface specific entropy

Ξ bulk entropy Ξ interface nominal entropy

P bulk Piola stress P interface nominal Piola stress

only interface
ϕ± deformation maps of ± side x± spatial coordinates of ± side

ñ spatial normal to interface boundary Ñ material normal to interface boundary

Ψ0 undamaged Helmholtz energy D‖ damage variable

P0 undamaged Piola stress tensor Ξ0 undamaged entropy

F loc local equivalent distortion Fnloc non-local equivalent distortion

F0 elastic limit Fmax maximum attained Fnloc

s0 undamaged sensitivity r0
Q undamaged Kapitza resistance coefficient

configuration B0 ⊂ E3 at time t = 0, and the spatial configuration Bt at t > 0, as depicted in Fig. 1. The body B is par-

titioned into two disjoint subdomains, B+
0 and B−0 , by an interface I0, thus the bulk is defined by B0 := B+

0
⋃B−0 , with

reference placements of material particles labeled X. The two sides of the interface I0 are denoted I+
0 := ∂B+

0
⋂I0

and I− := ∂B−0
⋂I0. The material particles on the interface are labeled X. The outward unit normal to ∂B0 is denoted

N. The outward unit normal to the boundary of the interface ∂I0, tangent to the interface I0 is denoted Ñ. The unit

normal to I0 is denoted N whose direction is conventionally taken to point from the negative side of the interface to

the positive side. The spatial counterparts of the various unit normals are n, ñ and n, respectively. The deformation

maps of the bulk, and the negative and positive sides of the interface are denoted ϕ, ϕ− and ϕ+, respectively. The

restriction of the motion ϕ to the interface is defined by ϕ. The current placements of particles in the bulk and on the

product of two second-order tensors A and B is denoted by A : B = [A]i j[B]i j. The composition of two second-order tensors A and B, denoted
by A · B, is a second-order tensor with coefficients [A · B]i j = [A]im[B]m j. The non-standard products of a fourth-order tensor C and a vector b is
defined by [b · C]ikl = [C]i jkl[b] j. The action of a second-order tensor A on a vector a is given by [A · a]i = [A]i j[a] j. The standard product of a
fourth-order tensor C and a second-order tensor A is defined by [C : A]i j = [C]i jkl[A]kl. The dyadic product of two vectors a and b is a second-
order tensor D = a ⊗ b with [D]i j = [a]i[b] j. Two non-standard dyadic products of two second-order tensors A and B are the fourth-order tensors
[A⊗B]i jkl = [A]ik[B] jl and [A⊗B]i jkl = [A]il[B] jk . The average and jump of a quantity {•} over an interface are defined by {{{•}}} = 1

2 [{•}+ + {•}−]
and ~{•}� = {•}+ − {•}−, respectively.
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mechanical thermal

Figure 2: The bulk domain B0, the bulk subdomains B±0 , the interface I0, the two sides of the interface I±0 and the unit normals to the surface
N, the interface N, and boundary of the interface Ñ, all defined in the material configuration. The bulk, interface and the two sides of interface
deformation maps, denoted as ϕ, ϕ and ϕ±, respectively, map the material configuration to the spatial configuration at time t. The bulk domain
Bt , the bulk subdomains B±t , the interface It and its two sides I±t , the unit normals to the surface n, interface n, and boundary of the interface ñ,
all defined in the spatial configuration. The bulk temperatures on plus and minus side of the interface and the interface temperature are denoted
by Θ+, Θ− and Θ, respectively. The interface unit normal is pointing from the negative side of the interface to the positive side. The bulk and
(rank-deficient) interface deformation gradients are F and F, respectively. The interface is mechanically coherent and thermally non-coherent.

two sides of the interface are denoted x and x∓ where the spatial placement of particles on the interface are designated

as x. One should note that ϕ+ = ϕ− = ϕ and x+ = x− = x, for mechanically coherent interfaces. This means the

interface placement is always between the two lateral sides of the interface. The interface and bulk temperature on

two sides of the interface are denoted by Θ, Θ+ and Θ−, respectively.

Remark 1 Since the interface is thermally general imperfect, the bulk temperatures Θ+ and Θ− can differ from each
other. This is in contrast with a highly-conductive interface where the jump of temperature across the interface
vanishes and thus Θ = Θ+ = Θ−. Moreover, on a thermally general imperfect interface, the relation between the bulk
and the interface temperature Θ is in general unknown. In other words, the interface temperature does not necessarily
take a value between the bulk temperatures on the two sides of the interface [see 21, 28, for further details].

The bulk and the (rank-deficient) interface deformation gradients F and F, together with the corresponding veloc-

ities V and V are, respectively, defined by

F(X, t) := Gradϕ(X, t) , V := Dtϕ(X, t) and F(X, t) := Gradϕ(X, t) , V := Dtϕ(X, t) . (1)

Thereby the interface gradient and divergence operators, respectively, read

Grad{•} := Grad{•} · I and Div{•} := Grad{•} : I with I := I − N ⊗ N , (2)

where I and I denote the interface and bulk unit tensors. Their spatial counterparts are denoted i and i. Finally the

bulk and interface Jacobians are denoted by J := detF > 0, and J := det F > 0, respectively, with det{•} denoting the

area determinant [44].
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Table 2: Localized force, energy and entropy balances in the bulk and on the interface in the material configuration. The notation {•}p is to denote
prescribed quantities.

Force balance DivP + Bp = 0 in B0 B̂p = P · N on ∂BN
0

Div P + Bp = −~P� · N on I0 B̃p = P · Ñ on ∂IN
0

Energy −P : GradV + DivQ − Qp + DtE = 0 in B0 Q̂p = −Q · N on ∂BN
0

−P : Grad V + Div Q − Qp + DtE = −~Q� · N on I0

Entropy DivH − Hp + DtΞ ≥ 0 in B0 Ĥp = −H · N on ∂BN
0

Div H − Hp + DtΞ ≥ −~H� · N on I0 H̃p = −H · Ñ on ∂IN
0

Bp force vector per unit volume B̂p surface traction per unit area

Bp force vector per unit area B̃p curve traction per unit length

Q bulk heat flux vector per unit area Q interface heat flux vector per unit length

H bulk entropy flux vector per unit area H interface entropy flux vector per unit length

Qp bulk heat source per unit volume Q̂p surface heat source per unit area

Qp interface heat source per unit area Q̃p curve heat source per unit length

Hp bulk entropy source per unit volume Ĥp surface entropy source per unit area

Hp interface entropy source per unit area H̃p curve entropy source per unit length

E bulk internal energy per unit volume E interface internal energy per unit area

Balance of angular momentum results in the symmetry of the bulk Cauchy stress, i.e. P·Ft = F·Pt and the interface Cauchy stress, i.e. P·Ft = F·Pt

in the material configuration.

3. Governing equations

The local balance equations of force, energy and entropy in the bulk and on the interface together with the associated

boundary conditions are listed in Table 2 [see 21, for further details]. The here considered interface model deals with

interfaces that are

• mechanically coherent, ~ϕ� = 0,

• mechanically energetic, thus ~P� · N , 0 and

• thermally general imperfect, ~Q� · N , 0 and ~Θ� , 0.

The third property, i.e. thermal general imperfection of the interface is characterized by allowing a jump both in the

temperature and the normal heat flux, ~Θ� , 0 and ~Q� · N , 0, respectively, across the interface. Also note that a

thermally GI interface is fully dissipative. See section 3 for further elaborations.

Remark 2 In what follows we briefly discuss different kinds of thermal interfaces:

• a thermally perfect interface is recovered when ~Q� · N = 0 and ~Θ� = 0;
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• a highly-conductive interface imposes a vanishing temperature jump across the interface, while allowing for
the jump of normal heat flux across the interface, i.e. ~Θ� = 0 and ~Q� · N , 0. Note that a continuous
temperature distribution across the interface does not necessary imply a HC interface. See [28] for further
details. Furthermore, an HC interface is non-dissipative due to the vanishing temperature jump across the
interface, which results in the interface temperature to be identical to the bulk temperatures on the two sides of
the interface;

• a lowly-conductive (LC) interface allows for a temperature jump but not for a jump in the normal heat flux
across the interface, i.e. ~Θ� , 0 and ~Q� · N = 0. This model is subject to Kapitza’s assumption of thermal
resistance. Note that a LC interface is semi-dissipative (possessing only one dissipation contribution, see sec-
tion 3 for further discussions). For this interface a connection between the interface and the bulk temperature,
in general, can not be drawn;

• a semi-dissipative (SD) interface is a generalization of the LC interface so that the jump in both the temperature
and the normal heat flux is admissible, i.e. ~Q� · N , 0 and ~Θ� , 0. Analogous to the LC interface, the same
dissipation contribution is non-vanishing for a SD interface. However, unlike a LC interface, the SD interface
imposes a relation between the interface and the bulk temperature, or more precisely between what we call
interface and bulk coldness. The coldness here is defined as the inverse of the temperature;

• a fully-dissipative (FD) interface is a GI interface, similar to a SD interface in the sense that both ~Q� ·
N , 0 and ~Θ� , 0 are admissible. Nonetheless, a FD interface is generalized to possess two dissipation
contributions. Consequently, a relation in general between interface and bulk temperature cannot be established
(analogously to an LC interface). Additionally, for a FD interface the interface temperature shall be considered
as an independent degree of freedom.

Furthermore, both thermal and mechanical properties of the interface are affected by the interface in-plane degra-

dation. In doing so a reduction factor [1 − D‖] is introduced, which reduces the mechanical and in-plane thermal

properties of the interface as the damage D‖ evolves. The out-of-plane thermal properties of the interface, the sensi-

tivity s0 and the Kapitza thermal resistance r0
Q, are inversely affected by the reduction factor, i.e. s = s0/[1 − D‖] and

rQ = r0
Q/[1 − D‖]. Note that in this work the damage variable is a function of the non-local equivalent distortion Fnloc,

which in turn depends on the interface deformation gradient F and temperature Θ. The interface Piola stress P is a

superficial tensor field possessing the property P ·N = 0. It is noteworthy to mention that the interface is mechanically

coherent and due to the interface energetics, a discontinuity in the traction across the interface is allowed and hence

~P� · N , 0.

Next the bulk and interface free energies, the corresponding constitutive relations and temperature evolution equa-

tions are give in Table 3. Note that 0 ≤ D‖
(
F, Θ

)
≤ 1, ϑ is an internal variable, k and k0 denote the bulk and interface

positive (semi-)definite thermal conductivity tensors. For thermally isotropic materials in the spatial configuration,

k = k i and k0 = k0 i , where the scalars k ≥ 0 and k0 ≥ 0 are the thermal conductivity coefficients in the bulk and

on the interface, respectively. The heat capacity coefficients in the bulk and on the interface are denoted by cF and

cF =
[
1 − D‖

]
c0

F
, where c0

F
is the interface heat capacity coefficient associated with the undamaged (virgin) state of

the interface material.
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Table 3: Bulk and interface free energies, the corresponding constitutive relations and temperature evolution equations.

Free energy Ψ ≡ Ψ (F, Θ) in B0

Ψ ≡ Ψ
(
F, Θ,D‖, ϑ

)
= [1 − D‖]Ψ0 on I0

Constitutive relations P := ∂Ψ/∂F and Ξ := −∂Ψ/∂Θ in B0

P := ∂Ψ/∂F = [1 − D‖]P0 and Ξ := −∂Ψ/∂Θ = [1 − D‖]Ξ0 on I0

Q = −JF−1 · k · F−t · GradΘ in B0

Q = −J F−1 · [1 − D‖]k0 · F−t · GradΘ on I0

Temperature evolution cFDtΘ = −DivQ + Θ∂ΘP : Dt F + Qp with cF := −Θ∂
2Ψ

∂Θ2 in BN
0

cFDtΘ = −Div Q + Θ∂ΘP : Dt F + Qp − ~Q� · N with cF := −[1 − D‖]Θ
∂2Ψ0

∂Θ2
on IN

0

To proceed a Helmholtz energy2 is considered for the interface containing the following arguments [21]

Ψ
(
F, Θ,D, ϑ

)
=

[
1 − D

]
Ψ0

(
F, Θ

)
+

∫ ϑ

0
H(ϑ∗)dϑ∗ , (3)

whereH(ϑ) denotes a monotonically increasing function depending on the internal variable ϑ. Now by differentiating

Eq. (3) with respect to time, particularizing the Clausius-Plank inequality and making use of the constitutive relations,

one expresses the interface reduced dissipationDred as [see 21, for further details]

Dred = Y Ḋ‖ −H(ϑ)ϑ̇︸           ︷︷           ︸
D‖

+Θ
[
~Θ−1�{{Q}} −

[
Θ−1 − {{Θ−1}}

]
~Q�

]
· N

︸                                               ︷︷                                               ︸
D∦

≥ 0 with Y = Ψ0(F, Θ) = − ∂Ψ

∂D‖
, (4)

where the quantity Y is the thermodynamic force conjugate to the interface damage variable D‖. Next, together with

satisfyingD‖ ≥ 0 a damage condition Υ is introduced as [43]

Υ
(
Y , H

)
= υ

(
Y
)
−H

(
ϑ
)
≤ 0 , (5)

with υ being a monotonically increasing function. The damage evolution law and the Kuhn-Tucker conditions can be

obtained from the postulate of maximum dissipation using the Lagrange-multiplier method. Now by choosing υ(•) =

H(•), and defining the change of variables Fmax := f
(
ϑ
)

and Fnloc := f
(
Y
)

and assuming f to be a monotonically

increasing function with the property f (0) = 0, an alternative damage condition to Eq. (5) takes the form extended to

2The integral term in Eq. (3) is introduced in analogy with that of Simo and Hughes [41, section. 1.3.3] and is the energy storage in the material
due to the accumulation of microscopic defects.
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integral-type non-locality [21]

φ
(
Fnloc, Fmax

)
= Fnloc − Fmax ≤ 0 with Fnloc

(
xr

)
=

∫

I0

ω
(
xr, xs

)
F loc (xs) dA and F loc :=

√
2Y

E
, (6)

where Fmax(t) = max
s∈[0, t]

{
F0, Fnloc

∣∣∣
s

}
, F0 is the damage threshold, F loc is the local equivalent distortion, and E is the

interface Young’s modulus. Note that the damage variable is eventually simply a function of Fmax, i.e. D‖ = D ‖(Fmax).

In Eq. (6)2, ω
(
xr, xs

)
is a given non-local weight function depending on the geodesic distance r = ‖xr − xs‖I between

the source point xs and the receiver point xr. On the interface the weight function ω here is defined as

ω
(
xr, xs

)
=

ω0 (r)∫

I0

ω0 (r) dA
with ω0 (r) =



[
1 − r2

R2

]2

if |r| ≤ R ,

0 if |r| ≥ R ,

(7)

where ω0 (r) is a non-negative and monotonically decreasing (for r ≥ 0) piecewise polynomial bell-shaped function.

The interface interaction radius is denoted by R. The damage function, relating D‖ to the history variable Fmax is given

F

P

FF0

F

D‖

F0

1

Figure 3: Stress vs. non-local equivalent distortion with exponential softening on the interface (a). Damage variable vs. non-local equivalent
distortion associated with Fig. 8 (b). The parameters F0 and Ff are the interface critical equivalent distortion and ductility response.

as follows (see Fig. 3(b)):

D‖ = D ‖
(
Fmax

)
=



0 if Fmax ≤ F0

1 − F0

Fmax

exp
−Fmax − F0

Ff − F0

 if Fmax ≥ F0 ,

(8)

where Ff affects the ductility of the response. An illustration is depicted in Fig. 3(a).
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To satisfy D∦ ≥ 0 in Eq. (4)1, using the relation ~Θ−1� = −~Θ�{{Θ−1}}{{Θ}}−1, we enforce the fulfillment of the

following two conditions:

1D∦ = −~Θ�{{Q}} · N ≥ 0 and 2D∦ = −
[
Θ−1 − {{Θ−1}}

]
~Q� · N ≥ 0 . (9)

Remark 3 For the interface considered here both dissipation contributions in (9) are positive and hence the interface
is termed fully dissipative. For a HC interface both of these dissipation contributions vanish since ~Θ� = 0. Both
SD and LC interface allow for 1D∦ to be nonzero since ~Θ� , 0. The difference however is that for a SD interface
~Q� · N , 0 and [Θ−1 − {{Θ−1}}] = 0, whereas for an LC interface ~Q� · N = 0 and a relation between the interface
and the bulk temperatures is in general unknown (see also Remark 2).

To this end, Fourier-like relations are introduced as follows:

~Θ� = − r0
Q

[1 − D‖]
{{Q}} · N and Θ−1 − {{Θ−1}} = − s0

[1 − D‖]
~Q� · N , (10)

where r0
Q ≥ 0 and s0 ≥ 0 are the undamaged (virgin) Kapitza resistance coefficient and the thermal sensitivity,

respectively. As the interface damage grows and thus the reduction factor [1 − D‖] decreases, one expects a more

pronounced jump in the temperature across the interface and a less strong coupling between the bulk and the interface

temperatures due to r0
Q/[1 − D‖] and s0/[1 − D‖] taking higher values. This observation is illustrated by the numerical

results which will be presented later.

4. Computational framework

In this section we establish a numerical framework that encompasses thermo-hyperelasticity combined with a non-

local damage model on the thermally general imperfect and mechanically coherent energetic interface. The weak form,

together with its temporal and spatial discretizations will be presented next. The localized force balance equations

in the bulk and on the interface given in Table 2 are tested with vector valued test functions δϕ ∈ H 1(B0) and

δϕ ∈ H 1(I0), respectively. By integrating the result over all domains in the material configuration, using the bulk

and interface divergence theorems and the superficiality properties of the interface Piola stress, the weak form of the

balance of linear momentum reads
∫

B0

P : GradδϕdV +

∫

I0

[1 − D‖]P0 : GradδϕdA

−
∫

B0

δϕ · BpdV −
∫

I0

δϕ · BpdA −
∫

∂BN
0

δϕ · B̂p
NdA −

∫

∂IN
0

δϕ · B̃p
NdL = 0 ,

∀δϕ ∈H 1(B0) , ∀δϕ ∈H 1(I0) with δϕ = {{δϕ}}|I0 and ~δϕ� = 0 .

(11)

Analogously the thermal weak form is derived first by testing the local temperature evolutions (see Table 3) in the

bulk and on the interface with the scalar-valued test function δΘ ∈ H 1
0 (B0) and δΘ ∈ H 1

0 (I0), respectively . The
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result is then integrated over the corresponding domains in the material configuration resulting in the global weak

form of the temperature evolution equation as follows:

∫

B0

Q · GradδΘ − δΘcFDtΘ + δΘQp + δΘΘ∂ΘP : Dt FdV +

∫

∂BN
0

δΘ Q̂p
N dA

+

∫

I0

[1 − D‖]Q0 · GradδΘ − δΘ[1 − D‖]c0

F
DtΘ + δΘQp + δΘΘ

[
[1 − D‖]∂ΘP0 − ∂ΘD ‖P0

]
: Dt FdA (12)

−
∫

I0

~δΘ�[1 − D‖]
1
r0

Q
~Θ� − [δΘ − {{δΘ}}][1 − D‖]

1
s0

[
Θ−1 − {{Θ−1}}

]
dA = 0

∀δΘ ∈H 1(B0) and ∀δΘ ∈H 1(I0) ,

where Q0 = −J F−1 · k0 · F−t · GradΘ, is the undamaged heat conduction along the interface.

It is of great importance to mention that the current model can be simplified into other interface models. By setting

the damage variable to zero, the model in [33] is retrieved, where a non-degrading thermally GI and mechanically

coherent energetic interface is studied. A degrading HC interface model is obtained as in [21] by setting ~Θ� = 0, and

consequently {{Θ}} = Θ, which then results in the last integral in Eq. (12) to vanish. A degrading LC interface can be

modeled as in [20] by removing the second term in the last integral, due to the fact that the jump of normal heat flux

across interface vanishes (see relation 102). The finite element implementation is now given in Appendix A.

5. Numerical examples

In this section we study the computational aspects of thermally GI and mechanically coherent energetic interfaces

subject to in-plane degradation and their effects on the overall response of the body. The in- and out-of-plane thermo-

mechanical response of the interface is affected by the interface in-plane degradation. In particular, we focus on the

influence of interface damage on the out-of-plane thermal properties of the interface, i.e. s0 and r0
Q. It is important to

point out that the solution procedure is robust and shows the asymptotically quadratic rate of convergence associated

with the Newton–Raphson scheme. The computational domain is discretized using 1600 trilinear hexahedral elements.

The reversible material behavior in the bulk and on the interface is characterized by a thermo-hyperelastic Helmholtz

energy functions. The damage affects the interface response by reducing the interface stiffness, heat capacity and heat

conduction coefficient, and increasing the Kapitza coefficient r0
Q and thermal sensitivity s0. Table B.5 in Appendix B

gathers the effective (undamaged) Helmholtz energy functions together with their corresponding derivatives both in

the bulk and on the interface. The corresponding material parameters for the bulk and interface are given in Table 4.

Consider now the strip shown in Fig. 4 where a constant displacement is prescribed at the two opposite faces. The

strip is partitioned into two homogeneous domains by an interface. The width and the thickness of the strip are kept

constant. The thermal boundary condition is globally adiabatic i.e Q̂p = Q̃p = 0. The thermal initial condition is a

12



Table 4: Material properties assumed in the numerical examples.

bulk interface

Lamé constant µ 80193.8 N/mm2 µ 2 × 80193.8 N/mm

Lamé constant λ 110743.5 N/mm2 λ 2 × 110743.5 N/mm

compression modulus κ 164206.03 N/mm2 κ 2 × 190937.3 N/mm

specific heat capacity cF 3.588 N/[mm2K] c0
F 3.588 N/[mmK]

heat conduction coeff. k 45 N/[sK] k0 100 × 45 Nmm/[sK]

heat expansion coeff. α 10−5 1/K α [0 − 1.5] × 10−5 1/K

initial temperature Θ0 298 K Θ0 298 K

only interface

F0 0.005 Ff 0.1

thermal resistance r0
Q 0.1 mm sK/N R 0.1 mm

Note that κ = λ + 2/3 µ and κ = λ + µ.

1 1

r = 1/
√
2

z

x y

0.5 × d

−0.5 × d

d
y

z

Q̂ = Q̃ = 0

Θ0 = 298[ ]

Figure 4: Strip with curved interface, (a) geometry and (b) applied boundary conditions. Dimensions are in mm. The thickness is 0.05.

uniformly distributed temperature Θ0 = 298 K. In order to better understand the influence of a thermo-mechanical GI

interface on the overall response of the body, all thermo-mechanical properties of the bulk are fixed. Similar examples

of intact (non-degrading) LC, HC and GI interfaces can be found respectively in [29, 30, 33]. Degrading HC and LC

interfaces are studied in the recent contributions [20, 21], respectively. It is mentioned that to obtain an HC interface

behavior from the current model, one can assign infinitesimal values to s0 and r0
Q, which causes both dissipation

contributions in (9) to vanish. An LC interface is obtained by setting only s0 ≈ 0, while r0
Q is assigned a finite value.

Note that we use Fourier-like relations (10) to fulfill the inequalities in (9).

In the first example we focus on the conductivity of a degrading interface. The domain is stretched up to 100% of

its initial length in 40 equal steps where the total time is 10 ms. Note that for this example c0

F
= α = 0, k0/k = 100
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s0 k0/k = 100

s = 10−5 s0 = 10−6 s0 = 10−7 s = 10−10

Θ Θ
Θ Θ

s0 = 10−5 s0 = 10−6 s0 = 10−7 s0 = 10−10

Θ Θ Θ Θ

Figure 5: The bulk temperature distribution of the strip stretched up to 100% of its original length for µ/µ = λ/λ = 2 mm, r0
Q = 0.1 and

k0/k = 100 mm. Results (a)-(d) correspond to the intact interface, whereas results (e)-(h) correspond to the degrading interface.

s0 c0

F
/cF = 1.0

s0 = 10−5 s0 = 10−6 s0 = 10−7 s0 = 10−10

Θ Θ Θ Θ

s0 = 10−5 s0 = 10−6 s0 = 10−7 s0 = 10−10

Θ Θ Θ Θ

Figure 6: The bulk temperature distribution of the strip stretched up to 30% of its original length for µ/µ = λ/λ = 2 mm, r0
Q = 0.1 and c0

F
/cF =

1 mm. Results (a)-(d) correspond to the intact interface, whereas results (e)-(h) correspond to the degrading interface.

mm, r0
Q = 0.1, and s0 varies from 10−5 to 10−10. The results of two cases, undamaged and damaged interface, are

compared and depicted in Fig. 5. It is observed that the temperature distribution along the intact interface is more
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s0 c0

F
/cF = 1.0

s0 = 10−5 s0 = 10−6 s0 = 10−7 s0 = 10−10

Θ Θ Θ Θ

s0 = 10−5 s0 = 10−6 s0 = 10−7 s0 = 10−10

Θ Θ Θ Θ

Figure 7: The interface temperature distribution of the strip stretched up to 30% of its original length for µ/µ = λ/λ = 2 mm, r0
Q = 0.1 and

c0

F
/cF = 1 mm. Results (a)-(d) correspond to the intact interface, whereas results (e)-(h) correspond to the degrading interface.

uniform (see Fig. 5(a)-(d)) than the one along the damaging interface ((see Fig. 5(e)-(h))). Moreover, a degrading

interface causes a higher temperature jump across the interface due to the fact that r0
Q/[1 − D‖] assumes higher values

as damage evolves. One should note that the simplified interface evolution equation of this example takes the form

Div([1 − D‖]Q) = −~Θ�, thus a jump in the normal heat flux shall be observed. We point out that, since the interface

here is fully dissipative, in contrast to an HC interface, it allows for a jump in the temperature across the interface.

Also, along a non-degrading HC interface with high enough value for the interface conduction coefficient such as

k0/k = 100 mm, a uniform temperature distribution is achieved. This observation however cannot be made for either

an intact or a degrading GI interface. See Fig. 5(d) and (h)), respectively.

In the second example the effects of the interface heat capacity are studied. The domain here is stretched up to

30% of its initial length in 15 equal steps where the total time is 10 ms. Note that for this example k0 = α = 0,

c0

F/cF = 1 mm, and s0 ranges from 10−5 to 10−10. Analogous to the previous example two cases of intact and

damaged interface are considered here and shown in Fig. 6 and Fig. 7. From Fig. 6 one finds that the intact interface

is more capable of maintaining its initial temperature (also see Fig. 7(a)-(d)). On the other hand the domain cools

down due to the Gough–Joule effect. These two different responses create the non-uniform temperature distribution

in the domain containing the intact interface, as depicted in Fig. 6(a)-(d). On the contrary, a degrading interface

can not retain its initial temperature (see Fig. 7(e)-(h)), causing in general a more uniform temperature distribution

in the domain as shown in Fig. 6(e)-(h). Note that for this example interface temperature evolution simplifies to
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α/α s0 = 10−10

α/α = 0 α/α = 0.03 α/α = 0.15 α/α = 1.5

Θ Θ Θ Θ

α/α = 0 α/α = 0.03 α/α = 0.15 α/α = 1.5

Θ Θ Θ Θ

Figure 8: The bulk temperature distribution of the strip stretched up to 100% of its original length for µ/µ = λ/λ = 2 mm, r0
Q = 0.1 and s0 = 10−10.

Results (a)-(d) correspond to the intact interface, whereas results (e)-(h) correspond to the degrading interface.

α/α

α/α = 0.0 α/α = 0.03 α/α = 0.15 α/α = 1.5

Θ Θ Θ Θ

α/α = 0.0 α/α = 0.03 α/α = 0.15 α/α = 1.5

Θ Θ Θ Θ

Figure 9: The bulk temperature distribution of the strip stretched up to 100% of its original length for µ/µ = λ/λ = 2 mm. Results (a)-(d)
correspond to the intact highly-conductive interface, whereas results (e)-(h) correspond to the degrading highly conductive interface. See [21] for
further details.

[1−D‖]c0

F
DtΘ = −~Q� · N, meaning that a jump in the normal heat flux across the interface is present. Here we draw

our attention as well to the difference between a thermally GI and HC interface. As mentioned before an HC interface
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implies no temperature jump across the interface, and consequently the interface temperature becomes the average of

the bulk temperatures on the two sides of the interface. Observing Fig. 6 and Fig. 7, one concludes that a jump in the

temperature is clearly present across the interface, and the interface temperature is not the average of the surrounding

bulk temperatures.

α/α s0 = 10−10

α/α = 0 α/α = 0.03 α/α = 0.15 α/α = 1.5

Θ Θ Θ Θ

α/α = 0 α/α = 0.03 α/α = 0.15 α/α = 1.5

Θ Θ Θ Θ

Figure 10: The interface temperature distribution of the strip stretched up to 100% of its original length for µ/µ = λ/λ = 2 mm, r0
Q = 0.1 and

s0 = 10−10. Results (a)-(d) correspond to the intact interface, whereas results (e)-(h) correspond to the degrading interface.

In the final example we turn our attention to the interface Gough–Joule effect by setting k0 = c0

F
= 0, s0 = 10−10

and ranging α/α from 0 to 1.5. The domain here is stretched up to 100% of its initial length in 40 equal steps where

the total time is 10 ms. The temperature evolution equation in this case simplifies to

~Q� · N = Θ∂Θ

(
[1 − D‖]P0

)
: Dt F =

[
Θ[1 − D‖]∂ΘP0 − Θ∂ΘD‖P0

]
: Dt F .

From Fig. 8 and Fig. 10 we observe that the intact interface cools down under the increasing load due to the Gough–

Joule effect more than the degrading interface. Moreover, it is shown that higher temperature jumps and less strong

coupling between the interface and bulk temperatures are achieved when the interface is allowed to degrade since

r0
Q/[1 − D‖] and s0/[1 − D‖] assume higher values as damage evolves (compare Fig. 8(f)-(h) to Fig. 8(a)-(d)). Finally,

the highest level of interface deformation is observed in this example due to the presence of the thermo-mechanical

coupling term (α , 0) in the interface effective Helmholtz energy. A comparison is also made between a thermally GI

and HC interface by providing Fig. 9 which illustrates a HC interface under the same conditions as the thermally GI

interface shown in Fig. 8. The first observation, as expected, is the vanishing temperature jump across the HC interface.

One can also notice that the HC interface in general retains to a larger extend its initial temperature. Although the
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intact thermally GI and HC interfaces have the lowest temperates in the middle of the interface (see Fig. 10(a)-(d) and

Fig. 9), the thermally GI interface temperature, unlike the HC interface temperature, is not coupled to its surrounding

bulk temperatures. This means a thermally GI interface is allowed to be colder or warmer than the bulk (see Fig. 10(h)

and Fig. 8(h) where the interface is colder than the bulk). Note that for a HC interface the temperature is strongly

coupled to that of the bulk by being the average of the adjacent bulk temperatures. Finally the difference between

a thermally GI and a HC interface becomes even more pronounced when in-plane degradation is allowed to initiate.

Now, a degrading thermally GI interface loses its initial temperature at its two ends more drastically, while on a HC

interface the coldest region is the middle of the interface.

6. Summary and conclusion

A theoretical and computational framework for continua containing thermally general imperfect and mechanically

coherent energetic interfaces was outlined. The corresponding mechanical and thermal weak forms of the balance

equations were given. The balance equations were fully discretized using the finite element method in space. The

effects of the in-plane degradation on the in- and out-of-plane thermo-mechanical properties of the interface and the

overall response of the body were also taken into account by introducing a tangential reduction factor. With the

evolution of damage, the in-plane properties, i.e. interface stiffness, heat expansion coefficient, conduction coefficient

and heat capacity coefficient are reduced, whereas the out-of-plane properties, i.e. the Kapitza resistance coefficient

and sensitivity, are increased. The increase of the out-of-plane thermal properties results in a higher temperature jump

and a weaker coupling between interface and bulk temperatures. The tangential damage variable is a function of the

equivalent distortion which is non-localized using integral-type averaging.

A series of numerical examples served to elucidate the theory presented in this work. It was shown that the

degraded interface undergoes more deformation. In addition, as the heat conduction coefficient is reduced with the

damage evolving, higher temperature gradients along the interface were observed. It was also illustrated that an

interface retains its initial temperature to a larger extend due to the reduced heat expansion coefficient. The degrading

interface was shown to be less capable of being resistant to temperature changes as a result of the reduced specific

heat capacity. We also observed that in general, in all the examples higher temperature jumps across the interface and

less strong coupling between the interface and bulk temperatures are attributed to damage of the interface. Finally in

all the examples, asymptotically quadratic convergence associated with the Newton–Raphson scheme was achieved.

One consequent extension to this work is to study the role of the out-of-plane degradation of the interface material

(cohesive damage) on the thermo-mechanical response of a thermally general imperfect and mechanically energetic

interface. This includes introducing non-coherent deformation into the current formulation by allowing a displacement
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jump across the interface, which requires the use of a cohesive zone model. Such extension shall be discussed in later

contributions.
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Appendix A. Finite element implementation

In order to apply the finite element method to the present problem, the weak forms Eq. (11) and (12) are discretized

in space and time. The time interval T is subdivided into a set of intervals ∆t := tτ+1 − tτ with

T =

nts⋃

τ=0

[tτ, tτ+1] , (A.1)

where nts denotes the number of time steps. The spatial discretization is performed using the Bubnov–Galerkin finite

element method. The geometry and temperature of the bulk and interface together with the jump and average of

temperature over the interface are approximated as a function of the natural coordinates ξ ∈ [−1, 1]3 and ξ̄ ∈ [−1, 1]2

assigned to the bulk and the interface, respectively. Using standard interpolations according to the isoparametric

concepts we obtain

X |Bβ0 ≈ Xh (ξ) =

nnB∑

i=1

N i (ξ) Xi , X |Iγ0 ≈ Xh
(
ξ
)

=

nnI∑

i=1

N i
(
ξ
)

Xi,

ϕ |Bβ0 ≈ ϕ
h (ξ) =

nnB∑

i=1

N i (ξ)ϕi, ϕ |Iγ0 ≈ ϕ
h
(
ξ
)

=

nnI∑

i=1

N i
(
ξ
)
ϕi,

Θ |Bβ0 ≈ Θ
h (ξ) =

nnB∑

i=1

N i (ξ)Θi, Θ |Iγ0 ≈ Θ
h
(
ξ
)

=

nnI∑

i=1

N i
(
ξ
)
Θi ,

~Θ� |Iγ0 ≈ ~Θ�
h
(
ξ
)

=

nnI∑

i=1

N i
(
ξ
)
~Θ�i, {{Θ}} |Iγ0 ≈ {{Θ}}

h
(
ξ
)

=

nnI∑

i=1

N i
(
ξ
)
{{Θ}}i ,

(A.2)

where Bβ0 and Iγ0 are the βth and γth element in the bulk and on the interface, respectively. The shape functions of the

bulk and interface elements at a local node i are denoted by N i and N i, respectively. Every bulk and interface element

consists of nnB and nnI nodes, respectively.

Now, the fully discrete (spatially and temporally) form of mechanical and thermal residuals associated with the
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global node I are defined by3

[
totRI

ϕ

]
τ+1

=

∫

B0

Pτ+1 · GradN IdV −
∫

B0

N I Bp
τ+1dV

+

∫

I0

[
[1 − D‖]P0

]
τ+1
· Grad N IdA −

∫

I0

N I Bp
τ+1dA , (A.3)

and

[
totRI

Θ

]
τ+1

= −
∫

B0

Qτ+1 · GradN I + Qp
τ+1N IdV −

∫

I0

[
[1 − D‖]Q0

]
τ+1
· Grad N I + Qp

τ+1N IdA

−
∫

B0

Θτ+1 [∂ΘP]τ+1 :
1
∆t

[Fτ+1 − Fτ] N I − cF
1
∆t

[Θτ+1 − Θτ] N IdV

−
∫

I0

Θτ+1

[
∂Θ

(
[1 − D‖]P0

)]
τ+1

:
1
∆t

[
Fτ+1 − Fτ

]
N I − [1 − D‖]c0

F

1
∆t

[
Θτ+1 − Θτ

]
N IdA

−
∫

I0

[1 − D‖]
1
s0

[
Θ−1 − {{Θ−1}}

]
N IdA

−
∫

I−0
[1 − D‖]

1
r0

Q
N I~Θ�τ+1dA +

∫

I+
0

[1 − D‖]
1
r0

Q
N I~Θ�τ+1dA .

(A.4)

Note that mechanical and thermal residuals are composed of contributions from both the bulk and interface. Moreover

although the integrands of the last two integrals in Eq. (A.4) are identical, the domains over which these integrals are

taken are different. This is due to the fact that the interface is thermally general imperfect. The global mechanical and

thermal residual vectors take the form

totR =



totRϕ

RΘ

totRΘ



with totRϕ =



R1
ϕ

...

RI
ϕ

...

RnBn
ϕ



+



R1
ϕ

...

RI
ϕ

...

RnIn
ϕ



, RΘ =



R1
Θ

...

RI
Θ

...

RnBn
Θ



and totRΘ =



R1
Θ

...

RI
Θ

...

RnIn
Θ


︸︷︷︸
RΘ

+



R1±
Θ

...

RI±
Θ

...

Rn±In
Θ


︸︷︷︸
RΘ±

, (A.5)

where nBn and nIn denote the number of bulk and interface nodes. The summation operator implies the (conventional)

residual assembly of the finite element method. Note that total interface thermal residual totRΘ is composed of contri-

butions from interface residuals corresponding to the degrees of freedom Θ and Θ±, respectively denoted by RΘ and

RΘ± . Both of the above thermal residuals contribute to the total thermal residual, i.e. totRΘ = RΘ + totRΘ.

3In what follows, for the sake of brevity, homogeneous Neumann boundary conditions are assumed and hence, some integrals vanish. The
integrals are standard and require no additional care.
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The fully-discrete coupled non-linear system of governing equations can be stated as follows:

totR
(

totd
) !

= 0 with totd =



dϕ

dΘ

dΘ


, (A.6)

where totd is the unknown global vector of spatial coordinates dϕ and temperature dΘ and dΘ. To solve (A.6)1, a

Newton–Raphson scheme is utilized. Thus, the consistent linearization of the resulting system of equations yields the

total (algorithmic) tangent stiffness matrix for every pair of global nodes I and J, as

totKIJ :=
∂totRI

∂totdJ where totKIJ =



KIJ
ϕϕ KIJ

ϕΘ 0

KIJ
Θϕ KIJ

ΘΘ
0

0 0 0


+



totKIJ
ϕϕ

totKIJ
ϕΘ

totKIJ
ϕΘ

totKIJ
Θϕ

totKIJ
ΘΘ

totKIJ
ΘΘ

totKIJ
Θϕ

totKIJ
ΘΘ

totKIJ
ΘΘ


︸                            ︷︷                            ︸

totKIJ

, (A.7)

with totKIJ being defined as



totKIJ
ϕϕ = KIJ

ϕϕ
totKIJ

ϕΘ = KIJ
ϕΘ+ + KIJ

ϕΘ−
totKIJ

ϕΘ
= KIJ

ϕΘ

totKIJ
Θϕ = KIJ

Θ+ϕ + KIJ
Θ−ϕ

totKIJ
ΘΘ

= KIJ
Θ+Θ+ + KIJ

Θ+Θ− + KIJ
Θ−Θ+ + KIJ

Θ−Θ−
totKIJ

ΘΘ
= KIJ

Θ+Θ
+ KIJ

Θ−Θ

totKIJ
Θϕ

= KIJ
Θϕ

totKIJ
ΘΘ

= KIJ
ΘΘ+

+ KIJ
ΘΘ−

totKIJ
ΘΘ

= KIJ
ΘΘ


. (A.8)

Note that totK is also decomposed into contributions from the bulk and the interface. The bulk contributions to the

total stiffness matrix are given as

KIJ
ϕϕ =

∂RI
ϕ

∂ϕJ =

∫

B0

Grad N I · [∂F P] · Grad N JdV ,

KIJ
ϕΘ =

∂RI
ϕ

∂ΘJ =

∫

B0

N J [∂ΘP] · GradN IdV ,

KIJ
Θϕ =

∂RI
Θ

∂ϕJ =

∫

B0

−N I
[
∂(Θ∂ΘP : Dt F)

∂F

]
· GradN J − GradN I · [∂FQ

] · GradN JdV ,

KIJ
ΘΘ =

∂RI
Θ

∂ΘJ =

∫

B0

−GradN I ·
[

∂Q
∂GradΘ

]
· GradN J + N I

[
cF

∆t
−

[
∂(Θ∂ΘP : Dt F)

∂Θ

]]
N JdV .

(A.9)

The interface contributions to the total stiffness matrix consist of local locK and non-local nlocK contributions. The
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local contributions locK, uniquely derived for a GI interface are as follows:

locKIJ
Θ±Θ

=
∂RI±

Θ

∂ΘJ
=

∫

I±0
[1 − D‖(xr)]

1
2s0

1

Θ2
N I N JdAr ,

locKIJ
ΘΘ±

=
∂RI

Θ

∂ΘJ± =

∫

I0

[1 − D‖(xr)]
1

2s0

1
[Θ±]2 N I N JdAr ,

locKIJ
Θ±Θ± =

∂RI±
Θ

∂ΘJ± =

∫

I±0
[1 − D‖(xr)]

1
4s0

1
[Θ±±]2 N I N JdAr ± ±

∫

I±0
[1 − D‖(xr)]

1
r0

Q
N I N JdAr ,

(A.10)

where dAr = dA(xr). The rest of interface local contributions to the total stiffness matrix are given as

locKIJ
ϕϕ =

∂RI
ϕ

∂ϕJ =

∫

I0

Grad N I · [1 − D‖(xr)]∂F P0(xr) · Grad N JdAr ,

locKIJ
ϕΘ

=
∂RI

ϕ

∂ΘJ
=

∫

I0

N J [1 − D‖(xr)]∂ΘP0(xr) · Grad N IdAr ,

locKIJ
Θϕ

=
∂RI

Θ

∂ϕJ =

∫

I0

−N I[1 − D‖(xr)]


∂(Θ∂ΘP0(xr) : Dt F)

∂F

 · Grad N JdAr

−
∫

I0

N I[−∂ΘD ‖(xr)]

∂(Θ P0(xr) : Dt F)

∂F

 · Grad N JdAr

−
∫

I0

Grad N I · [1 − D‖(xr)]
[
∂FQ0(xr)

]
· Grad N JdAr ,

locKIJ
ΘΘ

=
∂RI

Θ

∂ΘJ
=

∫

I0

−Grad N I · [1 − D‖(xr)]


∂Q0(xr)

∂GradΘ

 · Grad N JdAr

+

∫

I0

N I[1 − D‖(xr)]


c0

F

∆t
+

1

s0Θ2
−


∂(Θ∂ΘP0(xr) : Dt F)

∂Θ


 N JdAr

−
∫

I0

N I[−∂ΘD ‖(xr)]

∂(Θ P0(xr) : Dt F)

∂Θ

 N JdAr ,

(A.11)

where ∂ΘD ‖, using Eq. (6)2, 3, is computed as follows:

∂ΘD ‖(xr) = D ′‖∂ΘFnloc =⇒ ∂ΘFnloc(xr) =

∫

I0

ω(xr, xs)
1

EFloc(xs)
∂ΘΨ0(xs)dAs with D ′‖ = ∂FnlocD ‖ . (A.12)
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Next, the non-local corrections to the interface stiffness matrix are given as

nlocKIJ
ϕϕ =

∂RI
ϕ

∂ϕJ =

∫

I0

Grad N I · P0(xr) ⊗
[
−∂ϕJ D ‖(xr)

]
dAr ,

nlocKIJ
ϕΘ

=
∂RI

ϕ

∂ΘJ
=

∫

I0

[
−∂ΘJ D ‖(xr)

]
P0(xr) · Grad N IdAr ,

nlocKIJ
Θϕ

=
∂RI

Θ

∂ϕJ =

∫

I0

−N I ΘDt F :
[
−∂ΘP0 ⊗ ∂ϕJ D ‖ − P0 ⊗ ∂ϕJΘD ‖

]
xr

dAr

−
∫

I0

Grad N I · Q0(xr) ⊗
[
−∂ϕJ D ‖(xr)

]
+ N I

[
−∂ϕJ D ‖(xr)

] [
c0

F
DtΘ − 1

s0

[
Θ−1 − {{Θ}}−1

]]

xr

dAr ,

nlocKIJ
Θ±ϕ =

∂RI±
Θ

∂ϕJ =

∫

I±0
N I

[
−∂ϕJ D ‖(xr)

] 
1

2s0

[
Θ−1 − {{Θ}}−1

]
± 1

r0
Q
~Θ�


xr

dAr ,

nlocKIJ
ΘΘ

=
∂RI

Θ

∂ΘJ
=

∫

I0

−Grad N I ·
[
−∂ΘJ D ‖(xr)

]
Q0(xr) − N IΘ

[
−∂ΘJ D ‖∂ΘP0 − ∂ΘJΘD ‖P0

]
xr

: Dt F(xr) dAr

+

∫

I0

N I
[
−∂ΘJ D ‖(xr)

] [
c0

F
DtΘ − 1

s0

[
Θ−1 − {{Θ−1}}

]]

xr

dAr ,

(A.13)

where Dt F = [Fτ+1−Fτ]/∆t and DtΘ = [Θτ+1−Θτ]/∆t. The notation [{•}]xr means that the quantity {•} is evaluated at

point xr. In the derivation of the non-local corrections to the interface stiffness matrix the first and second derivatives

of damage variable with respect to the nodal coordinates and temperature ϕJ and ΘJ , at an arbitrary point xr , on the

interface, using Eq. (6)2, 3, are calculated as follows:

∂ΘJ D ‖(xr) = D ′‖∂ΘJ Fnloc =⇒ ∂ΘJ Fnloc(xr) =

∫

I0

ω(xr, xs)
1

EFloc(xs)
∂ΘΨ0(xs)N J(xs)dAs , (A.14)

∂ϕJ D ‖(xr) = D ′‖∂ϕJ Fnloc =⇒ ∂ϕJ Fnloc(xr) =

∫

I0

ω(xr, xs)
1

EFloc(xs)
∂FΨ0(xs) · Grad N J(xs)dAs , (A.15)

∂ϕJΘD ‖(xr) = D ′′‖ ∂ΘFnloc∂ϕJ Fnloc + D ′‖∂ϕJΘFnloc and ∂ΘJΘD ‖(xr) = D ′′‖ ∂ΘJ Fnloc∂ΘFnloc + D ′‖∂ΘJΘFnloc , (A.16)

where D ′′‖ = ∂FnlocD
′
‖ , dAs = dA(xs), and

∂ϕJΘFnloc(xr) =

∫

I0

ω(xr, xs)

−1

E2F3
loc

∂FΨ0∂ΘΨ0 +
1

EFloc

∂FΘΨ0


xs

· Grad N J(xs) dAs , (A.17)

∂ΘJΘFnloc(xr) =

∫

I0

ω(xr, xs)

−1

E2F3
loc

[
∂ΘΨ0

]2
+

1

EFloc

∂ΘΘΨ0


xs

N J(xs) dAs . (A.18)

Similarly the notation [{•}]xs means that the quantity {•} is evaluated at point xs. Note that by using the derivatives

(A.14)−(A.18) in the non-local corrections (A.13), the double integrals are introduced into the formulation due to

non-locality of the damage model. Furthermore during unloading we set D ′ = D ′′ = 0.
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Appendix B. Constitutive relations in the bulk and on the interface

Table B.5: Constitutive relations in the bulk and on the interface in the material configuration.

bulk

Ψ =
1
2
λ ln2 J +

1
2
µ [F : F − 3 − 2 ln J]

−3ακ[Θ − Θ0]J−1 ln J + cF [Θ − Θ0 − Θ ln(Θ/Θ0)] − Ξ0[Θ − Θ0]

P = λ ln JF−t + µ[F − F−t] − 3ακJ−1[Θ − Θ0][1 − ln J]F−t

Ξ = 3ακJ−1ln J + cF ln(Θ/Θ0) + Ξ0

∂F P = λ
[
F−t ⊗ F−t + ln J D

]
+ µ [I − D] + 3ακ[Θ − Θ0]

[
J−1[2 − ln J]F−t ⊗ F−t − J−1[1 − ln J]D

]

∂ΘP = −3ακJ−1[1 − ln J]F−t

∂Θ(Θ∂ΘP : Dt F) = −3ακJ−1[1 − ln J]divV

∂F(Θ∂ΘP : Dt F) = −3ακΘ
[
J−1[ln J − 2]divVF−t + J−1[1 − ln J]

[
Dt F : D + [1/∆t]F−t : I

]]

∂FQ = −Jk[F−1 · F−t ⊗ F−t + B] ·GradΘ , ∂GradΘQ = −JkG

D = ∂FF−t = −F−t⊗ F−1 , I = ∂FF = i⊗ I

B = ∂F
(
F−1 · F−t

)
= −[F−1 ⊗ F−1] · F−t − F−1 · [F−t ⊗ F−t] , G = F−1 · F−t

interface

Ψ0 =
1
2
λ ln2 J +

1
2
µ
[
F : F − 2 − 2 ln J

]

−2α κ[Θ − Θ0]J−1 ln J + c0

F

[
Θ − Θ0 − Θ ln(Θ/Θ0)

]
− Ξs[Θ − Θ0]

P0 = ∂FΨ0 = λ ln J F−t + µ[F − F−t] − 2α κJ−1[Θ − Θ0][1 − ln J]F−t

Ξ0 = 2α κJ−1ln J + c0

F
ln(Θ/Θ0) + Ξs , ∂ΘΨ0 = −Ξ0

∂F P0 = λ
[
F−t ⊗ F−t + ln J D

]
+ µ

[
I − D

]
+ 2α κ[Θ − Θ0]

[
J−1[2 − ln J]F−t ⊗ F−t − J−1[1 − ln J]D

]

∂ΘP0 = ∂FΘΨ0 = −2α κJ−1[1 − ln J]F−t , ∂ΘΘΨ0 = −c0

F
Θ−1

∂Θ(Θ∂ΘP0 : Dt F) = −2α κJ−1[1 − ln J]div V

∂F(Θ∂ΘP0 : Dt F) = −2α κΘ
[
J−1[ln J − 2]div V F−t + J−1[1 − ln J]

[
Dt F : D + [1/∆t]F−t : I

]]

∂FQ0 = −J k0[F−1 · F−t ⊗ F−t + B] ·GradΘ , ∂GradΘQ0 = −J k0G

D = ∂FF−t = −F−t⊗F−1 +
[
i − i

]
⊗ F−1 · F−t , I = ∂FF = i⊗ I

B = ∂F

(
F−1 · F−t

)
= t

[
F−1 · D

]
+ F−1 · D , G = F−1 · F−t
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