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We probe the electrostatic cost associated with the approach phase of DNA translocation events.
Within an analytical theory at the Debye-Hückel level, we calculate the electrostatic energy of
a rigid DNA molecule interacting with a dielectric membrane. For carbon or silicon based low
permittivity neutral membranes, the DNA molecule experiences a repulsive energy barrier between
10 kBT and 100 kBT . In the case of engineered membranes with high dielectric permittivities, the
membrane surface attracts the DNA with an energy of the same magnitude. Both the repulsive
and attractive interactions result from image-charge effects and their magnitude survive even for
the thinnest graphene-based membranes of size d ≈ 6 Å. For weakly charged membranes, the
electrostatic energy is always attractive at large separation distances but switches to repulsive close
to the membrane surface. We also characterise the polymer length dependence of the interaction
energy. For specific values of the membrane charge density, low permittivity membranes repel short
polymers but attract long polymers. Our results can be used to control the strong electrostatic energy
of DNA-membrane interactions prior to translocation events by chemical engineering of the relevant
system parameters. C 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4942177]

I. INTRODUCTION

The DNA molecule plays a crucial role in mediating
biological information during the assembly of the building
blocks of living organisms. As the carrier of the genetic
code, DNA plays a central role in various biological
and technological processes such as cell division,1 protein
biosynthesis,2 drug delivery,3 and DNA profiling.4 The
efficient use of DNA in biological and nanotechnological
applications necessitates fast access to its genetic content
and an accurate knowledge of its interaction with the
surrounding medium. Considering the omnipresent coupling
between strongly charged DNA molecules, the dielectric water
solvent embodying charges, and external macromolecules
and membranes in nature, a proper modelling of DNA
electrostatics is essential.

A fundamental question concerning DNA in biological
and artificial systems concerns the electrostatic interactions
between fluctuating polymers and membranes. This has been
mainly considered at the mean-field (MF) Poisson-Boltzmann
(PB) level. The electrostatic MF approximation has the
advantage of allowing the consideration of entropic polymer
fluctuations. The corresponding formalism consists of
coupling Edward’s path integral model5 with the field theoretic
Coulomb liquid model.6 In this context, one can mention
the seminal works of Podgornik,7,8 where he considered the
electrostatics of an infinitely long polyelectrolyte between two
charged membrane walls. Within the same MF approximation,

a)Email: Buyukdagli@fen.bilkent.edu.tr
b)Email: Tapio.Ala-Nissila@aalto.fi

the interaction of a polyelectrolyte with a charged sphere
was considered in Ref. 9 and possible extensions beyond
the MF level were proposed. Similar MF approaches have
been subsequently applied to polyelectrolyte brushes10 and
polymer-interface interactions in incompressible liquids.11

Electrohydrodynamic theories of confined ions and
polymers beyond the MF approximation have been developed
for rigid polyelectrolytes. In Ref. 12, the present authors
coupled one-loop electrostatic equations with the Stokes
equation and calculated the electrophoretic DNA mobility
and ionic currents in confined pores. Within this theory
that accounts for charge correlations associated with low
membrane permittivity and charge multivalency, we showed
that the addition of multivalent counterions into the solution
reverses the MF electrophoretic mobility of polyelectrolytes.
It is noteworthy that this effect was recently observed
in electrophoretic DNA transport experiments.13 Then, by
applying the theory to hydrodynamically induced DNA
transport, we found that during polymer translocation events,
the multivalency induced charge correlations reverse the ionic
current through neutral pores.14

An important feature of the correlation-corrected polymer
transport theories is that they neglect the interaction
between the membrane and the portion of the DNA
located outside the nanopore. In the present article, we
address this issue by considering the electrostatic energy
of a polyelectrolyte located in the vicinity a dielectric
membrane. Our theory aims at quantitatively evaluating the
electrostatic cost, i.e., the electrostatic contribution to the
energy barrier, upon the approach phase preceding DNA
translocation events. Understanding how to control this

0021-9606/2016/144(8)/084902/11/$30.00 144, 084902-1 © 2016 AIP Publishing LLC
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barrier is paramount to successful applications of DNA trans-
location.

At this point, we should also mention the important
beyond-MF models of Refs. 15 and 16 where the effect
of polarization charges on polymer adsorption onto planar
interfaces was considered. The major approximation of
these theories consists of replacing the electrostatic many-
body potential by a one-body image-charge potential in
the path integral over polymer configurations. In order to
avoid the resulting uncontrollable errors and to simplify the
theoretical framework, we consider here a rigid polyelectrolyte
approaching a charged dielectric membrane. In the beginning
of Section II, we calculate the electrostatic grand potential
of the polymer induced by the presence of the membrane.
Section II A is devoted to neutral membranes. We scrutinize
the effect of the polymer length, salt density, and membrane
thickness and permittivity on the grand potential of the
polyelectrolyte. Then, in Section II B, we consider a
charged membrane and investigate the competition between
image charge and membrane surface charge forces in
polymer-membrane interactions. The limitations and possible
extensions of our theory are discussed in Sec. III.

II. DEBYE-HÜCKEL THEORY
OF POLYMER-MEMBRANE INTERACTIONS

First, we introduce the theoretical model of electrostatic
interactions between a DNA molecule and a dielectric
membrane modelled as in Fig. 1. The membrane is assumed
to consists of two infinite lateral surfaces on the x − y plane,
separated by d which is the membrane thickness. The left
(z < 0) and the right lateral surfaces (z > d) are in contact
with a salt solution. The polyelectrolyte modelled as a rigid
line charge of length L is located on the left side of the
membrane. In Appendix A, we show that the electrostatic
Debye-Hückel (DH) grand potential of the polyelectrolyte is

Ωpol = kBT


drdr′

2
σ(r)vDH(r,r′)σ(r′), (1)

where σ(r) is the distribution of the fixed charges (other than
the mobile ions), and the Green’s function vDH(r,r′) is the
solution of the DH Eq. (A8) introduced in Appendix A.

For the line charge perpendicular to the membrane, the
total charge distribution can be expressed in the form

σ(r) = −λ δ
�
r∥
�
g(z) + σsδ(z), (2)

where λ > 0 is the linear DNA charge density, r∥ is the vector
indicating the position of any point in the x − y plane that
coincides with the lateral membrane surface, and g(z) stands
for the polymer structure factor along the z axis. In the present
work, we assume that the membrane surface charge of uniform
density σs is located at z = 0 and the second surface at z = d
is neutral. Furthermore, due to the translational symmetry
in the membrane plane, one can Fourier expand the Green’s
function as

vDH(r,r′) =


d2k
4π2 e

ik·
(
r∥−r′∥

)
ṽDH(z, z′). (3)

FIG. 1. Polyelectrolyte of length L and linear charge density −λ < 0 whose
right end is located at a distance of z = zt < 0 from the membrane. The
membrane has thickness d and dielectric permittivity εm. Both the polymer
and the membrane are immersed in a symmetric monovalent electrolyte
solution with bulk concentration ρb and dielectric permittivity εw = 80.

By inserting into the right-hand-side of Eq. (1) the function (2)
together with the Fourier expansion (3) and evaluating the
integrals over the membrane surface, the grand potential takes
the form

Ωpol

kBT
= λ2

 ∞

0

dkk
4π

 +∞

−∞
dzdz′g(z)ṽDH(z, z′)g(z′)

− λσs

 ∞

−∞
dzg(z)ṽDH(z, z′ = 0; k = 0). (4)

In Eq. (4), we omitted the membrane self-energy Ωmem
=


r,r′σs(r)vDH(r,r′)σs(r′)/2.
The quadratic dependence of the grand potential (4) on

the polymer charge density λ is a result of the present DH
approximation. This point is discussed in Appendix A in
detail. The approximation is known to be valid at intermediate
monovalent salt densities with ρb & 0.01M. Although the
nonlinear interactions neglected by the DH approach can
be included by introducing a variational or one-loop level
expansion of the grand potential,24 this improvement will add
to the numerical complexity and hide the analytical simplicity
of our theory. This point is our main motivation for the
choice of the present DH approximation. We finally note
that in the rest of the article, we will consider a symmetric
electrolyte composed of two monovalent species on each
side of the membrane, with valencies q+ = −q− = 1 and bulk
densities ρ+b = ρ−b = ρb. The liquid temperature will be set
to the ambient temperature of T = 300 K, and dielectric
permittivities will be expressed in units of the vacuum
permittivity ε0.

A. Neutral membranes

Next, we will consider the interaction between the
polyelectrolyte and a neutral membrane (σs = 0). To this aim,
we will calculate the net energetic cost for the polyelectrolyte
to approach the membrane. In the configuration of the polymer
of length L whose right end is located at the distance zt ≤ 0
from the membrane (see Fig. 1), the structure factor is given
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by

g(z) = θ(zt − z)θ(z − zt + L), (5)

where θ(x) is the Heaviside step function. We insert this
structure factor into Eq. (4) together with the Fourier
transformed Green’s functions (B6)-(B8) given in Appendix B
and subtract the electrostatic bulk grand potential associated
with the bulk Green’s function ṽb(z − z′) of Eq. (B10).
After carrying out the spatial integrals and noting that the
second term of Eq. (4) vanishes for σs = 0, we get the
net electrostatic grand potential mediated exclusively by the
dielectric membrane in the form

∆Ωpol(zt)
kBT

=
ℓBλ

2

2

 ∞

0

dkk
p3

∆
�
1 − e−2kd�

1 − ∆2e−2kd

×
�
1 − e−pL

�2
e−2p |zt |. (6)

The potential of Eq. (6) corresponds to the work done
adiabatically to drive the polymer from the bulk region at z
= −∞ to the distance zt from the membrane surface. In Eq. (6),
we introduced the Bjerrum length ℓB = e2/(4πεwkBT) ≈ 7 Å
with εw = 80 being the solvent permittivity, the auxiliary
function p =

√
k2 + κ2, where κ2 = 8πq2ℓBρb stands for the

DH screening parameter, and the dielectric discontinuity
function ∆ = (εwp − εmk)/(εwp + εmk). Moreover, the delta
symbol on the l.h.s. of Eq. (6) means that we have neglected
the bulk contribution and took into account exclusively the
energy due to the presence of the membrane. Indeed, we note
that in the limit of a bulk electrolyte, i.e., as the membrane
thickness tends to zero d → 0, the potential vanishes, that is,
∆Ωpol(zt) → 0 due to the membrane’s neutrality assumption.

1. Membrane permittivity εm
The biological and synthetic membranes used in DNA

translocation experiments are usually made of carbon
or silicon. Such membranes are characterized by a low
dielectric permittivity εm ≈ 2–8. However, recent membrane
engineering techniques based on the insertion of carbon
structures or graphene nanoribbons (GNRs) into Si-based host
matrices can increase the permittivity of these materials up to
8000.17,18 In order to predict electrostatic membrane-polymer
interactions over the experimentally relevant permittivity
range, we plot in Fig. 2 the electrostatic grand potential of
Eq. (6) for a polymer of length L = 1 µm against its distance
zt from the membrane for various permittivity values. The
charge density is set to the linear charge density of dsDNA,
that is, λ = 2 e/(0.34 nm). The other model parameters are
given in the figure caption.

In Fig. 2, for C/Si-based membranes with small
permittivities (εm = 2), the grand potential of the approaching
polymer increases from zero to about 11 kBT within about
1 nm distance. The reduction of the barrier with increasing
membrane permittivity (from top to bottom) shows that
this energetic cost is mainly due to the interaction of
the polymer charges with their electrostatic images. For
the permittivity value εm = εw = 80, where the dielectric
discontinuity between the liquid and the membrane vanishes,
the barrier survives but its value is reduced by an order

FIG. 2. The electrostatic grand potential of Eq. (6) against the polymer
distance for various membrane permittivities displayed in the legend (solid
curves). The bulk ion density is ρb = 0.1M, pore size d = 10 nm, polymer
length L = 1 µm, and the DNA charge density λ = 2 e/(0.34 nm). Open
symbols denoting the energy barrier at zt = 0 are from Eq. (8). Black and red
symbols correspond to the closed-form expression of Eq. (14) with εm = 0
(s =+1) and εm =∞ (s =−1), respectively.

of magnitude to ∆Ωpol(0) ≈ 2.0 kBT . In the latter case where
image-charge interactions are absent, the small barrier is solely
due to the electrostatic screening deficiency of the charge-free
membrane. More precisely, because the membrane is ion-
free, the closer the polymer is to the membrane surface, the
less efficient is the screening of its field by mobile ions.
This effect translates into a solvation force oriented towards
the bulk region where the electrostatic free energy of the
polymer is lowest. Moreover, for GNRs type membranes
with a large permittivity εm > εw, the electrostatic grand
potential becomes negative. In other words, similar to point
charges at metallic interfaces,20 as the membrane dielectric
permittivity exceeds that of water, the polymer-membrane
interaction switches from repulsive to attractive. For the
highest permittivity value εm = 8000 measured for GNRs,17

the depth of the attractive well reaches a remarkably large
value of ∆Ωpol(0) ≈ −11.0 kBT .

We focus next on the electrostatic grand potential at
zt = 0. In order to derive an analytical expression, we consider
the limit where the polymer length and the pore thickness tend
to infinity, i.e., L → ∞ and d → ∞. The physical conditions
that validate these limits will be determined below. In these
limits, Eq. (6) simplifies to

lim
L,d→∞

∆Ωpol(0)
kBT

=
ℓBλ

2

2

 ∞

0

dkk
p3 ∆. (7)

Carrying out the integral and introducing the dielectric contrast
parameter γ = εm/εw, the potential takes the form

lim
L,d→∞

∆Ωpol(0)
kBT

=
ℓBλ

2

2κ
F(γ), (8)

with the auxiliary function

F(γ) = −1 +
π

γ
− 2
γ

arccos(γ)
1 − γ2

, for γ < 1, (9)

F(γ) = π − 3, for γ = 1, (10)

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  139.179.166.130 On: Tue, 23

Feb 2016 18:22:29



084902-4 S. Buyukdagli and T. Ala-Nissila J. Chem. Phys. 144, 084902 (2016)

FIG. 3. The electrostatic grand potential of Eq. (8) at the membrane surface
against membrane permittivity εm at density ρb = 0.1M (main plot) and salt
concentration ρb at permittivity εm = 2 (solid curve in the inset). The dashed
curve in the inset obtained from Eq. (6) for L→ ∞, εm = 2, and d = 6 Å
generalizes the result in the solid curve to a finite membrane thickness. The
remaining model parameters are the same as in Fig. 2.

F(γ) = −1 +
π

γ
− 2
γ

ln

γ +


γ2 − 1




γ2 − 1

, for γ > 1. (11)

In Fig. 2, we show that the simple law of Eq. (8) accurately
reproduces the electrostatic grand potential at zt = 0 for
various membrane permittivities (open square symbols at
zero distance).

In the main plot of Fig. 3, we show the potential of Eq. (8)
on the membrane surface versus the membrane permittivity.
In agreement with Fig. 2, with an increase of the permittivity
from εm = 2 to 500, the potential is seen to change from
+12 kBT to −8 kBT . As indicated by the dashed lines in the
same figure, it switches from repulsive to attractive at the
permittivity value εm ≈ 107, where the weak attractive image
force exactly compensates for the repulsive solvation force
induced by the charge screening deficiency of the membrane.
In Subsection II A 2, we scrutinize the polymer length and
salt dependence of this interaction energy.

2. Polymer length L and salt density ρb

DNA translocation experiments are carried out with
different sequence lengths and salt concentrations. Motivated
by this, we focus next on the salt and polymer length
dependence of the DNA-membrane interactions. To this aim,
we will derive a closed-form expression for the electrostatic
grand potential profile of Eq. (6) in the case of very low
and very large permittivity membranes. First, we introduce
an auxiliary parameter s that will allow to cover the case of
biological or silicon-based membranes of low permittivities
(εm ≪ εw) and engineered membranes including GNRs of
large permittivities (εm ≫ εw),18

s = +1, for εm = 0 (bio/Si membranes), (12)
s = −1, for εm = ∞ (GNRs). (13)

In the upper and lower limits defined by Eqs. (12) and (13),
the dielectric discontinuity function ∆ in Eq. (6) tends to +1

and −1, respectively, which allows to carry out the Fourier
integral. We find

∆Ωpol(zt) = skBT
ℓBλ

2

2κ
G(zt), (14)

where we defined the adimensional function

G(zt) = e2κzt + e−2κ(L−zt) − 2e−κ(L−2zt)

− 2κzt Ei[2κzt] + 2κ(L − zt)Ei [−2κ(L − zt)]
− 2κ(L − 2zt)Ei [−κ(L − 2zt)] . (15)

In Eq. (15), the exponential integral function is denoted by
Ei(x).19 We display the grand potential of Eq. (14) in Fig. 2
by solid square symbols. We note that this analytical form
accurately reproduces the energy profile for low permittivity
(εm = 2) and large permittivity (εm = 8000) membranes.
Using the closed-form expression of Eq. (14), we will next
scrutinize the dependence of the electrostatic grand potential
on the polymer length and ion concentration.

In Fig. 4, we display the polymer length dependence of
the electrostatic grand potential Eq. (14) on the membrane
surface

∆Ωpol(0)
s∆Ω∗

=
�
1 − e−κL

�2
+ 2κL [Ei(−2κL) − Ei(−κL)] , (16)

for εm = 0 (s = +1), where we have rescaled the electrostatic
grand potential by the characteristic energy

∆Ω
∗ = kBT

ℓBλ
2

2κ
. (17)

We can see that the potential given by Eq. (16) increases
steadily with the polymer length up to L ≈ κ−1 and
converges towards the saturation value limL,d→∞∆Ωpol(0)
= s∆Ω∗ beyond which it does not depend on the polymer
length. The relation of Eq. (17) shows that for long polymers
κL ≫ 1, the electrostatic grand potential on the membrane
surface scales with ion density as ∆Ωpol(0) ∝ ρ−1/2

b
.

In order to get further analytical insight into the length
dependence of the grand potential at the membrane surface, we
Taylor expand Eq. (16). We find that for dilute electrolytes or

FIG. 4. Main plot: The rescaled electrostatic grand potential of Eq. (16)
at the membrane surface against the reduced polymer length κL at the
membrane permittivity εm = 0.0. Inset: The characteristic polymer length
L∗= 2/κ above which the thermodynamic limit is reached (area above the
curve) against the bulk salt density.
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short polymers κL ≪ 1, the grand potential increases linearly
with length,

∆Ωpol(0) = s ln(2)kBTλ2ℓBL +O
�(κL)2� . (18)

At large lengths or in strong salt solutions κL ≫ 1, the
potential reaches exponentially fast the strict thermodynamic
limit of Eq. (17),

∆Ωpol(0) = skBT
ℓBλ

2

2κ


1+

2
κL

(
2
κL
− 1

)
e−κL


+O

�
e−2κL� .

(19)

Moreover, defining the saturation condition of the grand
potential as ∆Ωpol(zt = 0) & 0.9∆Ω∗, we find that the former
saturates at κL & 2. This yields the characteristic polymer
length determining the thermodynamic limit as L∗ = 2/κ. We
plot the latter equality in the inset of Fig. 4. We see that the
higher the salt concentration, the smaller the thermodynamic
length. Indeed, we find L∗ ≈ 20 nm (equivalent to ≈100 bps
dsDNA sequences) at the salt density ρb = 10−3M, L∗ ≈ 6 nm
(≈30 bps) for ρb = 10−2M, and L∗ ≈ 2 nm (≈10 bps) at
ρb = 10−1M. It is noteworthy that beyond these critical lengths
where finite size effects are irrelevant, the electrostatic grand
potential of Eq. (14) takes for L → ∞ a much simpler form

∆Ωpol(zt) = skBT
ℓBλ

2

2κ


e−2κ |zt | + 2κ |zt | Ei(−2κ |zt |)


. (20)

After having investigated the short distance behaviour of
the electrostatic grand potential, we now consider its large
distance behaviour. By Taylor-expanding Eq. (14) in the
regime |κzt | ≫ 1, we find to leading order

∆Ωpol(zt) ≈ skBT
ℓBQ2

eff(L)
4|zt | e−2κ |zt |. (21)

In Eq. (21), we have introduced the effective polymer charge

Qeff(L) = λL
1 − e−κL

κL
. (22)

Interestingly, Eq. (21) has exactly the form of the image-
charge potential experienced by a point ion of valency Qeff(L)
located at the distance −zt from a dielectric interface.20

Equations (21) and (22) indicate that in dilute salt solutions
or for short sequence lengths, polymers far away from the
membrane interact with the latter as point charges with valency
Qeff(L ≪ κ−1) = Lλ. Thus, in this physical regime, polymer-
membrane interactions are governed by the bare polymer
charge. In the opposite case of long DNA sequences or strong
salt, the effective charge takes the form Qeff(L ≫ κ−1) = λ/κ,
indicating that the intensity of the interactions is set by the net
charge of the polymer dressed by the surrounding counterion
cloud.

Since the salt concentration is an easily controllable
parameter in translocation experiments, it is important to
characterize the influence of salt on the range and the
magnitude of the polymer’s grand potential. In the inset
of Fig. 3 where we plot Eq. (8) (solid red curve), we see that
the lower the salt concentration, the larger the electrostatic
grand potential at the membrane surface. More precisely,
the reduction of the ion density from ρb = 10−1M to 10−3M
increases the grand potential by an order of magnitude from

≈10 kBT to ≈100 kBT . In order to consider the range of
the interactions, we remove finite size effects and focus on
the limit L → ∞. By Taylor expanding Eq. (20) for large
distances |κzt | ≫ 1, we get the electrostatic grand potential in
the asymptotic form

∆Ωpol(zt) ≈ skBT
ℓBλ

2

4κ2|zt | e
−2κ |zt | = s∆Ω∗

e−2κ |zt |

2κ |zt | . (23)

In the second equality of Eq. (23), we have separated the
surface energy barrier of Eq. (17) and the Yukawa type of
decay function e−2κ |zt |/2κ |zt |. Numerically, we find that this
function reduces the energy by an order of magnitude at the
distance 2κ |zt | ≈ 2, which fixes the characteristic range of the
interaction as z∗ = κ−1. This equality yields z∗ ≈ 1.0 nm for
ρb = 10−1M (see also Fig. 2), z∗ ≈ 3.0 nm at ρb = 10−2M,
and z∗ ≈ 10 nm at ρb = 10−3M. Therefore, the reduction of
the salt density significantly increases the range of polymer-
membrane interactions.

Before concluding, we consider the range of polymer-
membrane interactions in a pure solvent. Neglecting the
screening parameter κ, taking the large pore limit d → ∞,
and introducing the reduced separation distance z̄t = |zt |/L,
we can carry out the integral of Eq. (14) and get

∆Ωpol(zt) = kBTℓBLλ2
∆0


ln


2 + 2z̄t
1 + 2z̄t



− z̄t ln
 (1 + 2z̄t)2

4z̄t(z̄t + 1)


, (24)

with the salt-free dielectric discontinuity parameter ∆0
= (εw − εm)/(εw + εm). We now note that at large separation
distances |zt | ≫ L, the grand potential of Eq. (24) decays
algebraically as

∆Ωpol(zt) ≈ kBT∆0
ℓB(λL)2

4|zt | . (25)

Equation (25) has the form of the electrostatic image potential
of a point charge with valency Qeff = λL located at a distance
|zt | from a dielectric interface.20 The form of this grand
potential indicates that in pure solvents or dilute electrolytes
with κL ≪ 1, the range of polymer-membrane interactions
is set by the Bjerrum length ℓB. In other words, the charge
screening is replaced by the dielectric screening. Next, we
investigate the effect of the membrane thickness on the strength
of these interactions.

3. Membrane thickness d

Artificial membranes used in translocation experiments
possess various thicknesses ranging from d = 6 Å for
graphene-based membranes21 to d = 250 nm for Si-based
membranes.22 Motivated by this fact, we investigate next the
influence of the membrane thickness d on the electrostatic
grand potential. We first consider the salt-free limit ρb → 0
of pure solvents. To this end, we set in Eq. (6) zt = 0 and
κ = 0. Introducing again the salt-free dielectric discontinuity
parameter ∆0 = (εw − εm)/(εw + εm) and the new integration
variable q = kL, the grand potential of Eq. (6) becomes
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FIG. 5. The electrostatic grand potential per polymer length Eq. (26) at the
membrane surface versus the ratio d/L in pure solvents (ρb = 0) for various
membrane permittivities displayed in the legend (solid curves). Dotted curves
display the closed-form expression of Eq. (28). The model parameters are the
same as in Fig. 2.

∆Ωpol(0)
kBT L

=
∆0ℓBλ

2

2

 ∞

0

dq
q2

�
1 − e−2qd/L�

1 − ∆2
0e−2qd/L

×
�
1 − e−q

�2
.

(26)

The integral term of Eq. (26) accounting for finite size effects
depends solely on the ratio d/L. This indicates that finite
size effects are governed by competition between the pore
thickness and the polymer length. We plot the electrostatic
grand potential per length in Eq. (26) in Fig. 5. Due to
the strengthening of the image interactions, the amplitude
of the potential on the membrane surface increases with the
membrane thickness d from zero to the saturation value

lim
d→∞
∆Ωpol(0) ≈ ∆0kBTℓBLλ2 ln(2). (27)

In order to explain the non-linear shape of the grand
potential curves in Fig. 5, one can derive an approximate
closed-form expression. To this end, we carry out the integral
in Eq. (26) by neglecting the function in the denominator,
which consists of considering the first dielectric images only.
Introducing the adimensional pore size d̄ = d/L to simplify
the notation gives

∆Ωpol(0)
kBT L

≈ ∆0ℓBλ
2

2


ln


1 + 2d̄
1 + d̄


+ d̄ ln

 (1 + 2d̄)2
4d̄(1 + d̄)


.

(28)

In Fig. 5, we show that this analytic formula reproduces
the result of the integral relation of Eq. (26) with
quantitative accuracy for moderate dielectric discontinuities
and qualitatively for strong dielectric jumps. According to
Eq. (28), for membranes with thicknesses much smaller than
the polymer length d ≪ L, the electrostatic grand potential
grows linearly with the ratio d/L as

∆Ωpol(0) ≈ ∆0kBTℓBLλ2


1 − ln
(

4d
L

)
d
L
, (29)

while for thick membranes d ≫ L, the grand potential
converges towards the asymptotic value of Eq. (27) according

FIG. 6. The electrostatic grand potential of Eq. (31) at the membrane surface
rescaled by the characteristic energy ∆Ω∗ of Eq. (17) versus the ratio κd
for different membrane permittivities displayed in the legend. The model
parameters are the same as in Fig. 2.

to the inverse algebraic relation

∆Ωpol(0) ≈ ∆0kBTℓBLλ2


ln(2) − L
4d


. (30)

Figure 5 indicates that the saturation sets in between these
two regimes at d ≈ L. Thus, in pure solvents, finite pore size
effects are negligible as long as the pore thickness is larger
than the polymer length.

We investigate next the effect of the membrane thickness
on membrane-polymer interactions at finite salt density. In
order to simplify the analysis, we consider the thermodynamic
limit κL → ∞ scrutinized in Section II A 2 and sketched in
Fig. 4. Introducing the adimensional wave vector q = k/κ
and setting zt = 0, the electrostatic grand potential of Eq. (6)
rescaled with Eq. (17) becomes

∆Ωpol(0)
∆Ω∗

=

 ∞

0

dqq
p̄3

∆̄
�
1 − e−2qκd�

1 − ∆̄2e−2qκd
, (31)

where we introduced the adimensional parameters p̄
=


1 + q2 and ∆̄ = (p̄ − γq)/(p̄ + γq). In Fig. 6, the plot of

Eq. (31) shows that the increase of the adimensional thickness
κd is accompanied by the rise of the electrostatic grand
potential towards the upper boundary determined by Eq. (8).
Thus, the lower the salt density, the more pronounced the finite
membrane size effects. Moreover, at given salt density, the
stronger the dielectric contrast, the smaller the characteristic
membrane thickness where the potential saturates.

In order to quantitatively determine the physical
conditions where finite membrane size matters, we calculate
with Eq. (31) the characteristic membrane size d∗ where
the electrostatic grand potential saturates. We find that at
the permittivity εm = 2 of carbon-based membranes, the
saturation of the function∆Ωpol(0)/∆Ω∗ occurs at κd∗ ≈ 0.165.
This yields d∗ ≈ 2 Å at the salt density ρb = 0.1M, d∗ ≈ 5 Å
for ρb = 0.01M, and d∗ ≈ 1.6 nm at ρb = 0.001M. These
values indicate that in DNA translocation experiments,
even the thinnest graphene-based membranes of thickness
d = 6 Å21 can be considered in the thermodynamic regime
κd → ∞ as long as the salt density is above the value
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ρb ≈ 0.01M. This is shown in the inset of Fig. 3 where we
compare the electrostatic grand potential at the surface of a
membrane with finite thickness d = 6 Å (dashed curve) and in
the limit d → ∞ (solid curve). One sees that finite size effects
become indeed noticeable for ρb . 0.01M but the electrostatic
energy barrier ∆Ωpol(0) ≈ 80 kBT still remains very large
in this density regime. This shows that polymer-membrane
interactions induced by dielectric images are relevant even for
sub-nanometer membrane thicknesses.

B. Charged membranes

Depending on the pH of the solution, membrane surfaces
subject to protonation processes may possess a finite average
charge distribution. Motivated by this fact, we consider
next the coupling between the polymer and the membrane
charge. This is taken into account by the second term of
Eq. (4). As we found that finite membrane size corrections are
irrelevant in physiological conditions, we take the infinitely
thick membrane limit d → ∞. Inserting the structure factor
of Eq. (5) into Eq. (4) together with Fourier-transformed
Green’s functions (B6)-(B8), we get after some algebra the
electrostatic grand potential in the form

∆Ωpol(zt)
kBT

=
ℓBλ

2

2

 ∞

0

dkk
p3 ∆

�
1 − e−pL

�2
e−2p |zt |

− 2Qeff(L)
µκ

e−κ |zt |. (32)

In Eq. (32), we introduced the Gouy-Chapman length
µ−1 = 2πℓBσs and used the effective polyelectrolyte charge
Qeff(L) of Eq. (22).

1. Membrane charge σs

In order to understand the influence of the membrane
charge on the polymer’s grand potential, we focus on the
most relevant case of very low and very large permittivity
membranes (see Eqs. (12) and (13)). Within this restriction,
the grand potential of Eq. (32) takes the form

∆Ωpol(zt)
kBT

= s
ℓBλ

2

2κ
G(zt) − 2Qeff(L)

µκ
e−κ |zt |, (33)

with the function G(zt) introduced in Eq. (15). We consider
a positively charged membrane σs ≥ 0 of low permittivity
εm ≪ εw and set s = +1. In Fig. 7, we plot the potential profile
of Eq. (33) at salt density ρb = 0.01M for various membrane
charges up to σs = 0.1 e/nm2. Due to the attractive term on
the r.h.s. of Eq. (33), increasing membrane charge results
in lowering of the grand potential which eventually switches
from positive to negative. More precisely, it acquires a negative
branch associated with a minimum located at zt ≈ −1 nm. We
see that for the largest value σs = 0.1 e/nm2 which still
corresponds to a weakly charged membrane, the depth of
the energy well is significantly large at about −25 kBT . In
translocation experiments, the presence of such a deep well
may allow to control the approach velocity of DNA by tuning
the chemical properties of the membrane surface.

Next, we focus on the large distance behaviour κzt ≫ 1
of the electrostatic grand potential of Eq. (33). To leading

FIG. 7. Main plot: The electrostatic grand potential profile (Eq. (33)) at
membrane permittivity εm = 0, polymer length L = 1.0 µm, salt density
ρb = 10−2M, and various surface charges as displayed in the legend. The
solid red curve is from the asymptotic large distance law of Eq. (34). Inset:
Characteristic surface charge (Eq. (36)) separating the attractive and repulsive
membrane regimes rescaled by the long polymer limit of Eq. (38) against the
adimensional polymer length κL. The remaining model parameters are the
same as in Fig. 2.

order, the latter takes the form

∆Ωpol(zt)
kBT

=
ℓBQ2

eff(L)
4|zt | e−2κ |zt | − 2Qeff(L)

κµ
e−κ |zt |. (34)

This has exactly the form of the net electrostatic potential of
a point charge Qeff(L) located at distance zt from a charged
dielectric wall.20 The functional form of Eq. (34) plotted in
Fig. 7 (solid red curve) explains the negative sign of the
polymer’s grand potential far away from the surface: the
polymer-surface charge attraction (the second term), being
longer ranged than the image charge repulsion (the first term),
dominates the repulsive image interactions at large separation
distances. This means that in the presence of a finite surface
charge, the polymer’s grand potential will always have an
attractive branch far enough from the interface.

2. Polymer length L and salt density ρb

In order to consider the influence of the polymer length
on the electrostatic grand potential of the DNA close to
a charged membrane, we investigate the short distance
behaviour of polymer-membrane interactions. The form of the
grand potential at the membrane surface for the permittivity
εm = 0,

∆Ωpol(0)
kBT

=
ℓBλ

2

2κ
G(0) − 2Qeff(L)

κµ
, (35)

suggests that there exists a characteristic membrane charge
σ∗s where the potential on the surface vanishes. In Fig. 7, this
corresponds to the dashed red curve at σs = 0.08 e/nm2. By
equating Eq. (35) to zero and inverting the relation, the critical
charge can be expressed as

σ∗s =
κλ

8π

�
1 − e−κL

�2
+ 2κL [Ei(−2κL) − Ei(−κL)]

1 − e−κL
. (36)
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We plot Eq. (36) in the inset of Fig. 7. Increasing the reduced
polymer length κL, the critical charge drops smoothly from

σs0 ≈ 2 ln(2) κλ
8π

, (37)

for κL ≪ 1 to

σs∞ ≈
κλ

8π
, (38)

for κL ≫ 1. We note that in both limits the characteristic
charge is independent of the polymer length.

We consider next the length dependence of the
electrostatic grand potential of Eq. (35). For short polymers
κL ≪ 1, it takes the asymptotic form

∆Ωpol(0)
∆Ω∗

≈ 2 ln(2)

1 − σs

σs0


κL (39)

which switches from repulsive to attractive at σs = σs0. For
long polymers κL ≫ 1, the grand potential reads

∆Ωpol(0)
∆Ω∗

≈ 1 − σs

σs∞
(40)

which turns from positive to negative atσs = σs∞. This is illus-
trated in Fig. 8(a), where we plot Eq. (35) versus κL. Reduc-
ing the membrane charge from σs = σs∞/2 to σs = σs∞, the
long polymer limit drops to zero while the electrostatic grand
potential remains repulsive (∆Ωpol(0) > 0) for short polymers
L ≈ κ−1. At the larger charge value σs = 1.07σs∞, the grand
potential at the membrane surface is repulsive for short poly-
mers, but attractive (∆Ωpol(0) < 0) for long polymers. Increas-
ing the membrane charge to σs = σs0 > σs∞, in agreement
with Eq. (40), polymer-membrane interactions become attrac-
tive for all polymer lengths.

In Fig. 8(b), we also consider the influence of salt. The
increase of the salt density switches the polymer-membrane
interaction from attractive to repulsive. Indeed, inverting the
limiting laws of Eqs. (37) and (38), we find that the critical
screening parameter where the grand potential on the surface

FIG. 8. The electrostatic grand potential of Eq. (35) on the membrane surface
rescaled by the characteristic energy ∆Ω∗ of Eq. (17) versus the adimensional
polymer length κL for various (a) surface charges and (b) salt densities at
the permittivity εm = 0. In (a), the salt density is ρb = 0.01M and in (b), the
surface charge is σs = 0.1 e/nm2.

switches from negative to positive is κ0 = 8πσs/[2 ln(2)λ]
for short polymers (κL ≪ 1) and κ∞ = 8πσs/λ for long
polymers (κL ≫ 1). Thus, salt weakens the relative weight of
the attractive surface charge effect with respect to repulsive
image-charge interactions.

3. Membrane permittivity εm
Finally, we scrutinize the influence of the membrane

permittivity. Taking the limit d → ∞ and L → ∞, Eq. (34)
yields the electrostatic grand potential at the membrane surface
in an analytic form as

∆Ωpol(0)
kBT

=
ℓBλ

2

2κ
F(γ) − 2λ

κ2µ
, (41)

with the parameter γ = εm/εw and the function F(γ) given by
Eqs. (9)-(11). In Fig. 9, we plot the potential of Eq. (41) against
the bulk ion density for various membrane permittivities.
For a typical permittivity value of εm = 2 for carbon-
based membranes, where polymer-membrane interactions
are governed by repulsive image forces (the first term of
Eq. (41)), the positive grand potential drops monotonically
with ion density. At the intermediate value εm = 40 where
image forces weaken, the electrostatic grand potential remains
positive but exhibits a peak at the density ρb ≈ 3 × 10−3M,
below which the energetic cost decreases. This corresponds
to the physical regime where the membrane charge attraction
becomes relevant. By taking the derivative of Eq. (41) with
respect to the screening parameter, we find that the peak is
located at the bulk concentration

ρb,c =
32πσ2

s

ℓBλ2F2(γ) . (42)

We note that for εm < 107 (i.e., F(γ) > 0) and σs > 0,
this density associated with the maximum energetic barrier
increases both with the membrane charge (σs ↑ ρb,c ↑)
and the membrane permittivity (εm ↑ ρb,c ↑). Then, at the

FIG. 9. The electrostatic grand potential at the membrane surface (Eq. (41))
versus the bulk electrolyte density ρb at the membrane charge σs

= 0.01 e/nm2 for various membrane permittivities given in the legend. The
remaining model parameters are the same as in Fig. 2.
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FIG. 10. Phase diagram: the membrane charge (Eq. (43)) versus salt density
ρb for various membrane permittivities. The characteristic curves split the
regions associated with repulsive membranes (above the curves) and attractive
membranes (below the curves). The remaining model parameters are the same
as in Fig. 2.

permittivity value εm = 60, the polymer grand potential is
positive at biological salt concentrations but negative for
dilute electrolytes. Finally, at the value εm = 107 (and for
larger permittivities), because image interactions switch from
repulsive to attractive, i.e., F(γ) ≤ 0 (see also Fig. 3), the
membrane becomes purely attractive at all salt densities.

For translocation experiments carried out with different
membrane types, it is interesting to characterize the physical
regime where the energy barrier at the membrane surface
vanishes. Setting Eq. (41) to zero, we find that this occurs at
the characteristic membrane charge

σ∗s =
κλ

8π
F(γ). (43)

We note that Eq. (43) generalizes the limiting law of Eq. (38)
to any permittivity value εm. Based on Eq. (43), we show
in Fig. 10 the phase diagram characterizing the parameter
regimes with attractive membranes (area above each curve)
and repulsive membranes (area below each curve). In this
figure, the switching of the membrane charge to negative
from up to bottom stems from the fact that the attractive
image forces for εm > 107 have to be compensated by the
repulsion between the negative membrane charge and the
negative polymer charge in order for the net surface grand
potential to cancel out.

The phase diagram in Fig. 10 indicates that at constant
membrane permittivity, the larger the electrolyte density,
the larger the characteristic membrane charge where the
electrostatic grand potential on the surface vanishes. Indeed,
we have shown above that the attractive force induced by the
surface charge is more susceptible to salt screening than image
forces (see, e.g., Fig. 8(b)). Thus, a stronger salt density has to
be compensated by a stronger membrane charge to cancel out
the net free at the membrane surface. Furthermore, at constant
salt concentration, the larger the dielectric discontinuity, the
stronger the surface charge. In translocation experiments,
the complex picture of this phase diagram can be at least

qualitatively checked by observing the approach of a DNA
molecule towards membranes with different chemical surface
properties.

III. SUMMARY AND CONCLUSIONS

In this work, we have developed an analytical theory
accounting for electrostatic membrane-polymer interactions
during the approach phase of DNA translocation events. The
corresponding DH theory goes beyond the mean field approx-
imation as it includes correlation effects such as image-charge
interactions resulting from the dielectric mismatch between the
membrane and the surrounding solvent. Within this theory, we
have characterized the complex interplay between the poly-
electrolyte length, the salt density, the membrane dielectric
permittivity, and the membrane charge and size.

In the first part, we considered neutral membranes. We
found that in the case of thick membranes, whose permittivity
strongly differs from the solvent permittivity, the approach of
a long DNA molecule to the membrane costs the electrostatic
grand potential of magnitude |∆Ωpol(0)| = kBTℓBλ2/(2κ),
where λ is the linear DNA charge density. For neutral
carbon-based membranes with low dielectric permittivity
(εm ≈ 2), this corresponds to a high energy barrier between
10 kBT to 100 kBT depending on the salt concentration.
Interestingly, the theory predicts that in the opposite case of
engineered membranes with high permittivity εm ≫ εw,17,18

the membrane surface becomes an attraction point. More
precisely, within the physiological salt density regime, the
approach of the polymer to the membrane reduces its grand
potential by 10–100 kBT . We also found that in pure solvents,
the electrostatic grand potential becomes independent of the
polymer length if the latter exceeds the membrane thickness,
i.e., L ≥ d. In electrolytes, finite size effects related to
the polyelectrolyte length die out if the polymer length is
larger than the DH screening length, that is, L ≥ κ−1. Most
importantly, we showed that for the thinnest graphene-based
membranes of thickness d ≈ 6 Å,21 the grand potential barrier
encountered by the DNA is close to 100 kBT . This indicates
that surface polarization effects studied herein are crucial even
for subnanometer membrane sizes.

In the second part, we took into account the finite charge
distribution on the membrane surface. We found that even for
weakly charged low permittivity membranes, the electrostatic
grand potential acquires an attractive branch far enough from
the interface and turns to repulsive very close to the membrane.
Because the membrane charge attraction is more sensitive to
salt screening than repulsive image forces, the increase of
the salt concentration makes the membrane less attractive.
Furthermore, due to the competition between membrane
charge and image charge effects, the sign of the polymer grand
potential may depend on the polymer length. We showed that
for specific values of the membrane charge and ion density,
the membrane will repel short polymers (L ≪ κ−1) but attract
long polymers (L ≫ κ−1). We also showed that the same
competition may cancel the net electrostatic grand potential
on the membrane surface, which we characterized in the
phase diagram of Fig. 10 in terms of the salt density, and
the membrane charge and permittivity. This phase diagram
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and our general conclusions can be tested in translocation
experiments.

Finally, we would like to point out limitations in the
present modeling. In our first attempt to model electrostatic
polymer-membrane interactions, we opted for an evaluation
of the polymer’s grand potential at the DH level. Our choice
is motivated by the analytical transparency of the DH theory.
It should be of course emphasized that our quadratic DH level
theory neglects non-linear electrostatic interactions. In dilute
solutions with bulk density ρb . 0.01M, the DH approxi-
mation is known to overestimate the electrostatic potential
induced by charged sources. Hence, at low electrolyte concen-
trations, our grand potential curves may overestimate the
actual electrostatic energy barrier values. This limitation can
be overcome in a future work by including the non-linearity of
the electrostatic potential thorough a charge renormalisation
procedure20 or a one-loop evaluation of the grand potential.24

However, it should be noted that such improvements will
involve considerable complexity and mask the transparency
of the present theory. Furthermore, the rigid polymer model
neglects the entropic fluctuations of the DNA molecule. The
double-stranded DNA molecule has a persistence length of
about 50 nm, and in the case of low permittivity membranes
image charge interactions are expected to greatly enhance it.
This justifies our rigid polymer approximation in the most
relevant case of carbon-based membranes. The importance of
the role played by polymer fluctuations on DNA-membrane
interactions can be evaluated in a future work by considering
the polymer entropy through a coupling of the Coulomb liquid
model with the beyond-MF formulation of the Flory theory.9

We also note that in the present work, we focused exclusively
on the approach phase of translocation events. In the future
we would like to extend our theory to the translocation phase,
consider dynamical issues, and include hydrodynamic trans-
port. We emphasize that despite the limitations of the present
theory, our main conclusions can be tested in translocation
experiments and the theory can hopefully present itself as a
starting point for more sophisticated models. The mapping
between the membrane dielectric properties and the polymer
grand potential that we identified in this work may also allow
to improve our control over DNA-membrane interactions via
the chemical engineering of membrane materials.
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APPENDIX A: DEBYE-HÜCKEL LEVEL
GRAND POTENTIAL

We present here the DH expansion of the grand potential
of the electrolyte. The theory is formulated for general charge
distributions in Ref. 23 and thus we will present only the
general lines of the derivation. The grand canonical partition
function of the charged liquid is given by the functional
integral23

ZG =


Dφ e−H [φ], (A1)

with the Hamiltonian functional

H[φ] =


dr


ϵ(r)
2βe2 [∇φ(r)]2 − iσ(r)φ(r) −


i

λi eiqiφ(r)

,

(A2)

where r stands for the position vector, β = 1/(kBT) is the
inverse temperature, e the electron charge, and ϵ(r) the
dielectric permittivity function. Moreover, the function σ(r)
accounts for immobile charge distributions in the system. The
summation in the third term of Eq. (A2) runs over the ionic
species of the electrolyte, each with fugacity λi and valency qi.
Finally, within the same field-theoretic representation, local
ion densities are given by

ρi(r) = λi


eiqiφ(r)


φ
, (A3)

where the bracket ⟨·⟩φ denotes the average over fluctuating
potential configurations taken with respect to the func-
tional (A2).

The DH approximation consists in Taylor expanding
the functional (A2) at the quadratic order in the fluctuating
potential φ(r). One gets the DH functional in the form

H0[φ] =


dr

ϵ(r)
2βe2 [∇φ(r)]2 − iσ(r)φ(r)


− V


i

λi

+

i

λi


dr


−iqiφ(r) + q2

i

2
φ2(r)


. (A4)

As discussed in the Conclusion, the above approximation is
valid at large monovalent salt densities. In dilute salt where
the electrostatic potential becomes large, the Taylor expansion
should be performed around the solution of the non-linear PB
equation.24 Evaluating now in the bulk region ion density (A3)
within the same DH approximation gives

ρi,b = λi


1 + iqi⟨φ(r)⟩φ −

q2
i

2


φ2(r)�

φ

b
, (A5)

where the subscript b means that the field theoretic averages
should be evaluated in bulk, i.e., far from any charged
macromolecules breaking the spherical symmetry of the
electrolyte. Noting that the average electric field should be
zero in bulk, i.e., ⟨φ(r)⟩φ,b = 0, and inverting Eq. (A5) in the
DH approximation gives

λi = ρi,b *
,
1 +

q2
i

2
vDH,b+

-
, (A6)

where we defined the bulk limit of the DH Green’s function
vDH,b =



φ2(r)� for r in the bulk region. By inserting into

Eq. (A4) the expression for fugacity (A6) together with
the electroneutrality condition


i ρibqi = 0, neglecting the

terms beyond the one-loop level, and restricting ourselves
to the case of a symmetric electrolyte composed of two
ionic species with ρ+b = ρ−b = ρb and q+ = −q− = q, the
Hamiltonian functional becomes

H0[φ] =


drdr′

2
φ(r)v−1

DH(r,r′)φ(r′) − i


drσ(r)φ(r), (A7)
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where we defined the DH kernel as

v−1
DH(r,r′) =


− 1
βe2∇ · ε(r)∇ + 2ρbq2


δ(r − r′). (A8)

We note that deriving Eq. (A8), we dropped the constant term
V


i λi in Eq. (A4) and the term linear in the potential φ(r)

disappeared due to the electroneutrality condition. Computing
the DH-level partition function with Eqs. (A1) and (A7) gives

Z0 = det1/2 (vDH) exp

−


drdr′

2
σ(r)vDH(r,r′)σ(r′)


. (A9)

From the definition of the grand potential ΩDH = −kBT ln Z0,
we finally get the latter as the superposition of the ionic and
polymer free energies ΩDH = Ωion +Ωpol, each contribution,
respectively, given by Ωion = −kBT ln det1/2 (vDH) and

Ωpol = kBT


drdr′

2
σ(r)vDH(r,r′)σ(r′). (A10)

APPENDIX B: ELECTROSTATIC GREEN’S FUNCTION
IN SLIT GEOMETRY

In this Appendix, we explain the general lines of the
inversion of DH kernel equation (A8) in the planar membrane
geometry depicted in Fig. 1. Due to the plane geometry where
the Green’s function satisfies translational symmetry along
the x and the y axes, i.e., vDH(r,r′) = vDH(z, z′,r∥ − r′∥), we
can Fourier-expand the Green’s function as

vDH(r,r′) =


d2k
4π2 e

ik·
(
r∥−r′∥

)
ṽDH(z, z′). (B1)

In Eq. (B1), the dependence of the Fourier expanded Green’s
function on the wave vector k is implicit. Moreover, the
dielectric permittivity profile reads

ε(z) = εwθ(−z) + εmθ(z)θ(d − z) + εwθ(z − d), (B2)

where θ(z) is the Heaviside step function. By inserting the
expansion (B1) into the kernel equation (A8), the latter
simplifies as

�
∂zε(z)∂z − p2� ṽDH(z, z′) = − e2

kBT
δ(z − z′), (B3)

with p =
√

k2 + κ2 and the DH screening parameter
κ = 8πq2ℓBρb. For the source charge located on the right
side of the membrane z′ > d, the piecewise homogeneous
solution is

ṽDH(z, z′) = C1epzθ(−z) + �C2ekz + C3e−kz
�
θ(z)θ(d − z)

+
�
C4epz + C5e−pz

�
θ(z − d)θ(z′ − z)

+C6e−pzθ(z − z′). (B4)

For the source located in the left half-space z′ < 0, the solution
is given by

ṽDH(z, z′) = C1epzθ(z′ − z)
+
�
C2epz + C3e−pz

�
θ(−z)θ(z − z′)

+
�
C4ekz + C5e−kz

�
θ(z)θ(d − z)

+C6e−pzθ(z − d). (B5)

The integration constants Ci with 1 ≤ i ≤ 6 are to be
determined by applying in each case the continuity of
the Green’s function ṽDH(z, z′) and the displacement field
ε(z)∂z ṽDH(z, z′) at the boundaries z = 0, z = d, and at z = z′.
After somewhat tedious algebra we get

ṽDH(z ≤ 0, z′ ≤ 0) = ṽb(z − z′) + 2πℓB
p
∆
�
1 − e−2kd�

1 − ∆2e−2kd ep(z+z′),

(B6)

ṽDH(z ≥ d, z′ ≥ d) = ṽb(z − z′)

+
2πℓB

p
∆
�
1 − e−2kd�

1 − ∆2e−2kd ep(2d−z−z′), (B7)

and

ṽDH(z, z′) = ṽb(z − z′) + 2πℓB
p

× (1 − ∆2)e(p−k)d + ∆2e−2kd − 1
1 − ∆2e−2kd e−p |z−z

′|, (B8)

for z′ ≤ 0 and z ≥ d, or z′ ≥ d and z ≤ 0. In Eqs. (B6)-(B8),
the dielectric discontinuity function is defined as

∆ =
εwp − εmk
εwp + εmk

. (B9)

We finally note that in Eqs. (B6)–(B8), we introduced the bulk
part of the Fourier transformed DH Green’s function

ṽb(z − z′) = 2πℓB
p

e−p |z−z
′|. (B10)
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