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SUMMARY

An optimization framework is developed for surface texture design in hydrodynamic lubrication. The
microscopic model of the lubrication interface is based on the Reynolds equation, and the macroscopic
response is characterized through homogenization. The microscale setting assumes a unilateral periodic
texture but implicitly accounts for the bilateral motion of the surfaces. The surface texture in a unit cell is
described indirectly through the film thickness, which is allowed to vary between prescribed minimum and
maximum values according to a morphology variable distribution that is obtained through the filtering of
a design variable. The design and morphology variables are discretized using either element-wise constant
values or through first-order elements. In addition to sharp textures, which are characterized by pillars and
holes that induce sudden transitions between extreme film thickness values, the framework can also attain
a variety of non-standard smoothly varying surface textures with a macroscopically isotropic or anisotropic
response. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Optimality of a design is often assessed both with respect to the macroscopic geometry as well as
with respect to the microscopic properties. The optimization of the structural geometry in order
to minimize or maximize a macroscopic objective is an area with many continuing challenges
and novel applications [1, 2]. Recent topology optimization studies address novel algorithms [3–5]
as well as the application of existing robust approaches to multi-material design [6–8], nonlinear
behavior [9, 10] and multiphysics scenarios ranging from heat transfer [11, 12] to piezoelectricity
[13, 14]. Interface topology can similarly be addressed [15, 16], including contact conditions [17].

The optimization of the constitutive behavior of the structural material as well as of the sur-
faces or interfaces is a complementary field that is less mature. This problem may be formulated
at a phenomenological level through the macroscopic governing equations for the constitutive
response. Alternatively, a microscopic problem may be formulated through a direct consideration
of the underlying microstructure. Because of the dramatic rise in computational power, such non-
phenomenological computational design of materials and surfaces can now be carried out and,
with the advent of scalable manufacturing techniques, these designs can be realized [18]. Conse-
quently, there has been a recent surge of interest in designing microstructures that can deliver a
desired macroscopic response. Such microstructures can have well-defined constituents as in fiber-
reinforced materials [14, 19] or rather flexible topologies with a linear or a nonlinear behavior
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[20–22] as well as entirely random ones [23–25]. In this study, a class of such design problems
will be addressed, which are relevant to tribology, namely, the optimal design of surface textures in
the context of hydrodynamic lubrication, with homogenization as the core scale-transition method
because of its well-established role in topology optimization [26–29].

One of the earliest attempts to optimization in the context of hydrodynamic lubrication is the
analysis of Lord Rayleigh [30] toward the determination of an optimal macroscopic surface geom-
etry of a slider bearing in order to maximize its load capacity. A similar analysis was later carried
out in [31] where a minimum constraint was placed on the film thickness and a pressure-dependent
viscosity was also considered. The slider in a hard disk drive can benefit from similar macroscale
optimization approaches, and many studies have focused on this design problem [32–38]. These
approaches were also extended to journal bearings [39, 40], with the additional possibility of con-
sidering a number of design variables, which include the maximum allowable pressure or fluid film
temperature rise [41–44].

In the summarized studies on macroscopic interface geometry design, the core of the optimiza-
tion algorithm relies on the Reynolds equation, particularly in the case of a focus on load capacity.
The Reynolds equation satisfactorily reflects hydrodynamic lubrication effects for a broad range of
interface parameters, and its solution delivers the pressure, which allows the interface to carry a
normal load [45, 46]. Based on the Reynolds equation, a number of recent studies have directly con-
centrated on the optimization of the mesoscopic interface geometry by fully or partially endowing
the surface typically with pillar-type features that have circular or square cross-sections [47–54].
However, a homogenization-based scheme that concentrates on the microscale through the design
of micro-textures with the purpose of attaining a prescribed macroscopic interface response appears
not to have been addressed in the literature. This situation is contrary to the case of microstructure
design for materials where various studies have been devoted to achieving a desired macroscopic
response via a rigorous homogenization-based framework, ranging from specific responses such as
a negative Poisson’s ratio or a negative thermal expansion coefficient to more general ones that are
assessed indirectly through a macroscopic structural objective [55–59]. The development of a sim-
ilar homogenization-based scheme in the context of hydrodynamic lubrication is the goal of the
present study.

The outline of this work is as follows. In Section 2, the homogenization theory for the Reynolds
equation is reviewed in a setting that allows for unilateral surface texture with bilateral surface
motion. Subsequently, the sensitivity analysis of the macroscopic tensors, which characterize the
homogenized response of the textured lubrication interface, is carried out in Section 3. This analysis
is carried out in terms of a design variable, which is subjected to discretization and filtering oper-
ations toward a morphology variable, which helps formulate the microscale optimization problem
in Section 4. Extensive numerical investigations in Section 5 demonstrate the ability of the design
framework to capture a variety of textures that may display macroscopically isotropic or anisotropic
responses, ranging from sharp ones with holes or pillars to ones that have a smoothly varying surface
topography. An outlook toward possible applications and improvements of the developed framework
is provided in Section 6.

2. HOMOGENIZATION OF THE REYNOLDS EQUATION

Presently, factors such as partial contact, cavitation, or turbulence will be omitted from the physics
of the problem. Instead, attention will be focused to the hydrodynamic lubrication setting where the
interface is heterogeneous due to surface roughness. The roughness is assumed to be of the Reynolds
type from the outset so that the Reynolds equation may be employed on the microscale in the context
of homogenization based on a scale separation assumption [60]. Initially, both of the surfaces will
be assigned a roughness in order to summarize homogenization results in the most general setting
where either surface could also be moving with a constant velocity [61]. Subsequently, however,
only unilateral roughness will be considered although the bilateral motion of the surfaces is intrinsi-
cally accounted for. The goal of the present work is to carry out deterministic texture optimization,
and hence, periodic textures will be assumed. The problem of constructing a randomly rough
surface based on a series of optimal statistical characteristics would also be of interest, although this
is outside the scope of this study.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2016; 108:1427–1450
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2.1. Two-scale setting

Based on the setting summarized earlier, the heterogeneous (deterministic) Reynolds equation may
be expressed with respect to an intermediate flat stationary plane as

�rx" � q".x"; t"/ D
@h".x"; t"/

@t"
(2.1)

where x" and t" are the absolute position and time. The interface fluid flux q".x"; t"/ depends on
the fluid film thickness h".x"; t"/ and the generated pressure p".x"; t"/ via

q" D �
h3"
12�

g" C
h"

2
U (2.2)

where � is the fluid viscosity, g" D rx"p" is the pressure gradient, and U D UC C U�, with UC

as the velocity of the upper surface and U� as that of the lower one.
" � 1 is a scale factor that is proportional to the roughness wavelength and indicates highly

oscillatory quantities. For homogenization purposes, it may be employed to invoke the two-scale
expressions

x" D x C "y ; t" D t C "� (2.3)

where x and t are the coarse scale (macroscopic) position and time while y and � are their
independent fine scale (microscopic) counterparts. The film thickness is then assigned the form

h".x"; t"/ D h.x; t;y; �/ D h0.x; t /C h
C.y � UC�/ � h�.y � U��/ (2.4)

where h0 describes the smooth macroscopic variation of the film thickness while h˙ are the
roughness contributions with zero mean from the upper and lower surfaces.

The solution of the Reynolds equation on a macroscopic domain, subject to appropriate boundary
conditions on the pressure or the normal components of the flux, is standard yet significantly costly
for small ". This cost is alleviated through homogenization.

2.2. Asymptotic homogenization

Briefly summarizing for the purposes of this work, following [61] and the discussions in [62], the
classical homogenization procedure is now carried out by substituting (2.2)–(2.4) into (2.1) together
with the asymptotic expansion

p".x"; t"/ D p0.x; t;y; �/C "p1.x; t;y; �/C "
2p2.x; t;y; �/CO."3/ (2.5)

and finally invoking scale separation via "! 0. Gathering terms of equal powers of ", one concludes
from the "�2-terms that p0 D p0.x; t; �/, that is, there is no y-dependence of p0. Upon linearly
expanding p1 in terms of the macroscopic pressure gradient G .x; t; �/ D rxp0 and the relative
velocity V D UC � U� via

p1 D G �! � V �� ; (2.6)

the "�1-terms deliver homogenized coefficient tensors A.x; t; �/ and B.x; t; �/ in terms of
!.x; t;y; �/ and�.x; t;y; �/ (Section 2.3) with which the homogenized Reynolds equation that is
obtained from the "0-terms may be expressed as

�rx �Q D
@h0

@t
(2.7)

where the macroscopic fluid fluxQ.x; t; �/ has the form
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Q D �AG C
h0

2
U CBV : (2.8)

Here, the first term is the Poiseuille contribution, and the sum of the remaining terms

b D
h0

2
U CBV (2.9)

is the Couette contribution.
These results are consistent with classical averaging-based approaches. If the domain of a periodic

unit cell is Y , which evolves with a period T due to surface motion, and averaging over this domain
is denoted by h�i D 1

jYj
R
Y � da, one obtains the relations

h0 D hhi ; G D hgi ; Q D hqi (2.10)

where the microscopic gradient g and flux q are defined by

g D G Cryp1 ; q D �
h3

12�
g C

h

2
U : (2.11)

2.3. Cell problems and unilateral roughness

The tensors A and B in (2.8) are defined through

Aij D

�
h3

12�

�
ıij C œ

j
i

��
; Bij D

�
h3

12�
ƒ
j
i

�
(2.12)

where ıij , the Kronecker delta, refers to the components of the identity tensor I and

œ
j
i D

@!j

@yi
; ƒ

j
i D

@�j

@yi
: (2.13)

Here, the Y-periodic and T -periodic vectors ! and � satisfy, subject to periodic boundary
conditions,

@

@yi

�
h3

12�
œ
j
i

�
D �

@

@yj

�
h3

12�

�
;

@

@yi

�
h3

12�
ƒ
j
i

�
D

@

@yj

�
hC C h�

2

�
: (2.14)

Because of the tangential motion of the surfaces, the values of hC and h� in (2.4) continuously
change at a fixed point in the interface, which leads to rapid oscillations in the coefficients of the dif-
ferential equations and therefore to rapid oscillations ofA andB, and hence of p0, in � . When both
surfaces are periodically rough with a commensurate frequency, one obtains the unsteady hydrody-
namic lubrication regime where these oscillations are of finite magnitude even at scale separation
and must be resolved for an accurate macroscopic response prediction. When only one surface is
rough, however, the oscillations disappear so that all macroscopic quantities remain dependent only
on x and t . This is the setting that will be addressed in the present study. However, both of the sur-
faces may be moving in general. If the rough surface is stationary, then the microscopic quantities
oscillate in space only and this regime is referred to as stationary. If the rough surface also moves,
then the microscopic oscillations are in space and time, which is referred to as the quasi-stationary
regime. The employed framework addresses both of these regimes.

Consider the special case of a periodic cell where the lower surface (S�) is stationary and rough
with h� D h.y/ and the upper surface (SC) is flat and moving with a velocity UC D U . Let the
cell problems (2.14) deliver for this case the homogenized coefficient tensors A D A and B D B.
Because V D U , (2.9) delivers b D

�
h0=2 I CB

	
U , or b D CU where C D h0=2 I C B.
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Figure 1. Four different cases regarding the stationary and quasi-stationary regimes are depicted on a peri-
odic cell. The roughness is switched from S� to SC by taking a mirror image with respect to an intermediate
plane. All the cases share the same A D A and U D U as well as the same h D h0 � h distribution while,
depending on the particular case, V D ˙U and B D ˙B where B D B corresponds to CASE 1. For all

cases, (2.9) simplifies to b D CU .

This setup is one of the four different cases (CASE 1) regarding the stationary and quasi-stationary
regimes as depicted in Figure 1 where either h� or �hC equals h and either U� or UC equals U .
Because of the structure of the cell problems (2.14), it is immediately observed that all of these
cases share the sameA D A because the h D h0�h distribution is the same in all cases. Moreover,
one can readily show that it is always possible to employ the expression b D CU where C D
h0=2 I ˙ B where the sign depends on the side of roughness and motion. Hence, the special case
considered covers the remaining three cases through the knowledge ofA and B. Similarly, the case
of bilateral surface motion is also covered (see Appendix A for a discussion). Consequently, an
optimization procedure for the specialized setup of CASE 1 entirely addresses all other cases where,
additionally, both surfaces could be moving.

In view of the preceding discussion, the special case with a stationary and rough lower surface
combined with a flat upper surface moving at a velocity UC D V D U is considered in all sub-
sequent analysis, and optimization is carried out in terms of A and C . For this purpose, using
h0 D hhi, it is useful to explicitly express C as

Cij D

�
h

2
ıij C

h3

12�
ƒ
j
i

�
(2.15)

where ƒji satisfies

@

@yi

�
h3

12�
ƒ
j
i

�
D �

@

@yj

�
h

2

�
; (2.16)

leading to the specialized macroscopic flux expression

Q D �AG C CU : (2.17)

3. SENSITIVITY ANALYSIS

At the periodic cell level, the film thickness h.�/ D h0 � h.�/ will be controlled by a finite number
of degrees of freedom sI (to be specified), which allow tuning the texture of the rough surface.
In order to design the texture toward a desired macroscopic response, it is necessary to evaluate
the sensitivities of A and C with respect to sI . The sensitivities of A and b D CU for their
Taylor expansion around given local values with respect to a generic variable have been discussed
in [63]. Presently, the sensitivity analysis is first carried out explicitly with respect to sI for A, and
subsequently a similar approach is employed toward the sensitivity ofC . As in [63], a direct method
is adopted for the sensitivity analysis, versus the adjoint method [1]. For a slightly more compact
notation, the definitions
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a D
h3

12�
; b D

h

2
(3.1)

will be employed. A validation of the derived analytical sensitivities will be carried out within the
numerical investigations.

3.1. Poiseuille term

The sensitivity of A follows from (2.12):

@Aij

@sI
D

*
@a

@sI

�
ıij C œ

j
i

�
C a

@œ
j
i

@sI

+
: (3.2)

In order to calculate
@œ
j

i

@sI
, let � be a periodic test function. The strong form of the cell problem

(2.14) for œi
k

may be expressed in weak form as�
aœik

@�

@yk

�
D �

�
a
@�

@yi

�
; (3.3)

and if � D @!j

@sI
is chosen, then one obtains an expression involving the target sensitivity:*

a
@œ
j
i

@sI

+
D �

*
aœik

@œ
j

k

@sI

+
: (3.4)

To identify the right-hand side, note that the sensitivity of the cell problem (2.14) for œj
k

with respect
to sI yields

@

@yk

 
@a

@sI
œ
j

k
C a

@œ
j

k

@sI

!
D �

@

@yj

�
@a

@sI

�
; (3.5)

which may be expressed in weak form, using a periodic test function � , as*
@a

@sI
œ
j

k

@�

@yk
C a

@œ
j

k

@sI
@�

@yk

+
D �

�
@a

@sI
@�

@yj

�
(3.6)

and if � D !i is chosen then one obtains an expression for the right-hand side of (3.4):

�

*
aœik

@œ
j

k

@sI

+
D

�
@a

@sI
œ
j

k
œik C

@a

@sI
œij

�
: (3.7)

Making use of this result in (3.2) via (3.4) and rearranging, one finally obtains

@Aij

@sI
D

�
@a

@sI

�
ıik C œ

i
k

	 �
ıjk C œ

j

k

��
: (3.8)

This result is expected in view of the results for homogenization-based sensitivity analysis in the
context of linear elasticity and linear thermal conduction [1] but has been re-derived here in the
context of hydrodynamic lubrication for completeness and as a means of building a foundation for
the sensitivity analysis of the non-standard accompanying term C . In this context, it is useful to
note an alternative form of A that establishes a clear link to (3.8), which may easily be derived by
switching the free index i in (3.3) to j , choosing � D !i and adding the resulting expression to the
definition (2.12) of A:
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Aij D
D
a
�
ıik C œ

i
k

	 �
ıjk C œ

j

k

�E
: (3.9)

3.2. Couette term

The sensitivity of C follows from (2.15)

@Cij

@sI
D

*
@b

@sI
ıij C

@a

@sI
ƒ
j
i C a

@ƒ
j
i

@sI

+
(3.10)

wherein the last term
@ƒ
j

i

@sI
must be calculated. Note that, upon choosing � D @�j

@sI
and rearranging,

the weak form (3.3) delivers an expression involving this sensitivity:*
a
@ƒ

j
i

@sI

+
D �

*
aœik

@ƒ
j

k

@sI

+
: (3.11)

The identification of the right-hand side requires the sensitivity of the cell problem (2.16) for ƒi
k

:

@

@yk

 
@a

@sI
ƒ
j

k
C a

@ƒ
j

k

@sI

!
D �

@

@yj

�
@b

@sI

�
: (3.12)

Using a periodic test function � , one may express its weak form as*
@�

@yk

@a

@sI
ƒ
j

k
C
@�

@yk
a
@ƒ

j

k

@sI

+
D �

�
@�

@yj

@b

@sI

�
(3.13)

that delivers, upon choosing � D !i and rearranging, an expression for the right-hand side of (3.11):

�

*
aœik

@ƒ
j

k

@sI

+
D

�
œik
@a

@sI
ƒ
j

k
C œij

@b

@sI

�
: (3.14)

Making use of this result in (3.10) via (3.11) and rearranging, one finally obtains a mixed expression
involving the cell problem solutions for both ! and�:

@Cij

@sI
D

�
@b

@sI

�
ıij C œ

i
j

	
C
@a

@sI

�
ƒ
j
i C œ

i
kƒ

j

k

��
: (3.15)

Similar to (3.9), an alternative expression for C that establishes a clear link to (3.15) may be derived
by expressing (2.16) in weak form through a periodic test function �, making the special choice
� D !i and subsequently adding the resulting expression to the definition (2.15) of C :

Cij D
D
b
�
ıij C œ

i
j

	
C a

�
ƒ
j
i C œ

i
kƒ

j

k

�E
: (3.16)

4. TEXTURE DESIGN

4.1. Design variables

The design variables sI 2 Œ0; 1� are the primary degrees of freedom in the optimization algorithm,
which discretize the design variable s 2 Œ0; 1� through shape functions N I :
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s D
X
I

N I sI (4.1)

In this work, the shape functions will be chosen either in the classical discrete fashion as element-
wise constant (S0) [1] or through a continuous piecewise linear approximation (S1) [64]. The
homogenization variables ! and � will be discretized by linear (Q1) elements, thereby leading to
two element possibilities for texture optimization: Q1S0 or Q1S1.

The variable s is usually employed within the texture description after an intermediate filtering
stage. The filtering operation will be denoted by F , which delivers the degrees of freedom �K 2
Œ0; 1� of the morphology variable � 2 Œ0; 1� that inherits the discretization of s. Specifically, the
morphology filter F operates on the degrees of freedom of s within a neighborhood DK to deliver
the degree of freedom �K of the filtered morphology variable �:

� D
X
K

NK�K D
X
K

NKF
�
DK ; s

	
: (4.2)

Different filters that have recently been proposed in [65] will be employed in this work, as summa-
rized in Table I (see also [66, 67]). In these filters, the weights wKI 2 Œ0; 1� ensure that �K remain
within Œ0; 1�. The weights may be suitably chosen constants or of the conic type, which decrease
with an increasing distance from the degree of freedom I . Here, the latter type will be employed
because they were observed to perform better in texture optimization. To define conic weights, let
DK be defined as the set of nodes I whose distance d.K; I / to node K are less than or equal to a
radius R. The conic weights have the form

wKI D

´
R�d.K;I/P

J2DJ R�d.K;J /
I 2 DK

0 I ¤ DK
(4.3)

so that
P
I w

KI D 1.
It is remarked that the morphology filters operate on the design variables and, hence, directly

influence the sensitivities. A well-established alternative approach is to filter the sensitivities only.
Although it will not be employed explicitly, it is noted that this sensitivity filter can be formulated
as a special case of the geometric erode filter using ˛ D 0, but re-assigning �I D sI to leave the
design variables unchanged [65].

Table I. Different filters F are expressed, which operate in a neighborhood DK . Here,
wKI 2 Œ0; 1� are the conic weights, and ˛ is a control parameter that is chosen as 10�3

for harmonic-type and geometric-type filters and as 100 for the exponential-type filter.

Method Filter �K D F
�
DK ; s

�
Sensitivity @�K

@sI

Linear �K D
P
I

wKI sI wKI

Harmonic erode 1
�KC˛

D
P
I

wKI

sIC˛
wKI

.�KC˛/
2

.sIC˛/
2

Harmonic dilate 1
1��KC˛

D
P
I

wKI

1�sIC˛
wKI

.1��KC˛/
2

.1�sIC˛/
2

Geometric erode ln.�K C ˛/ D
P
I

wKI ln.sI C ˛/ wKI
.�KC˛/
.sIC˛/

Geometric dilate ln.1 � �K C ˛/ D
P
I

wKI ln.1 � sI C ˛/ wKI
.1��KC˛/
.1�sIC˛/

Exponential erode e˛.1��
K / D

P
I

wKI e˛.1�s
I / wKI e

˛.1�sI /

e
˛.1��K/

Exponential dilate e˛�
K
D
P
I

wKI e˛s
I

wKI e
˛sI

e˛�
K
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4.2. Texture description

Using �, the surface texture is indirectly expressed through the film thickness

h.�/ D hmin C .hmax � hmin/�
� 2 Œhmin; hmax� (4.4)

where hmin and hmax are the desired minimum and maximum film thickness values and 	 > 1 is
a parameter that determines whether the goal texture has relatively sharp transitions between hmin

and hmax, corresponding to 	 > 1 (for instance, 	 D 3) and referred to as a 0-OR-1 design that is
characterized by pillars and holes on a surface, or smooth transitions (ideally 	 D 1) that deliver a
0-TO-1 design that is characterized by bumps and dimples. The design must additionally satisfy a
desired macroscopic film thickness

hhi D h0 �! h��i D
h0 � hmin

hmax � hmin
: (4.5)

Based on the texture description, the calculation of the sensitivities (3.8) and (3.15) is indirectly
addressed through a generic form

D
@H.h/
@sI

E
where H is an arbitrary function of h [64]:

�
@H.h/
@sI

�
D

*
@H
@h

@h

@�

X
K

@�

@�K
@�K

@sI

+
D

*
@H
@h

®
	.hmax � hmin/�

��1
¯X
K

NK @�
K

@sI

+

D
1

jYj
X
K

Z
YK

�
@H
@h

®
	.hmax � hmin/�

��1
¯
NK @�

K

@sI

�
da :

(4.6)

Here, YK � Y indicates the span ofNK . When � is element-wise constant,K indexes the elements
and NK D 1 only within the domain of its element.

4.3. Optimization

For the formulation of the optimization problem, the objective function

'.s/ D
1

2

 
kA �A�k

2

kA�k
2
C
kC � C �k

2

kC �k
2

!
(4.7)

is introduced where k�k denotes the Frobenius norm and ¹A�;C �º are the target values of the
homogenized coefficient tensors ¹A;C º. Additionally, a constraint function


.s/ D
.hhi � h0/

2

h20
(4.8)

is introduced in order to eventually ensure, via (4.5), that the mean film thickness is satisfied by the
design, which essentially plays the role of the volume fraction constraint in topology optimization.
Also recalling that the design variables sI are constrained to the interval Œ0; 1�, the optimization
problem is formulated as

minimize '.s/, subject to 
.s/ D 0 and s 2 Œ0; 1� : (4.9)

For a particular lubrication interface geometry with prescribed boundary conditions, the pressure
variation across the interface is entirely determined by the distributions of ¹A;C º. The ability to
tune the pressure variation is of prime importance in lubrication because it directly controls global
performance criteria such as the load capacity of the interface. Therefore, in the context of surface
engineering, one may attempt to determine optimal ¹A;C º distributions in the first step of a design
problem in order to obtain a pressure variation that satisfies desired global performance criteria.
This optimization task does not necessarily require a homogenization-based framework. However,
if these optimal distributions are denoted by ¹A�;C �º, the second step would be to determine the
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texture that delivers the corresponding target values ¹A�;C �º at each point across the interface
where the gap h0 between the interacting surfaces is known. The optimization problem stated in
(4.9) serves to test precisely this ability of the developed homogenization-based design framework.
A more advanced design setting would discard the need to determine an optimal ¹A;C º distribution
in a first step and would instead directly link the global performance criteria on the macroscale to
the texture geometry on the microscale, thereby also allowing microscopic design criteria such as
manufacturing constraints to be taken into account simultaneously with the macroscopic objectives
and constraints. Such a two-scale design setting, however, requires meeting additional challenges
that are outside the scope of the present study (see also Section 6).

In this work, the method of moving asymptotes (MMA) will be employed as the optimization
algorithm in view of its proven success [68]. MMA operates based on the values as well as the
sensitivities of the objective function and the equality constraint in order to reach a minimum that
satisfies the inequality constraints. The sensitivities @'

@sI
and @�

@sI
for this purpose are computed via

the analysis of Section 3 together with the general expression (4.6).

5. NUMERICAL INVESTIGATIONS

5.1. Target textures

Within the tests for texture design, a series of benchmark target textures of the 0-OR-1 and 0-TO-
1 type will first be described on a given mesh resolution and an element type (Q1S0 or Q1S1).
Each texture may deliver a macroscopically isotropic or anisotropic response. The macroscopic
quantities ¹A�;C �; h0º associated with a target texture will then be fed into the MMA algorithm
as input values that will drive the optimization procedure toward a design output. Employing target
textures to generate the input set will (i) allow for a visual assessment of the optimization results, in
particular by indicating if it is possible to obtain identical macroscopic responses from significantly
different textures, and also (ii) help circumventing a laborious trial and error stage in order to ensure
that the prescribed target macroscopic quantities are actually physically attainable by a texture (cf.
Section 5.4). In all cases, the minimum and maximum film thicknesses in (4.4) are set to h� D
0:1 �m and hC D 3 �m while 	 D 3 is employed for 0-OR-1 design and 	 D 1 is employed for
0-TO-1 design. The viscosity of the fluid is set to � D 0:14 Pa �s. The effect of the viscosity is not
independently investigated because, via (2.12) and (2.14), one may observe that C is independent
of the viscosity while A is inversely proportional to it.

On a given mesh resolution, the textures will be visualized as depicted in Figure 2. The Reynolds
equation that constitutes the basis for the homogenization scheme is a 2D formulation that operates
on a periodic unit cell, which may be tiled to generate a surface where the pattern appears more
clearly. For further clarity, 3D visualizations will additionally be presented. In order to distinguish
0-OR-1 and 0-TO-1 textures, different coloring schemes will be employed to indicate the height
variation across the rough surface from a minimum value (which corresponds to maximum film
thickness h D hC) to a maximum value (which corresponds to a minimum film thickness h D h�).
The target macroscopic response ¹A�;C �; h0º and the corresponding homogeneous response for
each case are summarized in Appendix B.

5.2. Default numerical choices

In order to enable the reproducibility of the presented results, it is noted that the default MMA
parameters [69] were preserved, except for the move limit parameter (move in mmasub.m),
which was reduced from its default value of 1 to 0.1 because a highly oscillatory optimization pro-
cess was often observed otherwise. Convergence was declared when ' decreased below a tolerance
of TOL' D 10

�3 and 
 decreased below TOL� D 10
�4. The tolerance on the constraint is typically

very quickly satisfied during optimization iterations, that is, most of the numerical cost is due to
the low tolerance on the objective function. During implementation, in order to obtain a better con-
vergence performance, ' was scaled to '0 D 100' C 1, which roughly picks values in the interval
Œ1; 100� with a corresponding convergence tolerance TOL'0 D 1:1. For completeness, the number
of iterations to convergence will be reported for each case.
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Figure 2. 2D unit cells for 0-OR-1 and 0-TO-1 designs are depicted together with their corresponding peri-
odic tilings as well as 3D visualizations. The light gray surface indicates the moving upper surface and the
coloring scheme, individual to the type of the design, encodes the height across the stationary lower surface.

Consequently, MAX is where the film thickness is a minimum while MIN is where it is a maximum.

The unit cell Y of periodicity will be modeled as a square with an edge length of L D 10 �m
and discretized with a mesh of N � N elements, with Q1S1 as the default element type. However,
the absolute edge length only affects the frequency of oscillations in the macroscopic response for
bilateral roughness and is irrelevant to homogenization results for the present case of unilateral
roughness. Consequently, during implementation, the distance and the radius for the calculation
of the weights in (4.3) for filtering purposes will be measured in terms of element or node index
coordinates .X; Y /. In the case of element-wise constant design variables (i.e., Q1S0 element), the
element indices are employed. These lie in the interval Œ1; N �, and the distance of element K to I is
measured by d.K; I / D

p
.XK �XI /2 C .YK � YI /2. The same holds in the case of a continuous

piecewise linear design variable (i.e., Q1S1 element) where the node indices are employed instead.
Note that, although the node index ranges from 1 to N C 1, the nodes which lie on periodically
linked opposing edges are not independent such that the number of independent nodes along an
edge is also N . For all the cases tested in this work, the results were observed to rapidly settle on a
pattern with increasing mesh resolution, indicating that a resolution of N D 40 can be satisfactorily
employed. Note that the filter radius must be scaled in order to preserve the feature size if the mesh
resolution is modified.

Filtering delivers results that are closer to the target textures and will be employed in the default
setting. The feature size in the designed texture is controlled by the ratio R=N , and filtering is
applied periodically. The default filter radius R > 1 is equal to N=10 D 4. For 0-OR-1 design, the
exponential erode filter from Table I will be selected because it generates sharp transitions and leads
to faster convergence among other filters of the erode/dilate type for the cases tested in this work.
The linear filter naturally attempts to achieve smooth transitions and hence is selected for 0-TO-1
design. It is remarked that filtering will be applied without modification of the filter parameters until
convergence, although gradually turning it off during the iterations may be beneficial for 0-OR-1
design [57].

Based on the default numerical parameter choices, target inputs are depicted together with the
output designs in Figure 3 for 0-OR-1 textures with a macroscopically isotropic response and in
Figure 4 for anisotropic ones. Similarly, Figures 5 and 6 summarize the results for macroscopically
isotropic and anisotropic 0-TO-1 textures. In most cases, convergence has been achieved in less
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Figure 3. Benchmark target textures of the 0-OR-1 type displaying a macroscopically isotropic response are
depicted together with the output designs from the optimization algorithm based on the default numerical
choices. The number of iterations to convergence were (a) 93 for the circular pillar texture, (b) 47 for the
circular hole texture, (c) 82 for the square pillar texture, and (d) 93 for the square hole texture. See Table A.1

in Appendix B for corresponding target responses.

than 100 iterations, and the output designs compare favorably with the target textures, demonstrat-
ing the ability of the framework to capture a broad range of isotropic and anisotropic macroscopic
responses, which include sharp textures with pillars and holes as well as smooth textures with dim-
ples and bumps. It is noted that although the major goal of a 0-OR-1 design is to achieve extreme
values of h, the ellipsoidal texture in Figure 4 also indicates the ability of this setup to capture sharp
features with respect to an intermediate plane.

It is remarked that in the default setting the algorithm has been initiated with a uniform s-
distribution at a value s0 such that h D h0 but by additionally perturbing the value of s with index

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2016; 108:1427–1450
DOI: 10.1002/nme



LUBRICATION TEXTURE OPTIMIZATION 1439

Figure 4. Benchmark target textures of the 0-OR-1 type displaying a macroscopically anisotropic response
are depicted together with the output designs from the optimization algorithm based on the default numerical
choices. The number of iterations to convergence were (a) 8 for the diagonal groove texture, (b) 75 for the
ellipsoidal texture with alternating pillars and holes, (c) 21 for the trapezoidal pillar texture, and (d) 216 for

the trapezoidal hole texture. See Table A.2 in Appendix B for corresponding target responses.

coordinates .N=2;N=2/ to 1 � s0 (unless s0 is exactly equal to 0.5 in which case the perturbation
is chosen as 1 � s0 C ı where ı is a small number). At convergence, the output set ¹A;C ; hhiº
will capture the input set ¹A�;C �; h0º to within the prescribed tolerances. However, because of the
well-known non-uniqueness in microstructure design that is already particularly apparent in 0-TO-1
type textures with a macroscopically isotropic response (Figure 5), the topography of the designed
texture depends on a number of parameters, including the initial s-distribution. Hence, the deciding
factor for a suitable initial guess is the number of iterations to convergence and the visual quality
of the design. Figure 7 summarizes a comparison between various initial guesses. Clearly, a uni-
form film distribution is undesirable as an initial guess because convergence is significantly delayed.
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Figure 5. Benchmark target textures of the 0-TO-1 type displaying a macroscopically isotropic response are
depicted together with the output designs from the optimization algorithm based on the default numerical
choices. The number of iterations to convergence were (a) 78 for the circular bump texture, (b) 41 for the
circular dimple texture, (c) 76 for the sinusoidal texture, and (d) 127 for the distorted sinusoidal texture.
See Table A.3 in Appendix B for corresponding target responses. Note that the last texture is only weakly

anisotropic and hence included in this list.

On the other hand, random inputs tend to deliver designs that can deviate significantly from the
class of input textures chosen in this work. The default choice converges comparatively faster to a
topography that closely reproduces the input texture.

5.3. Filtering radius and element type

For 0-OR-1 design, the default Q1S1 element not only prevents potential checkerboard patterns
that often occur with the Q1S0 element in the absence of filtering [28, 64, 70, 71] but also delivers
results that are of higher quality in relation to the target textures when filtering is employed. This is
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Figure 6. Benchmark target textures of the 0-TO-1 type displaying a macroscopically anisotropic response
are depicted together with the output designs from the optimization algorithm based on the default numerical
choices. The number of iterations to convergence were (a) 15 for the diagonal wave texture, (b) 115 for the
ellipsoidal texture with alternating bumps and dimples, (c) 29 for the triangular groove texture, and (d) 41

for the wavy groove texture. See Table A.4 in Appendix B for corresponding target responses.

summarized in Figure 8, where it is observed that the central feature is captured rather accurately,
although areas with intermediate values of s remain. Moreover, the design with a Q1S1 element
is relatively insensitive to the filter radius for the range of values tested. For 0-TO-1 design, Q1S1
element again prevents checkerboard patterns, although the texture quality of the Q1S0 element is
comparable with the Q1S1 output once a suitable filter radius is selected (Figure 9). For a 0-TO-1
design, filtering strongly influences the texture for both element types due to linear filtering, with a
clearly observable increase in the feature size with increasing filter radius.

To validate the analytical sensitivity expressions derived in Section 3, they are compared with
their numerical counterparts in Appendix C based on the examples discussed in this section.
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Figure 7. Influence of the initial guess is demonstrated using (a) 0-OR-1 type trapezoidal hole texture from
Figure 4 and (b) 0-TO-1 type circular bump texture from Figure 5. The uniform guess employs a constant
s D s0 such that h D h0, while the default guess additionally perturbs a degree of freedom. The two random
guesses were generated from a Gaussian random number generator. The number of iterations to convergence

were (a) ¹216; 529; 310; 1087º and (b) ¹78; 959; 103; 93º.

Figure 8. The effect of the element type (default: Q1S1) and filtering (default: R D 4) is demonstrated
for 0-OR-1 type circular pillar texture from Figure 3 for (a) Q1S0 and (b) Q1S1 elements. The number of

iterations to convergence were (a) ¹148; 125; 122; 145; 159º and (b) ¹110; 110; 93; 93; 229º.

5.4. Onsager’s principle

For all the benchmark textures considered,A and C were symmetric tensors, except for the weakly
non-symmetric C in the last 0-TO-1 textures of Figures 5 and 6 (Appendix B). The tensor A is
necessarily symmetric and positive-definite [72]. As such, A obeys Onsager’s principle but there is
no such restriction for C , similar for instance to the tensors that characterize the Seebeck and Peltier
effects in thermoelectricity [73]. This indicates that textures with significantly non-symmetric C
tensors may be designed. In order to investigate this possibility, the optimization algorithm was
applied to achieve a target C � for a given h0 without any restriction on A, which was formulated
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Figure 9. The effect of the element type (default: Q1S1) and filtering (default: R D 4) is demonstrated for
0-TO-1 type sinusoidal texture from Figure 5 for (a)Q1S0 and (b)Q1S1 elements. The number of iterations

to convergence were (a) ¹80; 103; 85; 73; 107º and (b) ¹79; 79; 144; 76; 116º.

Figure 10. Textures designed according to the discussion in Section 5.4 in order to achieve significantly non-
symmetric C values for (a) 0-OR-1 type design and (b) 0-TO-1 type design (see Table A.5 in Appendix B
for corresponding macroscopic responses). The number of iterations to convergence were (a) 229 and (b) 44.

by removing the first contribution to ' in (4.7). For a 0-OR-1 example, h0 was prescribed closer
to h� than hC, which is expected to lead to holes on the surface rather than pillars. For a 0-TO-
1 example, a mediocre h0 value was prescribed, which is expected to lead to a smoothly varying
texture. For both cases, the target C � must be commensurate with the choice of h0 because the
addition of roughness to the stationary lower surface leads to a reduction of C with respect to the
response of the homogeneous interface (Appendix B). Appropriate sample input values, found by
trial and error, are (in �m):

0-OR-1 W h0 D 0:80 ;


C �

�
D

�
0:05 0:00

0:10 0:10


;

0-TO-1 W h0 D 1:45 ;


C �

�
D

�
0:40 0:10

0:20 0:30


:

(4.10)

The corresponding designs are depicted in Figure 10, which verify the previous assertion regarding
the existence of such textures.

6. CONCLUSION

Surface texture can significantly impact the tribological performance of the interface and there-
fore constitutes a tool with which the macroscopic interface response may be tuned. In this work,
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a homogenization-based surface texture design framework has been presented in the context of
hydrodynamic lubrication. Specifically, the goal was to obtain microscopic surface textures in
order to achieve prescribed macroscopic interface tensors that appear in the homogenized Reynolds
equation. For this purpose, a discrete design space was introduced, which employs either an element-
wise constant design variable or a discretization of this variable using linear elements. The surface
texture was subsequently indirectly described by formulating the film thickness in terms of the
design variable after an intermediate filtering stage. Finally, the optimization problem was solved
through the method of moving asymptotes, for which a sensitivity analysis of the macroscopic
response of the texture was additionally carried out. Numerical investigations have demonstrated
the ability of the framework to deliver both sharp (0-OR-1) textures as well as smoothly varying
(0-TO-1) ones.

The presented homogenization-based microscopic design framework may be embedded within
a two-scale setting in order to achieve a macroscopic goal, such as obtaining a desired pressure
distribution or adjusting the dissipative effects over a lubrication domain, which may be further
generalized toward the concurrent topology optimization of the macroscopic interface together with
the microscopic one as in similar contexts for structures [57, 74–78]. In such settings, one would like
to endow a surface, partially or fully, with a single texture or one would attempt to obtain a texture
distribution with continuously varying statistical properties, for example, with an increasing root
mean square roughness. Here, the macroscopic goal and the design constraints need to be carefully
chosen because a homogenization-based analysis shows that in certain scenarios the optimal solution
is no texture at all [79, 80]. Contrary to conventional texture optimization schemes based on a
predetermined texture geometry, such as circular pillars or dimples, the present framework will
naturally be equipped with the ability to capture the optimal pattern, which may span arbitrary 0-
OR-1 and 0-TO-1 designs across the interface. The determination of such optimal design patterns
in the case of a bilateral texture will additionally require extending the presented framework to
the unsteady lubrication regime in order to address the oscillations in the macroscopic response.
Such investigations will lead to a better understanding of the role of the texture in tuning interface
lubrication and can benefit from as well as complement ongoing efforts in similar two-scale design
problems involving microstructured materials.

APPENDIX A: UNILATERAL ROUGHNESS CASES

The purpose of this section is to elucidate the discussion of Section 2.3 regarding the four cases in
Figure 1. CASE 1 and CASE 2 not only share the same h D h0 � h distributions and, hence, the
same A D A but also the same hC C h� D h� D h distribution, and hence, the same B D B

by (2.14). However, for CASE 1 V D U so C D h0=2 I C B, while for CASE 2 V D �U so
C D h0=2 I �B. In other words, the choice of the moving surface preserves B but changes a sign
within C . A similar discussion holds between CASE 3 and CASE 4. To establish the link between
CASE 1 and CASE 3, note that both share the same V D U and the same h0 D h0 � h distribution
but the latter has hC C h� D hC D �h. Hence, the solution of the �-problem for CASE 3 will be
the negative of that for CASE 1, leading to B D �B and therefore to C D h0=2 I � B. In other
words, the choice of the rough surface changes the sign of B as well as the sign within C .

In order to address the bilateral motion of the surfaces, let the lower surface in CASE 1 of Figure 1
be assigned a velocity U� and the upper surface a velocity UC D U� C U , leading to U D
2U� C U and V D U . Then, directly via (2.4), one obtains b D h0U

� C .h0=2 I CB/U so that
b�h0U

�, which represents the Couette contribution excluding the rigid translation of the interface
fluid, is expressible in the form CU . The discussion of the remaining cases is similar.

APPENDIX B: TARGET TEXTURE RESPONSE

The macroscopic responses associated with the textures in the numerical investigations of Section 5
are summarized in the succeeding text. The units are �m for ¹h0;C º and �m3=Pa�s forA. In order
to additionally assess the influence of the texture, the macroscopic response of the homogeneous
interface with h D h0 is also reported via the quantities
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A0
�
D

2
4 h3

0

12�
0

0
h3
0

12�

3
5 ;



C0
�
D

"
h0
2

0

0 h0
2

#
: (A.1)

Note that, depending on the particular texture, the magnitude of A� may be larger or smaller
with respect to A0, indicating that the texture can facilitate or hinder macroscopic fluid flux due to

Table A.1. Benchmark 0-OR-1 textures with a macroscopically isotropic response (Figure 3).

Target texture Gap Homogeneous interface Heterogeneous interface
h0 ŒA0� ŒC0� ŒA�� ŒC��

1.970

�
4:551 0
0 4:551

 �
0:985 0
0 0:985

 �
6:825 0
0 6:825

 �
0:680 0
0 0:680



1.130

�
0:859 0
0 0:859

 �
0:565 0
0 0:565

 �
0:0014 0
0 0:0014

 �
0:0545 0
0 0:0545



2.239

�
6:683 0
0 6:683

 �
1:120 0
0 1:120

 �
8:898 0
0 8:898

 �
0:866 0
0 0:866



0.861

�
0:380 0
0 0:380

 �
0:430 0
0 0:430

 �
0:0011 0
0 0:0011

 �
0:054 0
0 0:054



Table A.2. Benchmark 0-OR-1 textures with a macroscopically anisotropic response (Figure 4).

Target texture Gap Homogeneous interface Heterogeneous interface
h0 ŒA0� ŒC0� ŒA�� ŒC��

1.515

�
2:068 0
0 2:068

 �
0:757 0
0 0:757

 �
3:625 3:624
3:624 3:625

 �
0:39 0:33
0:33 0:39



1.550

�
2:217 0
0 2:217

 �
0:775 0
0 0:775

 �
1:949 0:863
0:863 1:949

 �
0:446 0:132
0:132 0:446



2.062

�
5:215 0
0 5:215

 �
1:031 0
0 1:031

 �
5:322 3:338
3:338 7:031

 �
0:546 0:306
0:307 0:702



1.038

�
0:667 0
0 0:667

 �
0:520 0
0 0:520

 �
0:0020 0:0013
0:0013 0:0027

 �
0:0553 �0:0007
�0:0007 0:0541
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Table A.3. Benchmark 0-TO-1 textures with a macroscopically isotropic response (Figure 5).

Target texture Gap Homogeneous interface Heterogeneous interface
h0 ŒA0� ŒC0� ŒA�� ŒC��

2.359

�
7:817 0
0 7:817

 �
1:180 0
0 1:180

 �
8:077 0
0 8:077

 �
0:955 0
0 0:955



0.741

�
0:242 0
0 0:242

 �
0:370 0
0 0:370

 �
0:0017 0
0 0:0017

 �
0:0512 0
0 0:0512



1.550

�
2:217 0
0 2:217

 �
0:775 0
0 0:775

 �
1:852 0
0 1:852

 �
0:558 0
0 0:558



1.411

�
1:673 0
0 1:673

 �
0:706 0
0 0:706

 �
1:301 0:041
0:041 1:220

 �
0:469 0:034
0:036 0:458



Table A.4. Benchmark 0-TO-1 textures with a macroscopically anisotropic response (Figure 6).

Target texture Gap Homogeneous interface Heterogeneous interface
h0 ŒA0� ŒC0� ŒA�� ŒC��

1.550

�
2:217 0
0 2:217

 �
0:775 0
0 0:775

 �
2:554 2:544
2:544 2:554

 �
0:423 0:352
0:352 0:423



1.550

�
2:217 0
0 2:217

 �
0:775 0
0 0:775

 �
1:981 0:389
0:389 1:981

 �
0:620 0:068
0:068 0:620



1.585

�
2:372 0
0 2:372

 �
0:793 0
0 0:793

 �
4:156 0
0 0:055

 �
0:775 0
0 0:122



1.488

�
1:959 0
0 1:959

 �
0:744 0
0 0:744

 �
3:649 0:002
0:002 0:176

 �
0:728 0:0042
0:0023 0:210



a pressure gradient. On the other hand, the magnitude of C � is always less than the magnitude of
C 0. This is due to the fact that, in the specialized setup of CASE 1 that is representative of alternate
scenarios (Appendix A), the stationary rough surface holds fluid back from being dragged along
with the moving upper surface, that is, B has predominantly negative entries.
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Table A.5. Textures designed according to the discussion in Section 5.4 (Figure 10).

Texture Gap Homogeneous interface Heterogeneous interface
h0 ŒA0� ŒC0� ŒA� ŒC �

0.800

�
0:305 0
0 0:305

 �
0:400 0
0 0:400

 �
0:0015 �0:001
�0:001 0:289

 �
0:054 0
0:095 0:101



1.450

�
1:815 0
0 1:815

 �
0:725 0
0 0:725

 �
1:043 0:782
0:782 0:853

 �
0:397 0:116
0:182 0:304



Figure A.1. The analytical (A) sensitivity distributions are provided and compared with the numerical (N)
sensitivities through the difference

ˇ̌
.@'=@sI /A � .@'=@s

I /N
ˇ̌

on converged 0-OR-1 and 0-TO-1 type
textures from figures 8 and 9 for both Q1S0 and Q1S1 elements (R D 4).

APPENDIX C: SENSITIVITY VALIDATION

The analytical sensitivity expressions, derived in Section 3 and employed throughout the numer-
ical investigations, will be compared with their numerical counterparts for validation. For this
purpose, the 0-OR-1 and 0-TO-1 type designs considered in Figures 8 and 9 with Q1S0 and Q1S1
elements will be employed at the default filter radius. The comparison is carried out based on
the sensitivity @'=@sI of the objective function (4.7) at the converged textures, that is, at the last
optimization iteration. The numerical sensitivity is computed via second-order finite difference by
sequentially perturbing each sI value through 10�4. The results in Figure A.1 demonstrate the
agreement between the analytical and numerical sensitivities.
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