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SUMMARY

An optimization framework is developed for surface texture design in hydrodynamic lubrication. The
microscopic model of the lubrication interface is based on the Reynolds equation, and the macroscopic
response is characterized through homogenization. The microscale setting assumes a unilateral periodic
texture but implicitly accounts for the bilateral motion of the surfaces. The surface texture in a unit cell is
described indirectly through the film thickness, which is allowed to vary between prescribed minimum and
maximum values according to a morphology variable distribution that is obtained through the filtering of
a design variable. The design and morphology variables are discretized using either element-wise constant
values or through first-order elements. In addition to sharp textures, which are characterized by pillars and
holes that induce sudden transitions between extreme film thickness values, the framework can also attain
a variety of non-standard smoothly varying surface textures with a macroscopically isotropic or anisotropic
response. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Optimality of a design is often assessed both with respect to the macroscopic geometry as well as
with respect to the microscopic properties. The optimization of the structural geometry in order
to minimize or maximize a macroscopic objective is an area with many continuing challenges
and novel applications [1, 2]. Recent topology optimization studies address novel algorithms [3-5]
as well as the application of existing robust approaches to multi-material design [6-8], nonlinear
behavior [9, 10] and multiphysics scenarios ranging from heat transfer [11, 12] to piezoelectricity
[13, 14]. Interface topology can similarly be addressed [15, 16], including contact conditions [17].
The optimization of the constitutive behavior of the structural material as well as of the sur-
faces or interfaces is a complementary field that is less mature. This problem may be formulated
at a phenomenological level through the macroscopic governing equations for the constitutive
response. Alternatively, a microscopic problem may be formulated through a direct consideration
of the underlying microstructure. Because of the dramatic rise in computational power, such non-
phenomenological computational design of materials and surfaces can now be carried out and,
with the advent of scalable manufacturing techniques, these designs can be realized [18]. Conse-
quently, there has been a recent surge of interest in designing microstructures that can deliver a
desired macroscopic response. Such microstructures can have well-defined constituents as in fiber-
reinforced materials [14, 19] or rather flexible topologies with a linear or a nonlinear behavior
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[20-22] as well as entirely random ones [23-25]. In this study, a class of such design problems
will be addressed, which are relevant to tribology, namely, the optimal design of surface textures in
the context of hydrodynamic lubrication, with homogenization as the core scale-transition method
because of its well-established role in topology optimization [26-29].

One of the earliest attempts to optimization in the context of hydrodynamic lubrication is the
analysis of Lord Rayleigh [30] toward the determination of an optimal macroscopic surface geom-
etry of a slider bearing in order to maximize its load capacity. A similar analysis was later carried
out in [31] where a minimum constraint was placed on the film thickness and a pressure-dependent
viscosity was also considered. The slider in a hard disk drive can benefit from similar macroscale
optimization approaches, and many studies have focused on this design problem [32-38]. These
approaches were also extended to journal bearings [39, 40], with the additional possibility of con-
sidering a number of design variables, which include the maximum allowable pressure or fluid film
temperature rise [41-44].

In the summarized studies on macroscopic interface geometry design, the core of the optimiza-
tion algorithm relies on the Reynolds equation, particularly in the case of a focus on load capacity.
The Reynolds equation satisfactorily reflects hydrodynamic lubrication effects for a broad range of
interface parameters, and its solution delivers the pressure, which allows the interface to carry a
normal load [45, 46]. Based on the Reynolds equation, a number of recent studies have directly con-
centrated on the optimization of the mesoscopic interface geometry by fully or partially endowing
the surface typically with pillar-type features that have circular or square cross-sections [47-54].
However, a homogenization-based scheme that concentrates on the microscale through the design
of micro-textures with the purpose of attaining a prescribed macroscopic interface response appears
not to have been addressed in the literature. This situation is contrary to the case of microstructure
design for materials where various studies have been devoted to achieving a desired macroscopic
response via a rigorous homogenization-based framework, ranging from specific responses such as
a negative Poisson’s ratio or a negative thermal expansion coefficient to more general ones that are
assessed indirectly through a macroscopic structural objective [55-59]. The development of a sim-
ilar homogenization-based scheme in the context of hydrodynamic lubrication is the goal of the
present study.

The outline of this work is as follows. In Section 2, the homogenization theory for the Reynolds
equation is reviewed in a setting that allows for unilateral surface texture with bilateral surface
motion. Subsequently, the sensitivity analysis of the macroscopic tensors, which characterize the
homogenized response of the textured lubrication interface, is carried out in Section 3. This analysis
is carried out in terms of a design variable, which is subjected to discretization and filtering oper-
ations toward a morphology variable, which helps formulate the microscale optimization problem
in Section 4. Extensive numerical investigations in Section 5 demonstrate the ability of the design
framework to capture a variety of textures that may display macroscopically isotropic or anisotropic
responses, ranging from sharp ones with holes or pillars to ones that have a smoothly varying surface
topography. An outlook toward possible applications and improvements of the developed framework
is provided in Section 6.

2. HOMOGENIZATION OF THE REYNOLDS EQUATION

Presently, factors such as partial contact, cavitation, or turbulence will be omitted from the physics
of the problem. Instead, attention will be focused to the hydrodynamic lubrication setting where the
interface is heterogeneous due to surface roughness. The roughness is assumed to be of the Reynolds
type from the outset so that the Reynolds equation may be employed on the microscale in the context
of homogenization based on a scale separation assumption [60]. Initially, both of the surfaces will
be assigned a roughness in order to summarize homogenization results in the most general setting
where either surface could also be moving with a constant velocity [61]. Subsequently, however,
only unilateral roughness will be considered although the bilateral motion of the surfaces is intrinsi-
cally accounted for. The goal of the present work is to carry out deterministic texture optimization,
and hence, periodic textures will be assumed. The problem of constructing a randomly rough
surface based on a series of optimal statistical characteristics would also be of interest, although this
is outside the scope of this study.
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2.1. Two-scale setting

Based on the setting summarized earlier, the heterogeneous (deterministic) Reynolds equation may
be expressed with respect to an intermediate flat stationary plane as

0he(xg,te)

o 2.1

Vi, qe(xe, 1) =

where x, and 7, are the absolute position and time. The interface fluid flux ¢,(x., #;) depends on
the fluid film thickness /. (x, t;) and the generated pressure p.(x,?;) via

h3 he
- _ i i 2.2
9. D g+ > (2.2

where p is the fluid viscosity, g, = V., p; is the pressure gradient, and U = U T4 U, withUT
as the velocity of the upper surface and U™ as that of the lower one.

g < 1 is a scale factor that is proportional to the roughness wavelength and indicates highly
oscillatory quantities. For homogenization purposes, it may be employed to invoke the two-scale
expressions

Xe=x-+¢ey , te=t+c¢rt 2.3)

where x and ¢ are the coarse scale (macroscopic) position and time while y and t are their
independent fine scale (microscopic) counterparts. The film thickness is then assigned the form

he(xg,te) = h(x,t,y, 1) = ho(x,t) + h+(y — U+T) —h (y-U"1) 2.4)

where /o describes the smooth macroscopic variation of the film thickness while #* are the
roughness contributions with zero mean from the upper and lower surfaces.

The solution of the Reynolds equation on a macroscopic domain, subject to appropriate boundary
conditions on the pressure or the normal components of the flux, is standard yet significantly costly
for small e. This cost is alleviated through homogenization.

2.2. Asymptotic homogenization

Briefly summarizing for the purposes of this work, following [61] and the discussions in [62], the
classical homogenization procedure is now carried out by substituting (2.2)—(2.4) into (2.1) together
with the asymptotic expansion

Pe(Xe,ts) = po(x,t,y,7) +epi(x,t,y,7) +&2pa(x,t,y,7) + O(e?) (2.5)

and finally invoking scale separation via ¢ — 0. Gathering terms of equal powers of ¢, one concludes
from the e~2-terms that py = po(x,1,7), that is, there is no y-dependence of py. Upon linearly
expanding p; in terms of the macroscopic pressure gradient G (x,¢,7) = Vy po and the relative
velocity V. =U" — U~ via

=G -w-V-Q |, (2.6)

the ¢ l-terms deliver homogenized coefficient tensors A(x,?,7) and B(x,?,7) in terms of
w(x,t,y,7)and (x,1?, y, t) (Section 2.3) with which the homogenized Reynolds equation that is
obtained from the £°-terms may be expressed as

oh
V-0 = 8_;’ (2.7)

where the macroscopic fluid flux Q(x, ¢, 7) has the form
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h
Q:—AG+7OU+BV . 2.8)
Here, the first term is the Poiseuille contribution, and the sum of the remaining terms
ho
b= 7U + BV (2.9

is the Couette contribution.

These results are consistent with classical averaging-based approaches. If the domain of a periodic
unit cell is ), which evolves with a period 7 due to surface motion, and averaging over this domain
is denoted by (-) = ﬁ fy - da, one obtains the relations

ho=(n) . G={(g) . Q=(q) (2.10)

where the microscopic gradient g and flux ¢ are defined by

h3 h
=G +V , = —U . 2.11
g + Vyp1 q 128 t3 (2.11)
2.3. Cell problems and unilateral roughness
The tensors A and B in (2.8) are defined through
h3 . h3 .

where §; 7, the Kronecker delta, refers to the components of the identity tensor I and

J _ (2.13)
0y dyi

’ i
Here, the Y-periodic and 7 -periodic vectors @ and € satisfy, subject to periodic boundary
conditions,

3 3 3 + 4
SR (L D (A TG (A A W i R S
dy; \12p " dyj \12u dyi \12p " Iy 2

Because of the tangential motion of the surfaces, the values of 4™ and 2~ in (2.4) continuously
change at a fixed point in the interface, which leads to rapid oscillations in the coefficients of the dif-
ferential equations and therefore to rapid oscillations of A and B, and hence of pg, in t. When both
surfaces are periodically rough with a commensurate frequency, one obtains the unsteady hydrody-
namic lubrication regime where these oscillations are of finite magnitude even at scale separation
and must be resolved for an accurate macroscopic response prediction. When only one surface is
rough, however, the oscillations disappear so that all macroscopic quantities remain dependent only
on x and ¢. This is the setting that will be addressed in the present study. However, both of the sur-
faces may be moving in general. If the rough surface is stationary, then the microscopic quantities
oscillate in space only and this regime is referred to as stationary. If the rough surface also moves,
then the microscopic oscillations are in space and time, which is referred to as the quasi-stationary
regime. The employed framework addresses both of these regimes.

Consider the special case of a periodic cell where the lower surface (S7) is stationary and rough
with 1~ = h(y) and the upper surface (S*) is flat and moving with a velocity U = U. Let the
cell problems (2.14) deliver for this case the homogenized coefficient tensors A = A and B = B.
Because V = U, (2.9) delivers b = (ho/21 + F) U,orb = CU where C = hy/21 + B.
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Figure 1. Four different cases regarding the stationary and quasi-stationary regimes are depicted on a peri-

odic cell. The roughness is switched from S~ to ST by taking a mirror image with respect to an intermediate

plane. All the cases share the same A = A and U = U as well as the same h = hg — } distribution while,

depending on the particular case, V = U and B = +B where B = B corresponds to CASE 1. For all
cases, (2.9) simplifies to b = CU.

This setup is one of the four different cases (CASE 1) regarding the stationary and quasi-stationary
regimes as depicted in Figure 1 where either 1~ or —h ™" equals / and either U~ or U™ equals U.
Because of the structure of the cell problems (2.14), it is immediately observed that all of these
cases share the same A = A because the 4 = ho — h distribution is the same in all cases. Moreover,
one can readily show that it is always possible to employ the expression b = CU where C =
ho/21 + B where the sign depends on the side of roughness and motion. Hence, the special case
considered covers the remaining three cases through the knowledge of A and B. Similarly, the case
of bilateral surface motion is also covered (see Appendix A for a discussion). Consequently, an
optimization procedure for the specialized setup of CASE 1 entirely addresses all other cases where,
additionally, both surfaces could be moving.

In view of the preceding discussion, the special case with a stationary and rough lower surface
combined with a flat upper surface moving at a velocity Ut = V = U is considered in all sub-
sequent analysis, and optimization is carried out in terms of A and C. For this purpose, using
ho = (h), it is useful to explicitly express C as

h h
CU==<58U4—TZIA{> (2.15)
where Alj satisfies
0 W a (h
| — A ) =—— (= , 2.16
8yi(12u ’) 8yj(2) 210

leading to the specialized macroscopic flux expression

0=-4G+CU . 2.17)

3. SENSITIVITY ANALYSIS

At the periodic cell level, the film thickness /(o) = ho — h(p) will be controlled by a finite number
of degrees of freedom s’ (to be specified), which allow tuning the texture of the rough surface.
In order to design the texture toward a desired macroscopic response, it is necessary to evaluate
the sensitivities of A and C with respect to s’. The sensitivities of A and b = CU for their
Taylor expansion around given local values with respect to a generic variable have been discussed
in [63]. Presently, the sensitivity analysis is first carried out explicitly with respect to s’ for A, and
subsequently a similar approach is employed toward the sensitivity of C. As in [63], a direct method
is adopted for the sensitivity analysis, versus the adjoint method [1]. For a slightly more compact
notation, the definitions
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h3

h
Y 3.1
121 2 1)

will be employed. A validation of the derived analytical sensitivities will be carried out within the
numerical investigations.

3.1. Poiseuille term

The sensitivity of A follows from (2.12):
04i; _ [ da N
= <a 7 (85 +2M) + as) (3.2)

In order to calculate ;‘ L, let ¢ be a periodic test function. The strong form of the cell problem
(2.14) for )J may be expressed in weak form as

0 0
2],
8y k 8y i
andif ¢ = , is chosen, then one obtains an expression involving the target sensitivity:

axf v

To identify the right-hand side, note that the sensitivity of the cell problem (2.14) for )\i with respect
to s’ yields

0 da B)J ad da
— | = =—— =], 3.5
Yk <8s1 kT as! ) ay; (851) (3-5)
which may be expressed in weak form, using a periodic test function 7, as
da . ; o 8)\] o da Om
— A — — 3.6
<8sl k vk ta st Byk> <3s1 3y,~> (3.6)

and if 7 = @' is chosen then one obtains an expression for the right-hand side of (3.4):

8)»’ da , ; da
<>\k8s > <81>\ Xk 81>\l’> . (3.7)
Making use of this result in (3.2) via (3.4) and rearranging, one finally obtains
3/1,' i da : 1
WIJ = <8s_1 (8ix + M) (Sjk + )\,j{)> . (3.8)

This result is expected in view of the results for homogenization-based sensitivity analysis in the
context of linear elasticity and linear thermal conduction [1] but has been re-derived here in the
context of hydrodynamic lubrication for completeness and as a means of building a foundation for
the sensitivity analysis of the non-standard accompanying term C. In this context, it is useful to
note an alternative form of A that establishes a clear link to (3.8), which may easily be derived by
switching the free index i in (3.3) to j, choosing ¢ = w' and adding the resulting expression to the
definition (2.12) of A4:

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2016; 108:1427-1450
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Aij = a (S +2) (85 + 1)) - (3.9)

3.2. Couette term

The sensitivity of C follows from (2.15)

. aA!'
9Cij _ <ﬂg Dapi 4 o2 > (3.10)

ast asl 0T sl “osT

BA
wherein the last term ——- must be calculated. Note that, upon choosing ¢ = 39

the weak form (3.3) delivers an expression involving this sensitivity:

aAf AL

The identification of the right-hand side requires the sensitivity of the cell problem (2.16) for Aﬁc:

and rearranging,

0 da E)A’ 0 0b
— | —A/ =——\|— . 3.12
Yk <8s1 kT as 1) Ay (asl) (3.12)
Using a periodic test function 7, one may express its weak form as
o da A Lo om BA] dm 0b 3.13)
Ay 0sT Byk ast [~ \oy, os! '

that delivers, upon choosing 7 = ' and rearranging, an expression for the right-hand side of (3.11):

A, da db
< kal>_<5<a_1Aj+wfal> (3.14)

Making use of this result in (3.10) via (3.11) and rearranging, one finally obtains a mixed expression
involving the cell problem solutions for both @ and :

aC; < ab

da
o = ao 6+ 1) + o7 (A] + xkAf)> . (3.15)

Similar to (3.9), an alternative expression for C that establishes a clear link to (3.15) may be derived
by expressing (2.16) in weak form through a periodic test function ¢, making the special choice
¢ = o' and subsequently adding the resulting expression to the definition (2.15) of C':

Cij = <b (6 + ) +a (A + x;’cA,fc')> . (3.16)

4. TEXTURE DESIGN

4.1. Design variables
The design variables s? € [0, 1] are the primary degrees of freedom in the optimization algorithm,

which discretize the design variable s € [0, 1] through shape functions N/ :

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2016; 108:1427-1450
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s=Y N's! (4.1)
1

In this work, the shape functions will be chosen either in the classical discrete fashion as element-
wise constant (S0) [1] or through a continuous piecewise linear approximation (S1) [64]. The
homogenization variables @ and £ will be discretized by linear (Q1) elements, thereby leading to
two element possibilities for texture optimization: Q150 or Q1S51.

The variable s is usually employed within the texture description after an intermediate filtering
stage. The filtering operation will be denoted by F, which delivers the degrees of freedom pX €
[0, 1] of the morphology variable p € [0, 1] that inherits the discretization of s. Specifically, the
morphology filter F operates on the degrees of freedom of s within a neighborhood DX to deliver
the degree of freedom pX of the filtered morphology variable p:

K K

Different filters that have recently been proposed in [65] will be employed in this work, as summa-
rized in Table I (see also [66, 67]). In these filters, the weights w&! € [0, 1] ensure that pX remain
within [0, 1]. The weights may be suitably chosen constants or of the conic type, which decrease
with an increasing distance from the degree of freedom /. Here, the latter type will be employed
because they were observed to perform better in texture optimization. To define conic weights, let
DX be defined as the set of nodes / whose distance d(K, I) to node K are less than or equal to a
radius R. The conic weights have the form

R—d(K,I) K
Wkl = | S kakn T €D (4.3)
0 I # DK

so that }_, wk! = 1.

It is remarked that the morphology filters operate on the design variables and, hence, directly
influence the sensitivities. A well-established alternative approach is to filter the sensitivities only.
Although it will not be employed explicitly, it is noted that this sensitivity filter can be formulated
as a special case of the geometric erode filter using & = 0, but re-assigning p! = s’ to leave the
design variables unchanged [65].

Table I. Different filters F are expressed, which operate in a neighborhood DX . Here,
wX7 € [0, 1] are the conic weights, and « is a control parameter that is chosen as 1073
for harmonic-type and geometric-type filters and as 100 for the exponential-type filter.

K
Method Filter pX = F (DK , s) Sensitivity %”7
Linear oK =Y wkis! wkI
1
2
~ 1 _ v wk! K1 (pK+e)
Harmonic erode Kia = 21: e w o7 +a)2
2
ic di L wk/ k1 (1=pX+a)
Harmonic dilate oK Ta = ; T Ta w (1_S1+a)2
K
Geometric erode In(oX + ) = S wk  In(s! + ) wkI (% ta)
Vi (s! +a)
_,K
Geometric dilate In(1 — pX + ) = ; wk n(1 =51 +a) wk! %
1T
Exponential erode e@(1=p%) = v KT pa(1=s7) wkI! 0=
1 ea(l_ok)
I
Exponential dilate e@r® — S wk! oo’ wk! %
1 e
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DOI: 10.1002/nme



LUBRICATION TEXTURE OPTIMIZATION 1435

4.2. Texture description

Using p, the surface texture is indirectly expressed through the film thickness
h(P) = hmin + (hmax - hmin)pn € [hmina hmax] (44)

where hpi, and Ay are the desired minimum and maximum film thickness values and n = 1 is
a parameter that determines whether the goal texture has relatively sharp transitions between /i,
and /.y, corresponding to n > 1 (for instance, 1 = 3) and referred to as a 0-OR-1 design that is
characterized by pillars and holes on a surface, or smooth transitions (ideally n = 1) that deliver a
0-TO-1 design that is characterized by bumps and dimples. The design must additionally satisfy a
desired macroscopic film thickness

(=hy — ()= o tmn @3

hmax - hmin
Based on the texture description, the calculation of the sensitivities (3.8) and (3.15) is indirectly

a?;i(,h)> where H is an arbitrary function of / [64]:

oMY\ [oH 0h — dp 9K\  [om - < K
< aSI > <3h BpZE)pKBS_1>_<% {n(hmax_hmm)p }XK:N Bs_l
ap
|y| Z/ ( {n(hmax_ mln)pn I}NK s [)da

(4.6)

Here, X C Y indicates the span of N K When p is element-wise constant, K indexes the elements
and NX = 1 only within the domain of its element.

addressed through a generic form <

4.3. Optimization

For the formulation of the optimization problem, the objective function

L{1A—-a%>  |Cc—c*|?
“”25(” A IC-C) )
A~ el

is introduced where ||-|| denotes the Frobenius norm and {4*, C*} are the target values of the

homogenized coefficient tensors {4, C}. Additionally, a constraint function

({h) — ho)?
X)) = ——5— (4.8)
hg

is introduced in order to eventually ensure, via (4.5), that the mean film thickness is satisfied by the
design, which essentially plays the role of the volume fraction constraint in topology optimization.
Also recalling that the design variables s’ are constrained to the interval [0, 1], the optimization
problem is formulated as

minimize ¢(s), subject to x(s) = 0ands € [0,1] . 4.9)

For a particular lubrication interface geometry with prescribed boundary conditions, the pressure
variation across the interface is entirely determined by the distributions of {4, C}. The ability to
tune the pressure variation is of prime importance in lubrication because it directly controls global
performance criteria such as the load capacity of the interface. Therefore, in the context of surface
engineering, one may attempt to determine optimal {A, C } distributions in the first step of a design
problem in order to obtain a pressure variation that satisfies desired global performance criteria.
This optimization task does not necessarily require a homogenization-based framework. However,
if these optimal distributions are denoted by {4 *, C*}, the second step would be to determine the

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2016; 108:1427-1450
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texture that delivers the corresponding target values {A*, C*} at each point across the interface
where the gap h( between the interacting surfaces is known. The optimization problem stated in
(4.9) serves to test precisely this ability of the developed homogenization-based design framework.
A more advanced design setting would discard the need to determine an optimal {A, C} distribution
in a first step and would instead directly link the global performance criteria on the macroscale to
the texture geometry on the microscale, thereby also allowing microscopic design criteria such as
manufacturing constraints to be taken into account simultaneously with the macroscopic objectives
and constraints. Such a two-scale design setting, however, requires meeting additional challenges
that are outside the scope of the present study (see also Section 6).

In this work, the method of moving asymptotes (MMA) will be employed as the optimization
algorithm in view of its proven success [68]. MMA operates based on the values as well as the
sensitivities of the objective function and the equality constraint in order to reach a minimum that
satisfies the inequality constraints. The sensitivities ;v—“} and ;S—X, for this purpose are computed via
the analysis of Section 3 together with the general expression (4.6).

5. NUMERICAL INVESTIGATIONS

5.1. Target textures

Within the tests for texture design, a series of benchmark target textures of the 0-OR-1 and 0-TO-
1 type will first be described on a given mesh resolution and an element type (Q1S50 or Q1S1).
Each texture may deliver a macroscopically isotropic or anisotropic response. The macroscopic
quantities {A*, C*, ho} associated with a target texture will then be fed into the MMA algorithm
as input values that will drive the optimization procedure toward a design output. Employing target
textures to generate the input set will (i) allow for a visual assessment of the optimization results, in
particular by indicating if it is possible to obtain identical macroscopic responses from significantly
different textures, and also (ii) help circumventing a laborious trial and error stage in order to ensure
that the prescribed target macroscopic quantities are actually physically attainable by a texture (cf.
Section 5.4). In all cases, the minimum and maximum film thicknesses in (4.4) are set to h~ =
0.1 um and 2~ = 3 um while n = 3 is employed for 0-OR-1 design and n = 1 is employed for
0-TO-1 design. The viscosity of the fluid is set to u = 0.14 Pa-s. The effect of the viscosity is not
independently investigated because, via (2.12) and (2.14), one may observe that C is independent
of the viscosity while A is inversely proportional to it.

On a given mesh resolution, the textures will be visualized as depicted in Figure 2. The Reynolds
equation that constitutes the basis for the homogenization scheme is a 2D formulation that operates
on a periodic unit cell, which may be tiled to generate a surface where the pattern appears more
clearly. For further clarity, 3D visualizations will additionally be presented. In order to distinguish
0-0R-1 and 0-TO-1 textures, different coloring schemes will be employed to indicate the height
variation across the rough surface from a minimum value (which corresponds to maximum film
thickness 4 = h™) to a maximum value (which corresponds to a minimum film thickness & = h™).
The target macroscopic response {A*, C*, ho} and the corresponding homogeneous response for
each case are summarized in Appendix B.

5.2. Default numerical choices

In order to enable the reproducibility of the presented results, it is noted that the default MMA
parameters [69] were preserved, except for the move limit parameter (move in mmasub.m),
which was reduced from its default value of 1 to 0.1 because a highly oscillatory optimization pro-
cess was often observed otherwise. Convergence was declared when ¢ decreased below a tolerance
of ToL, = 1073 and y decreased below TOL, = 10™*. The tolerance on the constraint is typically
very quickly satisfied during optimization iterations, that is, most of the numerical cost is due to
the low tolerance on the objective function. During implementation, in order to obtain a better con-
vergence performance, ¢ was scaled to ¢’ = 100¢ + 1, which roughly picks values in the interval
[1,100] with a corresponding convergence tolerance TOL,s = 1.1. For completeness, the number
of iterations to convergence will be reported for each case.
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Figure 2. 2D unit cells for 0-OR-1 and 0-TO-1 designs are depicted together with their corresponding peri-

odic tilings as well as 3D visualizations. The light gray surface indicates the moving upper surface and the

coloring scheme, individual to the type of the design, encodes the height across the stationary lower surface.
Consequently, MAX is where the film thickness is a minimum while MIN is where it is a maximum.

The unit cell Y of periodicity will be modeled as a square with an edge length of L = 10 um
and discretized with a mesh of N x N elements, with Q151 as the default element type. However,
the absolute edge length only affects the frequency of oscillations in the macroscopic response for
bilateral roughness and is irrelevant to homogenization results for the present case of unilateral
roughness. Consequently, during implementation, the distance and the radius for the calculation
of the weights in (4.3) for filtering purposes will be measured in terms of element or node index
coordinates (X, Y). In the case of element-wise constant design variables (i.e., Q150 element), the
element indices are employed. These lie in the interval [1, N], and the distance of element K to [ is
measured by d(K, I) = \/(Xx — X1)? + (Yx — Y1)2. The same holds in the case of a continuous
piecewise linear design variable (i.e., Q151 element) where the node indices are employed instead.
Note that, although the node index ranges from 1 to N 4 1, the nodes which lie on periodically
linked opposing edges are not independent such that the number of independent nodes along an
edge is also N. For all the cases tested in this work, the results were observed to rapidly settle on a
pattern with increasing mesh resolution, indicating that a resolution of N = 40 can be satisfactorily
employed. Note that the filter radius must be scaled in order to preserve the feature size if the mesh
resolution is modified.

Filtering delivers results that are closer to the target textures and will be employed in the default
setting. The feature size in the designed texture is controlled by the ratio R/N, and filtering is
applied periodically. The default filter radius R = 1 is equal to N/10 = 4. For 0-OR-1 design, the
exponential erode filter from Table I will be selected because it generates sharp transitions and leads
to faster convergence among other filters of the erode/dilate type for the cases tested in this work.
The linear filter naturally attempts to achieve smooth transitions and hence is selected for 0-TO-1
design. It is remarked that filtering will be applied without modification of the filter parameters until
convergence, although gradually turning it off during the iterations may be beneficial for 0-OR-1
design [57].

Based on the default numerical parameter choices, target inputs are depicted together with the
output designs in Figure 3 for 0-OR-1 textures with a macroscopically isotropic response and in
Figure 4 for anisotropic ones. Similarly, Figures 5 and 6 summarize the results for macroscopically
isotropic and anisotropic 0-TO-1 textures. In most cases, convergence has been achieved in less
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Figure 3. Benchmark target textures of the 0-OR-1 type displaying a macroscopically isotropic response are

depicted together with the output designs from the optimization algorithm based on the default numerical

choices. The number of iterations to convergence were (a) 93 for the circular pillar texture, (b) 47 for the

circular hole texture, (c) 82 for the square pillar texture, and (d) 93 for the square hole texture. See Table A.1
in Appendix B for corresponding target responses.

than 100 iterations, and the output designs compare favorably with the target textures, demonstrat-
ing the ability of the framework to capture a broad range of isotropic and anisotropic macroscopic
responses, which include sharp textures with pillars and holes as well as smooth textures with dim-
ples and bumps. It is noted that although the major goal of a 0-OR-1 design is to achieve extreme
values of £, the ellipsoidal texture in Figure 4 also indicates the ability of this setup to capture sharp
features with respect to an intermediate plane.

It is remarked that in the default setting the algorithm has been initiated with a uniform s-
distribution at a value so such that 4 = hg but by additionally perturbing the value of s with index
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Figure 4. Benchmark target textures of the 0-OR-1 type displaying a macroscopically anisotropic response

are depicted together with the output designs from the optimization algorithm based on the default numerical

choices. The number of iterations to convergence were (a) 8 for the diagonal groove texture, (b) 75 for the

ellipsoidal texture with alternating pillars and holes, (c) 21 for the trapezoidal pillar texture, and (d) 216 for
the trapezoidal hole texture. See Table A.2 in Appendix B for corresponding target responses.

coordinates (N/2, N/2) to 1 — so (unless sq is exactly equal to 0.5 in which case the perturbation
is chosen as 1 — so + & where § is a small number). At convergence, the output set {A,C, (h)}
will capture the input set {4, C*, 1y} to within the prescribed tolerances. However, because of the
well-known non-uniqueness in microstructure design that is already particularly apparent in 0-TO- 1
type textures with a macroscopically isotropic response (Figure 5), the topography of the designed
texture depends on a number of parameters, including the initial s-distribution. Hence, the deciding
factor for a suitable initial guess is the number of iterations to convergence and the visual quality
of the design. Figure 7 summarizes a comparison between various initial guesses. Clearly, a uni-
form film distribution is undesirable as an initial guess because convergence is significantly delayed.
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Figure 5. Benchmark target textures of the 0-TO-1 type displaying a macroscopically isotropic response are

depicted together with the output designs from the optimization algorithm based on the default numerical

choices. The number of iterations to convergence were (a) 78 for the circular bump texture, (b) 41 for the

circular dimple texture, (c) 76 for the sinusoidal texture, and (d) 127 for the distorted sinusoidal texture.

See Table A.3 in Appendix B for corresponding target responses. Note that the last texture is only weakly
anisotropic and hence included in this list.

On the other hand, random inputs tend to deliver designs that can deviate significantly from the
class of input textures chosen in this work. The default choice converges comparatively faster to a
topography that closely reproduces the input texture.

5.3. Filtering radius and element type

For 0-OR-1 design, the default Q151 element not only prevents potential checkerboard patterns
that often occur with the Q150 element in the absence of filtering [28, 64, 70, 71] but also delivers
results that are of higher quality in relation to the target textures when filtering is employed. This is
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Figure 6. Benchmark target textures of the 0-TO-1 type displaying a macroscopically anisotropic response

are depicted together with the output designs from the optimization algorithm based on the default numerical

choices. The number of iterations to convergence were (a) 15 for the diagonal wave texture, (b) 115 for the

ellipsoidal texture with alternating bumps and dimples, (c) 29 for the triangular groove texture, and (d) 41
for the wavy groove texture. See Table A.4 in Appendix B for corresponding target responses.

summarized in Figure 8, where it is observed that the central feature is captured rather accurately,
although areas with intermediate values of s remain. Moreover, the design with a Q1S1 element
is relatively insensitive to the filter radius for the range of values tested. For 0-TO-1 design, Q151
element again prevents checkerboard patterns, although the texture quality of the Q150 element is
comparable with the Q1S1 output once a suitable filter radius is selected (Figure 9). For a 0-TO-1
design, filtering strongly influences the texture for both element types due to linear filtering, with a
clearly observable increase in the feature size with increasing filter radius.

To validate the analytical sensitivity expressions derived in Section 3, they are compared with
their numerical counterparts in Appendix C based on the examples discussed in this section.
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Figure 7. Influence of the initial guess is demonstrated using (a) 0-OR-1 type trapezoidal hole texture from

Figure 4 and (b) 0-TO-1 type circular bump texture from Figure 5. The uniform guess employs a constant

s = sg such that i = hq, while the default guess additionally perturbs a degree of freedom. The two random

guesses were generated from a Gaussian random number generator. The number of iterations to convergence
were (a) {216, 529, 310, 1087} and (b) {78, 959, 103, 93}.

(a—) no filter (Q1S0) (a-2) R =1 (Q1S0) (a-3) R =2 (Q1S0) (a-4) R=4 (Q1S0) (a-5) R =8 (Q1S0)
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(b-1) no filter (Q1S1) (b-2) R=1 (Q1S1) (b-3) R=2 (Q1S1) (b-4) R=4 (Q1S1) (b-5) R =8 (Q1S1)

Figure 8. The effect of the element type (default: Q1S1) and filtering (default: R = 4) is demonstrated
for 0-OR-1 type circular pillar texture from Figure 3 for (a) Q150 and (b) Q151 elements. The number of
iterations to convergence were (a) {148, 125, 122, 145,159} and (b) {110, 110, 93, 93, 229}.

5.4. Onsager’s principle

For all the benchmark textures considered, A and C were symmetric tensors, except for the weakly
non-symmetric C in the last 0-TO-1 textures of Figures 5 and 6 (Appendix B). The tensor A4 is
necessarily symmetric and positive-definite [72]. As such, A obeys Onsager’s principle but there is
no such restriction for C, similar for instance to the tensors that characterize the Seebeck and Peltier
effects in thermoelectricity [73]. This indicates that textures with significantly non-symmetric C
tensors may be designed. In order to investigate this possibility, the optimization algorithm was
applied to achieve a target C* for a given /o without any restriction on 4, which was formulated
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Figure 9. The effect of the element type (default: Q1S1) and filtering (default: R = 4) is demonstrated for
0-TO-1 type sinusoidal texture from Figure 5 for (a) 0150 and (b) Q151 elements. The number of iterations
to convergence were (a) {80, 103, 85,73, 107} and (b) {79, 79, 144,76, 116}.
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Figure 10. Textures designed according to the discussion in Section 5.4 in order to achieve significantly non-
symmetric C values for (a) 0-OR-1 type design and (b) 0-TO-1 type design (see Table A.5 in Appendix B
for corresponding macroscopic responses). The number of iterations to convergence were (a) 229 and (b) 44.

by removing the first contribution to ¢ in (4.7). For a 0-OR-1 example, sy was prescribed closer
to 4~ than A", which is expected to lead to holes on the surface rather than pillars. For a 0-TO-
1 example, a mediocre /¢ value was prescribed, which is expected to lead to a smoothly varying
texture. For both cases, the target C* must be commensurate with the choice of &gy because the
addition of roughness to the stationary lower surface leads to a reduction of C' with respect to the
response of the homogeneous interface (Appendix B). Appropriate sample input values, found by
trial and error, are (in um):

0-OR-1: ho=080 , [C*]= [8(1)8 8'(1)8] ’
0.40 0'10 10
0-T0-1: ho=145 , [C*]= [0.20 0'30]

The corresponding designs are depicted in Figure 10, which verify the previous assertion regarding
the existence of such textures.

6. CONCLUSION

Surface tex