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The adsorption of DNA or other polyelectrolyte molecules on charged membranes is a recurrent motif in
soft matter and bionanotechnological systems. Two typical situations encountered are the deposition of single
DNA chains onto substrates for further analysis, e.g., by force microscopy, or the pulling of polyelectrolytes
into membrane nanopores, as in sequencing applications. In this paper, we present a theoretical analysis of such
scenarios based on the self-consistent field theory approach, which allows us to address the important effect
of charge correlations. We calculate the grand potential of a stiff polyelectrolyte immersed in an electrolyte in
contact with a negatively charged dielectric membrane. For the sake of conciseness, we neglect conformational
polymer fluctuations and model the molecule as a rigid charged line. At strongly charged membranes, the
adsorbed counterions enhance the screening ability of the interfacial region. In the presence of highly charged
polymers such as double-stranded DNA molecules close to the membrane, this enhanced interfacial screening
dominates the mean-field level DNA-membrane repulsion and results in the adsorption of the DNA molecule to
the surface. This picture provides a simple explanation for the recently observed DNA binding onto similarly
charged substrates [G. L.-Caballero et al., Soft Matter 10, 2805 (2014)] and points out charge correlations as a
non-negligible ingredient of polymer-surface interactions.

DOI: 10.1103/PhysRevE.94.042502

I. INTRODUCTION

Modern bionanotechnology advances at an ever increas-
ing speed, with theoretical understanding trailing sometimes
behind. In several instances, this is due to the fact that for a
theoretical understanding of many relevant applications the
mathematical basis is still not entirely laid. In this paper,
we address one such case: the adsorption of polyelectrolytes
such as DNA molecules on like-charged membranes. This is a
practical problem for at least two situations: (i) the adsorption
of charged molecules on substrates for further analysis by,
e.g., force microscopy [1], and (ii) the approach of polyelec-
trolytes to membrane nanopores in sequencing applications
[2]. Although these processes have been previously modeled
within mean-field (MF) electrostatics [3–7], in the theoretical
analysis of such situations, the difficulty lies in the inclusion
of charge correlations at like-charged membranes. Indeed,
the distortion of the ionic environment by the membrane
charges requires a theoretical treatment beyond the classical
MF-level Poisson-Boltzmann equation. Rigorous methods to
treat such effects have emerged a few years ago and are
only recently beginning to be applied and tested in relevant
physical situations. Without such a theoretical framework,
the physical treatment has to rely on ad hoc approaches
based on uncontrolled approximations and also difficult to
generalize. With the idea of an immediate application in mind,
more microscopic theoretical approaches such as atomistic
simulations often try to cover many specific details of charge
liquids. The resulting complexity leads to a lack of analytical
understanding of the main underlying effects (see, e.g., the
recent review [8]).
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With this logic in mind, we consider the polyelectrolyte
adsorption problem from a purely electrostatic perspective. Let
us take as a specific starting point the work by Sens and Joanny
who, in Ref. [9], determined the self-energy of a stiff polymer
of line charge −τ in the vicinity of a charged wall with surface
charge density σ . In terms of the Gouy-Chapman length
μ = 1/(2π�Bσ ) with �B the Bjerrum length, they determined
the asymptotic behavior of the free energy as a function of the
height h of the polymer above the surface:

δF(h) � 1

2
�Bτ 2

[
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3
+ ln
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4π

3

h

a

)]
(1)

for h � μ and

δF(h) � 1
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3
√

3
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πμ2
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for the opposite limit h � μ. In both equations, a is a cutoff,
taken as the diameter of the DNA molecule.

Their result is obtained from an approximate calculation
employing the solution of the Poisson-Boltzmann equation
φ(z) reduced to the Gouy-Chapmann limit of low salt,
considering the fluctuations δφ(z) around this solution, and
taking the boundary condition at the polymer into account.
The free energy is then calculated from a charging process,
according to the expression

δF(h) =
∫ τ

0
dτ ′[φ(z) + δφ(z)]z=h, (3)

where the first term is the MF-level interaction free energy
between the polymer and the wall. The chief interest lies in
the determination of the second fluctuation term associated
with charge fluctuations mediated by the mobile ions of the
solution.

In this paper, we calculate the energetic cost to drive a
stiff polyelectrolyte immersed in a charged liquid from the
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FIG. 1. Schematic representation of the negatively charged poly-
mer immersed in a symmetric electrolyte and interacting with the
like-charged dielectric membrane. Electrostatic forces acting on the
polymer (dashed arrows): MF-level membrane-polymer repulsion
(orange), beyond-MF repulsive image charge force (blue), and
attractive cation-mediated solvation force (red).

bulk region to the neighborhood of a like-charged dielectric
membrane. Our calculation generalizes the Debye-Hückel
(DH) theories of polymer-membrane interactions [10,11]
to strongly charged membranes. The system, composed of
the negatively charged polymer, the like-charged dielectric
membrane, and the electrolyte is depicted in Fig. 1. For the sake
of simplicity, we neglect conformational polymer fluctuations
and model the polyelectrolyte as a rigid line charge. In the
calculation of the work required to drive the polymer to
the membrane surface, our starting point is the variational
grand potential of the charged system. First, we expand this
potential in the electrostatic coupling parameter and keep
the leading term of this expansion. In order to reduce the
grand potential to an analytically tractable form, we perform a
second expansion in terms of the polymer charge density. This
derivation is presented in the Appendix in detail and its result
summarized in Sec. II A. The resulting polymer grand potential
is a generalization of Eq. (3) within the self-consistent field
theory. In Sec. II B, we calculate the one-loop level electrostatic
Green’s function required for the explicit evaluation of the
polymer grand potential in plane geometry.

Within this formalism, Secs. III and IV focus, respectively,
on the polymer adsorption and the polymer approach prior
to translocation events. Therein, we characterize quantita-
tively electrostatic many-body effects on polymer-membrane
interactions. We find that the nature of these interactions is
determined by the competition between three electrostatic
force components illustrated in Fig. 1. The direct polymer-
membrane charge coupling results in the standard MF like-
charge repulsion (orange arrow). This repulsive force is
enhanced by the polymer-image charge interactions (blue
arrow) induced by the dielectric contrast between the low
permittivity membrane and the solvent. The third contribution
is due to the cation attraction by the charged membrane. The
resulting counterion excess increases the screening ability

of the interfacial region. This means a lower interfacial
polymer free energy with respect to bulk, which translates
into an attractive force oriented to the membrane surface
(red arrow). At strongly charged membranes, the cation-
induced attractive force dominates the repulsive components,
resulting in the like-charge adsorption of the polymer onto the
membrane. This result provides a simple explanation for the
recent experimental observation of this peculiarity [12]. The
limitations and possible extensions of the present theory are
discussed in the Conclusion part.

II. FORMULATION OF THE PROBLEM

A. Polymer grand potential

The electrostatic grand potential of a stiff polymer with
charge density σp(r) immersed in a charged liquid in contact
with a solid membrane is given by

	p = 	pm + 	pp, (4)

where the MF-level polymer-membrane charge interaction is

	pm =
∫

dr σp(r)ψ0m(r), (5)

and the polymer self-energy including charge correlations
reads as

	pp = 1

2

∫
dr dr′σp(r)v(r,r′)σp(r′). (6)

In Eq. (5), the electrostatic potential ψ0m(r) induced by the
membrane charge σm(r) solves the Poisson-Boltzmann (PB)
equation

∇ε(r) · ∇ψ0m(r) − 2ρbqe2

kBT
e−Vi (r) sinh [qψ0m(r)]

= − e2

kBT
σm(r). (7)

Furthermore, the one loop-level (1l) electrostatic Green’s
function v(r,r′) of Eq. (6) is the solution of the kernel equation

∇ε(r) · ∇v(r,r′) − 2ρbq
2e2

kBT
e−Vi (r) cosh [qψ0m(r)]v(r,r′)

= − e2

kBT
δ(r − r′). (8)

The derivation of these expressions is presented in detail in the
Appendix A.

In Eqs. (7) and (8), the function ε(r) is the dielectric
permittivity profile, ρb the bulk salt density, q the ion valency,
e the electron charge, kB the Boltzmann constant, and T =
300 K stands for the ambient temperature. Moreover, the steric
potential Vi(r) excludes the mobile ions from the location of
hard bodies such as the membrane matrix (see Fig. 2). Finally,
we note that in this work, energies will be expressed in units
of the thermal energy kBT .

The physically relevant parameter is the work to be done
adiabatically in order to bring the polymer from the bulk region
to the neighborhood of the membrane. This corresponds to the
difference between the grand potential (4) and the bulk grand

042502-2



CORRELATION-INDUCED DNA ADSORPTION ON LIKE- . . . PHYSICAL REVIEW E 94, 042502 (2016)

FIG. 2. Negatively charged polyelectrolyte of length L and linear
charge density τ , with the total charge Qp = Lτ . The right end of the
approaching polymer (red) is located at z = zt < 0 and the adsorbing
polymer (blue) at z = za < 0 from the membrane surface located at
z = 0.

potential


	p = 
	pp + 	pm, (9)

where the renormalized self-energy follows from Eq. (6) as


	pp = 1

2

∫
dr dr′σp(r)[v(r,r′) − vb(r − r′)]σp(r′). (10)

In Eq. (10), we introduced the bulk solution of Eq. (8)
corresponding to the spherically symmetrical DH Green’s
function

vb(r − r′) = lB
e−κb |r−r′|

|r − r′| , (11)

with the DH screening parameter κ2
b = 8π�Bq2ρb and the

Bjerrum length �B = e2/(4πεwkBT ), where εw = 80 stands
for the dielectric permittivity of water. Infinitely far from the
membrane where the external potential ψ0m(r) in Eq. (5) is
zero and the Green’s function v(r,r′) tends to the bulk limit
(11), the net grand potential (9) vanishes.

B. Solution to the PB and electrostatic kernel equations

We calculate here the MF potential ψ0m(r) and the Green’s
function v(r,r′) required for the evaluation of the polymer
grand potential (9). In the case of a planar dielectric interface
located at z = 0 and carrying a negative surface charge
σm(r) = −σmδ(z), with the electrolyte located on the left
half-space z < 0 (see Fig. 2), the MF potential is given by
[13]

ψ0m(z) = − 2

q
ln

[
1 + eκb(z−z0)

1 − eκb(z−z0)

]
, (12)

where we introduced the characteristic thickness of the inter-
facial counterion layer z0 = − ln[γc(s)]/κb [14], the auxiliary
parameter

γc(s) =
√

s2 + 1 − s, (13)

the dimensionless parameter s = κbμ, and the Gouy-Chapman
length μ = 1/(2πq�Bσm).

Accounting for the plane geometry, one can Fourier expand
the Green’s function as

v(r,r′) =
∫

d2k
4π2

eik·r‖ ṽ(z,z′; k), (14)

where the vector r‖ indicates any point located in the x-y plane
that coincides with the membrane wall. Injecting the expansion
(14) together with the membrane potential (12) into Eq. (8),
the one-loop level kernel equation follows as

∂

∂z
ε(z)

∂

∂z
ṽ(z,z′; k)−εmθ (z)k2ṽ(z,z′; k)

−εwθ (−z)
{
p2 + 2κ2

b csch2[κb(z − z0)]
}
ṽ(z,z′; k)

= − e2

kBT
δ(z − z′). (15)

In Eq. (15), we introduced the dielectric permittivity profile

ε(z) = εwθ (−z) + εmθ (z) (16)

with εm the membrane permittivity, the screening function

p =
√

k2 + κ2
b , and the Heaviside step function restricting the

location of the mobile charges to the half-space located at
z < 0. We need the solution of Eq. (15) for the source charge
located in the left half-space, i.e., z′ < 0. In this case, the
general solution is given by

ṽ(z,z′,k) = c1h−(z)θ (−z)θ (z′ − z)

+ [c2h−(z) + c3h+(z)]θ (−z)θ (z − z′)

+ c4e
−kzθ (z), (17)

where the increasing and decreasing homogeneous solutions
of Eq. (15) read as for z < 0

h±(z) = e∓pz

{
1 ± κb

p
coth [κb(z − z0)]

}
. (18)

The final step consists in calculating the integration constants
c1...4 in Eq. (17) by imposing the boundary conditions to be
satisfied by the Green’s function and the displacement field at
z = 0 and z′:

ṽ(z = 0−) = ṽ(z = 0+), (19)

ṽ(z = z′
−) = ṽ(z = z′

+), (20)

ε(z)
∂ṽ

∂z

∣∣∣∣
z=0−

= ε(z)
∂ṽ

∂z

∣∣∣∣
z=0+

, (21)

∂ṽ

∂z

∣∣∣∣
z=z′+

− ∂ṽ

∂z

∣∣∣∣
z=z′−

= −4π�B. (22)

One finally gets for z,z′ < 0 the Fourier-transformed Green’s
function as

ṽ(z,z′; k) = 2π�Bp

k2
[h+(z>) + 
(k)h−(z>)]h−(z<), (23)
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with z< = min(z,z′), z> = max(z,z′), and the auxiliary
function


(k) = κ2
b csch2(κbz0) + (p − ηk)[p − κb coth (κbz0)]

κ2
b csch2(κbz0) + (p + ηk)[p + κb coth (κbz0)]

, (24)

where we introduced the parameter η = εm/εw accounting for
the dielectric discontinuity at z = 0.

III. POLYMER ADSORBING TO THE MEMBRANE

We now consider the polymer binding to the membrane
surface where the polymer orientation is parallel with the
membrane wall (see Fig. 2). Because the membrane wall is
assumed to be infinitely large, the polymer grand potential
will depend only on the distance from the membrane and the
location of the origin of the coordinate system is irrelevant.
Thus, for the sake of simplicity, we choose the Cartesian
coordinate system with the upper half of the polymer oriented
along the positive x axis and the lower half along the negative x

axis. Furthermore, we place the center of mass of the polymer
at y = 0 and at a distance za from the membrane. In this
configuration, the polymer charge density reads as

σp(r) = −τ θ (x + L/2) θ (L/2 − x)δ(y)δ(z − za). (25)

Injecting the density function (25) into Eq. (5) together with
the membrane potential (12), the MF-level polymer-membrane
interaction potential takes the form

	pm(za) = 2Lτ

q
ln

[
1 + eκb(za−z0)

1 − eκb(za−z0)

]
. (26)

In order to obtain the polymer self-energy, we insert first the
Fourier expansion of the Green’s function (14) and the charge
density function (25) into Eq. (10). This yields


	pp(za) = τ 2

2

∫
d2k
4π2

[ṽ(za,za; k) − ṽb(0; k)]

×
∫ L/2

−L/2
dx1

∫ L/2

−L/2
dx2 eik·(x1−x2), (27)

where we introduced the Fourier-transformed bulk Green’s
function

ṽb(z − z′) = 2π�B

p
e−p|z−z′ |. (28)

In Eq. (27), the integrals over x1 and x2 correspond to
transverse charge correlations parallel with the wall. Eval-
uating the spatial integrals and substituting into Eq. (27), the
Green’s function (23), after some algebra, one gets the rescaled
self-energy in the form


	pp(za) = L�Bτ 2κ2
b

2

∫∫ +∞

−∞

dkxdky

k2p

2 sin2 (kxL/2)

πLk2
x

×
(

− csch2[κb(za − z0)]

+
(k)

{
p

κb

− coth[κb(za − z0)]

}2

e2pza

)
. (29)

According to Eq. (9), the net grand potential of the polymer
located at the distance za from the membrane is given by the

superposition of Eqs. (26) and (29):


	p(za) = 
	pp(za) + 	pm(za). (30)

A. Counterion liquids

We consider herein the simplest case of a charged liquid
exclusively composed of counterions. In order to evaluate the
polymer grand potential in this regime, we take the vanishing
salt limit κb → 0 of Eqs. (26) and (29) in which case the
polymer self-energy takes the form


	pp(za) = L�Bτ 2

2(μ − za)2

∫∫ +∞

−∞

dkxdky

k3

2 sin2 (kxL/2)

πLk2
x

×{−1 + 
c(μk)[1 + (μ − za)k]2e2kza
}
.

(31)

In the same counterion-only limit, the polymer-membrane
charge coupling energy reads as [15]

	pm(za) = −2Lτ

q
ln(1 − za/μ). (32)

In Eq. (31), we introduced the vanishing salt limit of the
function 
 given by Eq. (24):


c(x) = 1 + (1 − η)x(x − 1)

1 + (1 + η)x(x + 1)
. (33)

One could simplify the double integral in Eq. (31) by con-
sidering the long polymer limit L → ∞ where the sinusoidal
function becomes a Dirac delta distribution

lim
L→∞

2 sin2 (kxL/2)

πLk2
x

= δ(kx), (34)

removing the integral on the wave vector kx . In this limit,
setting εm = 0 (or η = 0), Eq. (31) tends to the polymer
self-energy calculated in Ref. [9] via the charging procedure.
We should, however, note that in the present counterion-
only regime, the limit L → ∞ results in the infrared (IR)
divergence of the self-energy.

For the sake of analytical transparency, we will focus on the
opposite limit of short polymers. Within this approximation,
one can Taylor expand the sinusoidal function in Eq. (31) at
the leading order in the polymer length L and recover the plane
symmetry in the reciprocal (kx,ky) plane. At the next step, we
transform to polar coordinates (k,θk), integrate over the angle
θk , rescale the wave vector with the Gouy-Chapman length
as k → q = μk, and pass to the adimensional separation
distance za → z̄a = |za|/μ. The self-energy (31) takes the
form


	pp(z̄a) = �p

2
�(z̄a), (35)

where we introduced the electrostatic coupling parameter
�p = Q2

p�B/μ associated with the polymer charge

Qp = Lτ, (36)

and the adimensional self-energy

�(z̄a) =
∫ +∞

0

dq

q2
{−(1 + z̄a)−2

+
c(q)[(1 + z̄a)−1 + q]2e−2qz̄a }. (37)
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In the limit of vanishing dielectric discontinuity εm = εw, the
functional form of Eq. (37) coincides with the ionic self-energy
Eq. (44) of Ref. [10].

In terms of the same adimensional parameters, the polymer-
membrane charge energy (32) reads as

	pm(z̄a) = −2Qp

q
ln(1 + z̄a). (38)

Thus, in the counterion-only regime, the net polymer grand
potential (30) given by


	p(za) = −2Qp

q
ln(1 + z̄a) + �p

2
�(z̄a) (39)

depends exclusively on the ratio of the polymer and ion charges
Qp/q, the electrostatic coupling parameter �p that quantifies
the deviation from the MF potential (38), and the dielectric
discontinuity parameter η. One notes that with increasing
distance from the membrane surface, the MF grand potential
(38) of the polymer drops monotonically. This corresponds to
the MF-level similar charge repulsion between the DNA and
the membrane charges. In order to consider correlation effects
carried by the second term of Eq. (39), we focus first on the
limit of vanishing dielectric discontinuity εm = εw. In this
limit, the adimensional self-energy (37) presents an analytical
form. Setting η = 1, one finds

�(z̄a) = − 2z̄a

(1 + z̄a)2
+ e(1−i)z̄a

2(1 + z̄a)2

× ((z̄a − i)2{π + i Ei[(−1 + i)z̄a]}
+ e2iz̄a (z̄a + i)2{π − i Ei[−(1 + i)z̄a]}), (40)

where i stands for the imaginary unit number and Ei(x) is the
exponential integral function [16]. In Fig. 3, we plotted the
adimensional polymer self-energy (40) (red curve). One notes
that the self-energy drops towards the interface and exhibits
an attractive minimum in its neighborhood. We emphasize that
this peculiarity was also found in the self-energy of counterions

-6 -4 -2 0
-1

-0.5

0

0.5

za/µ

m= w

m=0

FIG. 3. Adimensional polymer self-energy of Eq. (40) for εm =
εw (red curve) and Eq. (44) for εm = 0 (blue curve). Thin black
curves display the limiting laws for very close (z̄a � 1) and very
large separation distances (z̄a � 1) from the membrane surface (see
the main text).

[10]. The effect is due to the dense surface counterion layer
intensifying the screening ability of the interfacial region.
Since the screening of the electrostatic field associated with the
polymer charge lowers the polymer free energy, this translates
into an attractive solvation force driving the polyelectrolyte
towards the membrane surface.

At small separation distances from the wall, i.e., for
z̄a � 1 or |za| � μ, the adimensional self-energy (40) has
the asymptotic behavior

�(z̄a) = −π

4
+

{
1

2
ln

(
2z̄2

a

) + π

4
+ γ − 1

}
z̄a + O

(
z̄2
a

)
,

(41)

where γ = 0.577(2) is Euler’s constant. The asymptotic law
(41) reported in Fig. 3 is seen to reproduce accurately the
minimum of the self-energy. According to Eq. (41), the self-
energy minimum is located at

z∗
a = − μ√

2
exp

(
−π

4
− γ

)
. (42)

Equation (42) indicates that the larger is the membrane charge,
the closer the minimum gets to the membrane surface (i.e.,
σm ↑ |z∗

a| ↓). In the opposite limit of large distances z̄a � 1,
the potential (40) dissipates algebraically as

�(z̄a) = −3

2

(
1

z̄a

− 1

z̄2
a

+ 1

z̄3
a

)
+ O

(
z̄−4
a

)
. (43)

According to the asymptotic law (43), the self-energy is shorter
ranged than the MF part (38) of the grand potential (39). Hence,
far enough from the membrane surface, the polymer immersed
in a counterion-only liquid will always experience an overall
repulsion.

Biological and artificial membranes are usually made of
carbon-based materials with low dielectric permittivity εm ∼ 2.
In order to investigate the resulting image charge effects, we
will consider the close limit of εm = 0 or η → 0 where the
adimensional self-energy (37) can be evaluated analytically.
In this limit, the self-energy takes the closed form

�(z̄a) = − (z̄a − 1)(1 + 3z̄a)

2z̄a(1 + z̄a)2

+ e(1+i
√

3)z̄a

3(1 + z̄a)2
{π − i Ei[−(1 + i

√
3)z̄a]}

× {−2
√

3 + z̄a[6i − 2
√

3 + (3i +
√

3)z̄a]}

+ e(1−i
√

3)z̄a

3(1 + z̄a)2
{π + i Ei[(−1 + i

√
3)z̄a]}

× { − 2
√

3 − 2(3i +
√

3)z̄a + (−3i +
√

3)z̄2
a

}
.

(44)

Figure 3 shows that the adimensional self-energy (44) (blue
curve) embodies two different correlation effects. Namely, the
dense counterion layer enhancing the screening ability of the
interfacial region results in an attractive potential minimum.
This is followed by the high interfacial barrier resulting from
polymer-image charge interactions. Indeed, in the vicinity of
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the interface z̄a � 1, Eq. (44) behaves as

�(z̄a) = 1

2z̄a

− 4π

3
√

3
+ 2z̄a + O

(
z̄2
a

)
. (45)

Equation (45) is reported in Fig. 3 by the thin black curve. One
notes that the first term of the asymptotic law (45) corresponds
to the standard image charge self-energy. The latter diverges
algebraically with the distance from the dielectric membrane
surface. In the opposite limit of large separation distances
z̄a � 1, the potential (44) has the same asymptotic law (43)
as the system without dielectric discontinuity (see also Fig. 3).
Thus, far enough from the interface, attractive solvation forces
induced by the counterion cloud always take over the repulsive
image charge interactions.

We consider next the effect of salt on polymer-membrane
interactions.

B. Symmetric electrolytes

We investigate here correlation effects in symmetric elec-
trolytes. We focus on the limits of short and long polymers
where the technical task is considerably reduced as the double
integral of Eq. (29) transforms to a simple integral.

1. Short polymers

We consider first the case of short polymers that provides
analytically transparent results. As in Sec. III A, we Taylor
expand the sinusoidal function of Eq. (29) and switch to polar
coordinates. The polymer self-energy becomes


	pp(za) = Q2
p�Bκ2

b

2

∫ ∞

0

dk

pk

(
− csch2[κb(za − z0)]

+
(k)

{
p

κb

− coth[κb(za − z0)]

}2

e2pza

)
.

(46)

We note that the integral of Eq. (46) has the functional form
of the ionic self-energy calculated in Ref. [17]. Changing now
the integration variable as k → u = p/κb, and introducing
the rescaled separation distance z̃a = −κbza and the coupling
parameter

�p = Q2
pκb�B, (47)

the polymer self-energy takes the form


	pp(z̃a) = �p

2
�(z̃a), (48)

with the dimensionless self-energy

�(z̃a) =
∫ +∞

1

du

u2 − 1
(−csch2[ln(γc) − z̃a]

+ 
̃(u){u − coth[ln(γc) − z̃a]}2e−2uz̃a ). (49)

In Eq. (49), we introduced the function


̃(u) = 1 + (u − η
√

u2 − 1)s(su − √
s2 + 1)

1 + (u + η
√

u2 − 1)s(su + √
s2 + 1)

. (50)

-0.3 -0.2 -0.1 0
-40

-20

0

20

s =  (DH)

s = 0 (GC)

s = 1 

s = 0.1 

s = 0.02 

bza

FIG. 4. Dimensionless self-energy of short polymers (49) versus
the distance from the membrane with permittivity εm = 2 at different
values of the parameter s = κbμ.

In terms of the same adimensional parameters, the MF-level
polymer-membrane coupling energy (26) reads as

	pm(z̃a) = 2Qp

q
ln

[
1 + γc e−z̃a

1 − γc e−z̃a

]
. (51)

Hence, the polymer grand potential (9) is given by


	p(z̃a) = 2Qp

q
ln

[
1 + γc e−z̃a

1 − γc e−z̃a

]
+ �p

2
�(z̃a). (52)

Comparing the first and the second terms of Eq. (52), one notes
that the relative weight of charge correlations scales as Qpκb.
Thus, for short polymers, charge correlations are amplified
with increasing salt concentration or polymer charge.

In Fig. 4, we plotted the self-energy (49) by changing the
adimensional parameter s = κbμ. We note that the lower is
the parameter s, the lower is the salt density (ρb ↓ s ↓) or
the stronger is the membrane charge (σm ↑ s ↓). Decreasing
the parameter s (i.e., rising the membrane charge or lowering
the salt concentration), the screening ability of the interfacial
region is amplified. As a result, Fig. 4 shows that the
self-energy switches from repulsive to attractive. Thus, unlike
counterion-only liquids where charge correlations always
bring an attractive contribution (see Fig. 3), in the presence of
salt, the role played by correlations can be totally reversed by
tuning the salt density.

In order to evaluate the correction brought by a finite
membrane charge to the DH limit of neutral membranes σm =
0 (or s = ∞), we evaluate the Taylor expansion of the self-
energy (49) at the order O(s−2). To account for the dielectric
jump between the membrane and the electrolyte, we fixe the
membrane permittivity to εm = 0 (i.e., η = 0). Carrying out
the Fourier integral, one finds that the self-energy decomposes
as �(z̃a) ≈ �

(0)
DH(z̃a) + s−2�

(1)
DH(z̃a). The DH part given by

�
(0)
DH(z̃a) = e−2z̃a

2z̃a

(53)

corresponds to screened image-polymer charge interactions
repelling the polymer from the membrane (the black curve in
Fig. 4) [17,18]. The correction term reads as in turn

�
(1)
DH(z̃a) = − 1

2 {[γ + ln(4z̃a)]e−2z̃a − 4 Ei(−2z̃a)

+ (2 + e2z̃a )Ei(−4z̃a)}. (54)
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In the neighborhood of the interface or at weak salt z̃a � 1,
the correction term rises linearly with distance as

�
(1)
DH(z̃a) ≈ − ln(4) + 2z̃a. (55)

At large distances from the interface or in strong salt solutions
z̃a � 1, Eq. (54) exhibits an exponential decay

�
(1)
DH(z̃a) ≈ −1

2
e−2z̃a

{
γ + ln(4z̃a) + 7

4z̃a

}
. (56)

First of all, in both regimes, the finite-charge correction (54)
associated with the enhanced interfacial charge screening is
negative. This explains the reduction of the DH potential
by a finite membrane charge density in Fig. 4. Second, one
notes that at large separation distances z̃a � 1, the correction
term (56) dominates the DH potential (53). Thus, far enough
from the surface of the charged membrane, charge correlations
always make an attractive contribution to polymer-membrane
interactions.

We focus now on the opposite Gouy-Chapman (GC) regime
s � 1 of strongly charged membranes or dilute electrolytes.
By Taylor expanding the self-energy (49) at the order O(s),
one gets �(z̃a) ≈ �

(0)
GC(z̃a) + s�

(1)
GC(z̃a). The self-energy of the

strict GC limit s → 0 reads as

�
(0)
GC(z̃a) = csch2(z̃a)

8z̃a

{4z̃a[−γ + Ei(−4z̃a) − ln(4z̃a)]

+ (1 − e−2z̃a )2}, (57)

while the correction term is given by

�
(1)
GC(z̃a) = e−2z̃a

2z̃2
a

{−1 − 2z̃a − 4z̃a coth(z̃a) (58)

+ 2z̃2
a coth(z̃a)[1 + coth(z̃a)]2

× [γ + ln(4z̃a) − Ei(−4z̃a)]}.
The GC potential (57) reported in Fig. 4 by the red curve is
seen to drop without lower bound. Indeed, in the vicinity of the
interface z̃a � 1, this potential that accounts for the enhanced
screening ability of the interfacial region diverges as

�
(0)
GC(z̃a) ≈ − 3

2z̃a

+ 1 − z̃a

9
. (59)

Thus, the GC limit of the self-energy is purely attractive.
The image charge barrier associated with the dielectric
discontinuity is in turn included in the correction term (58)
that exhibits the asymptotic divergence

�
(1)
GC(z̃a) ≈ 3

2z̃2
a

− 1

9
(60)

at z̃a � 1. In Fig. 4, the asymptotic behaviors (59) and (60)
correspond, respectively, to the decreasing and increasing
branches of the self-energy curves. From the close distance
limit of the GC expansion �(z̃a) ≈ �

(0)
GC(z̃a) + s�

(1)
GC(z̃a), one

finds that the minimum of the self-energy curves that joins
these two branches is located at |z∗

a| ≈ μ. Thus, in agreement
with Eq. (42) for the counterion-only liquid, the larger is the
membrane charge, the closer the potential minimum gets to
the wall.

2. Long polymers and similar charge attraction

In light of the analysis of charge correlations considered
in the previous part, we investigate now the biologically
relevant regime of long polymers. Taking the limit L → ∞, the
sinusoidal function in Eq. (29) yields a Dirac delta distribution
[see Eq. (34)], which cancels the integral on the wave vector
kx . Passing to the adimensional integration variable ky → u =√

1 + (ky/κb)2, the grand potential (29) becomes


	pp(z̃a) = L�Bτ 2�(z̃a), (61)

with the dimensionless self-energy

�(z̃a) =
∫ +∞

1

du

(u2 − 1)3/2
(−csch2[ln(γc) − z̃a]

+ 
̃(u){u − coth[ln(γc) − z̃a]}2e−2uz̃a ). (62)

Thus, the total polymer grand potential (9) is given by


	p(z̃a) = 2Qp

q
ln

[
1 + γc e−z̃a

1 − γc e−z̃a

]
+ L�Bτ 2�(z̃a). (63)

First, one notes that for long polymers, the total grand potential
(63) scales linearly with the polymer length L. Then, the
dependence of the potential (63) on the membrane charge σm

and salt density ρb is solely encoded in the parameter s = κbμ.
Thus, for long polymers, one can explore the whole surface
charge and ion concentration regime by changing exclusively
the parameter s.

Figure 5(a) displays the total grand potential (63), and
Fig. 5(b) shows the MF-level polymer-membrane charge
coupling energy (51) (main plot) and the polymer self-energy
(61) (inset) at different values the parameter s. The membrane
permittivity is εm = 2. The polymer charge density is fixed
to the value of ds-DNA molecules τ = 0.59 e/Å. In the
DH limit s → ∞ of neutral membranes (black curves) and
close to the membrane surface, the polymer encounters a
repulsive barrier [Fig. 5(a)]. In Fig. 5(b), one notes that this
effect is solely due to the polymer self-energy embodying
the repulsive polymer-image charge interaction. Indeed, at
the membrane permittivity εm = 0 (square symbols), the
adimensional self-energy (62) has the analytical form �(z̃a) =
K0(2z̃a) exhibiting a logarithmic divergence �(z̃a) � − ln(z̃a)
at the interface [10].

Decreasing the parameter s (i.e., reducing the salt con-
centration or rising the membrane charge), the MF-level
membrane-DNA repulsion energy 	pm is enhanced [the main
plot of Fig. 5(b)]. Furthermore, below the value s � 1 where
one gets into the GC regime characterized in the previous
section, the DNA self-energy 
	pp turns from repulsive
to attractive (inset). At the ds-DNA charge considered in
Figs. 5(a) and 5(b), the weight of the self-energy (61)
dominates the MF grand potential (51). Consequently, the total
grand potential develops an attractive well that becomes deeper
with decreasing s. In other words, a larger negative membrane
charge results in a stronger attraction of the negatively charged
ds-DNA molecule. This correlation-induced like-charge at-
traction effect is one of the key results of our work. In Fig. 5(c),
we consider now the grand potential (63) of ss-DNA molecules
having a weaker charge density τ = 0.29 e/Å. One notes that
although the interfacial barrier is lowered with decreasing s,
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FIG. 5. (a) One-loop polymer grand potential (63), (b) MF-level
grand potential (51) (main plot), and self-energy (61) (inset) of a
ds-DNA with linear charge density τ = 0.59 e/Å. (c) Displays the
total grand potential of a ss-DNA molecule with charge density
τ = 0.29 e/Å. The membrane permittivity is εm = 2 (solid curves).
The square symbols in (a) correspond to the DH regime at the
membrane permittivity εm = 0 where the self-energy (62) diverges
logarithmically as �(z̃a) = K0(2z̃a) � − ln(z̃a). The inset in (a)
zooms to the coexistence region.

the grand potential does not develop a stable attractive well.
We verified that below the value s = 0.01 (red curve), the

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

(e/A)

s

Attraction

Repulsion

ds-DNA

FIG. 6. Phase diagram: critical values of the parameter s = κbμ

versus the polymer charge density τ separating the parameter
regimes with binding (area below the critical lines) and unbinding
polyelectrolytes (area above the lines) oriented parallel (solid curve)
and perpendicular to the membrane surface (dashed curve). The red
dots mark the characteristic polymer charge densities reached at s = 0
below which the adsorption state disappears.

grand potential profile is practically unchanged. Thus, for
ss-DNA molecules, the enhanced interfacial screening of the
DNA charges is not strong enough to turn the DNA-membrane
interaction from repulsive to attractive.

In Fig. 6, we plotted the phase diagram (solid curve) that
displays the critical values of the parameter s = s∗ = κ∗

b μ∗
versus the polymer charge density τ separating the parameter
regimes with attractive and repulsive membranes. The critical
line corresponds to the phase coexistence where the grand
potential exhibits a minimum at the interface (adsorption state)
and a second minimum in the bulk (desorption state). In the
case of ds-DNA molecules, this corresponds to the value s =
0.5 [see the inset of Fig. 5(a) and the blue dot in Fig. 6].
For polyethylene terephthalate membranes with surface charge
σm = 0.16 C/m2 at pH = 7, this value can be reached at the
salt concentration ρb = 0.5 M. First, the diagram of Fig. 6
shows that the weaker is the polyelectrolyte charge, the higher
should be the membrane charge (or the lower the salt density)
for the polymer adsorption to occur (i.e., τ ↓ σ ∗

m ↑ or τ ↓
ρ∗

b ↓). This can be explained by the fact that a lower polymer
charge has to be compensated by a stronger counterion excess
for the enhanced interfacial screening to result in the attraction
of the polymer. Then, one notes that the critical line ends at the
characteristic polymer charge density τc = 0.3 e/Å reached
in the GC limit s = 0 (red dot) below which the adsorption
state disappears. In agreement with Fig. 5(c), this means that
ss-DNA molecules should be always repelled by the negatively
charged membrane, regardless of the membrane charge and
the salt density. Finally, the diagram of Fig. 6 indicates that
the increase of the bulk salt concentration should result in
the unbinding of a polyelectrolyte initially adsorbed to the
similarly charged membrane. The predictions of this phase
diagram can be verified by current DNA transport experiments.

We consider next the effect of correlations on the inter-
action between a membrane and a polyelectrolyte oriented
perpendicular to the membrane wall.
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IV. APPROACH OF THE POLYMER PRIOR
TO ADSORPTION

We calculate now the grand potential of the polymer
oriented perpendicular to the membrane surface. This configu-
ration corresponds to the approach phase of electrophoretically
driven DNA molecules prior to translocation events [19–24].
We choose the Cartesian coordinates of the approaching
polymer as (0,0,zt ), where the variable zt < 0 denotes the
distance of the right end of the polymer from the wall (see
Fig. 2). In this configuration, the charge density function is

σp(r) = −τ δ(r‖) θ (−z) θ (zt − z) θ (z − zt + L). (64)

Injecting the structure factor (64) with the membrane potential
(12) into Eq. (5), the polymer-membrane coupling potential
follows as

	pm(zt ) = 2τ

qκb

{Li2[eκb(zt−z0)] − Li2[−eκb(zt−z0)]

− Li2[eκb(zt−L−z0)] + Li2[−eκb(zt−L−z0)]}, (65)

where we used the polylogarithm function Li2(x) [16].

Because of the polymer correlations perpendicular to the
dielectric wall, the calculation of the DNA self-energy is
involved. Substituting the density function (64) together with
the Green’s function (23) into Eq. (6), the self-energy takes
the form

	pp(zt ) = �Bτ 2

2

∫ ∞

0

dkp

k

∫ zt

zt−L

dz

×
{

[h+(z) + 
(k)h−(z)]
∫ z

zt−L

dz′h−(z′)

+h−(z)
∫ zt

z

dz′[h+(z′) + 
(k)h−(z′)]
}
. (66)

In the following parts, we will investigate the energies (65) and
(66) for a counterion-only liquid and a symmetric electrolyte.

A. Counterion liquids

We take now the counterion-only limit κb → 0 where the
MF grand potential (65) becomes

	pm(v) = 2Qp

q
[(v + L̄−1) ln(v + L̄−1) − (v + L̄−1 + 1) ln(v + L̄−1 + 1)]. (67)

In Eq. (67), we introduced the dimensionless distance v = −zt/L and polymer length L̄ = L/μ. In the same limit κb → 0, the
homogeneous solutions (18) to the 1l-level kernel equation (15) reduce to

h±(z) = e∓kz

[
1 ± 1

k(z − μ)

]
. (68)

Inserting Eq. (68) into the self-energy function (66), subtracting the bulk grand potential, and passing to the dimensionless
integration variable t = Lk, after long but straightforward algebra, the net self-energy takes the single integral form


	pp(v) = L�Bτ 2

2
χ (v), (69)

with the dimensionless polymer self-energy

χ (v) =
∫ ∞

0

dt

t2
[2F1(t) + 
c(t/L̄)F2(t)]. (70)

In Eq. (70), we used the dielectric jump function (33) and introduced the auxiliary functions

F1(t) = et(v+L̄−1)Ei[−t(v + L̄−1)] − et(v+L̄−1+1)Ei[−t(v + L̄−1 + 1)] + 1 − e−t

−{e−t(v+L̄−1+1) − Ei[−t(v + L̄−1 + 1)]}{−et(v+L̄−1) + Ei[t(v + L̄−1)] + et(L̄−1+v+1) − Ei[t(v + L̄−1 + 1)]}

−G
3,1
2,3

(
0,1

0,0,0

∣∣∣∣t(v + L̄−1)

)
+ G

3,1
2,3

(
0,1

0,0,0

∣∣∣∣t(v + L̄−1 + 1)

)
, (71)

F2(t) = {e−tv − et/L̄ Ei[−t(v + L̄−1)] − e−t(v+1) + et/L̄ Ei[−t(v + L̄−1 + 1)]}2, (72)

with the Meijer-G functions Gm,n
p,q

(
a1, . . . ,ap

b1, . . . ,bq
|x

)
[16].

We emphasize that at fixed polymer charge density τ , the
MF grand potential (67) and the self-energy (69) per length
are solely characterized by the adimensional polymer length
L̄ = L/μ. This also implies that the variation of the polymer
length L and the membrane charge σm have the same effect

on the polymer grand potential. In Fig. 7(a), we show that
a larger membrane charge or polymer length results in a
more repulsive MF grand potential 	pm(zt ) (dashed curves
from bottom to top). As a result of the enhanced MF-level
repulsion, outside the interfacial region v � 1, the one-loop
grand potential 
	p(zt ) = 	pm(zt ) + 
	pp(zt ) rises with the
parameter L̄ (solid curves). However, this effect is reversed
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FIG. 7. (a) MF grand potential 	pm(v) of Eq. (67) (dashed
curves), one-loop level grand potential 
	p(v) = 	pm(v) +
L�Bτ 2χ (v)/2 (solid curves), and (b) dimensionless self-energy χ (v)
of Eq. (70) versus the reduced separation distance. The membrane
permittivity is εm = 2, the polymer charge density τ = 1.0 e/Å, and
the different values of the rescaled length L̄ = L/μ are indicated in
the legend.

in the interfacial region v � 1 where the increase of L̄ is
accompanied with the drop of the one-loop grand potential.
Most importantly, at polymer lengths largely exceeding the GC
length L � μ, correlations result in an attractive metastable
minimum of the total grand potential (the solid red curve for
L̄ → ∞). Indeed, in counterion-only liquids where the MF
grand potential (67) and consequently the total grand potential

	p drops with the distance zt without lower bound, the
repulsion always corresponds to the stable state of the system.
We also verified that at the ss-DNA and ds-DNA charge
densities, the metastable minimum does not appear.

In order to explain these points, in Fig. 7(b), we plotted the
adimensional self-energy (70) accounting for charge correla-
tions. At weakly charged membranes or for short polymers
(black curve for L̄ = 0.1), image charge effects result in a
purely repulsive self-energy, explaining the interfacial increase
of the MF grand potential by correlations in Fig. 7(a).
Indeed, in the strict limit of neutral membranes L̄ → 0, the
dimensionless polymer self-energy (70) reduces to the simple
form derived in Ref. [11]:

χ (v) = 2
0

{
ln

[
2 + 2v

1 + 2v

]
+ v ln

[
4v(1 + v)

(1 + 2v)2

]}
, (73)

with the unscreened dielectric jump function 
0 = (1 −
η)/(1 + η). The self-energy reported in Fig. 7(b) by black
dots is seen to be purely repulsive. At the interface, it tends
to the finite value χ (0) = 2 ln(2). At separation distances

much larger than the polymer length v � 1 (or |zt | � L), the
potential (73) reduces to the unscreened ionic image charge
potential χ (v) = 
0/(2v). Increasing now the polymer length
or the membrane charge from top to bottom, an attractive
potential minimum sets in at L ∼ μ. At larger polymer lengths
L � μ, the self-energy drops and becomes purely attractive.
This peculiarity due again to the enhanced interfacial charge
screening is responsible for the reduction of the MF grand
potential and the presence of a metastable minimum in
Fig. 7(a).

In the next subsection we deal with the effect of salt on the
approach phase of translocating DNA molecules.

B. Symmetric electrolytes

In this part, we calculate the self-energy of the polymer
in a symmetric electrolyte and oriented perpendicular to the
membrane surface. Because of the nonlinear dependence of
the homogeneous solutions (18) on the coordinate z, the
spatial integrals of the self-energy Eq. (66) cannot be evaluated
analytically. In order to overcome this complication, we
Taylor expand the functions (18) in terms of the parameter
γc(s) = e−κbz0 as

h∓(z) = κb

p

∑
n�0

b±
n ev±

n κbz, (74)

where we passed to the adimensional wave vector u = p/κb

and introduced the auxiliary coefficients

b±
0 = u ± 1; b±

n = ±2γ 2n
c (s) if n > 0, (75)

v±
n = 2n ± u. (76)

Carrying out the integrals in Eq. (66) with the expanded
functions (74), subtracting the bulk part of the grand potential,
and switching to the dimensionless distance z̃t = −κbzt and
polymer length L̃ = κbL, one gets the polymer self-energy in
the form


	pp(zt ) = 
	∗ζ (zt ), (77)

with the characteristic energy 
	∗ = �Bτ 2/(2κb) and the
dimensionless self-energy

ζ (z̃t ) =
∫ ∞

1

du

u2 − 1
{2F (u) + 
̃(u)G2(u)}. (78)

In Eq. (78), the delta function is given by Eq. (50) and we
introduced the auxiliary functions

F (u) =
∑′

n,m�0
b+

n b−
m

v+
n v−

m

e−(v+
n +v−

m )z̃t

×
{

1 − e−v+
n L̃ − v+

n

v+
n + v−

m

[1 − e−(v+
n +v−

m )L̃]

}
, (79)

G(u) =
∑
n�0

b+
n

v+
n

(1 − e−v+
n L̃)e−v+

n z̃t . (80)

In Eq. (79), the prime above the sum sign means that the term
with indices n = m = 0 corresponding to the bulk self-energy
should not be included in the summation. In terms of the
same dimensionless parameters, the MF grand potential (65)
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FIG. 8. (a) Dimensionless self-energy (78) (main plot) and
MF grand potential (81) rescaled by the characteristic energy

	∗ = �Bτ 2/(2κb) (inset). (b) Rescaled total grand potential 
	p =

	pp + 	pm. The membrane permittivity is εm = 2 and the ds-DNA
charge density τ = 0.59 e/Å. The square symbols in (a) correspond
to the DH limit (82).

reads as

	pm(z̃t ) = 2τ

qκb

{Li2[γc(s)e−z̃t ] − Li2[−γc(s)e−z̃t ]

− Li2[γc(s)e−z̃t−L̃] + Li2[−γc(s)e−z̃t−L̃]}.
(81)

1. Thermodynamic limit L̃ → ∞
We consider first the regime of long ds-DNA molecules

and take the thermodynamic limit L̃ → ∞. In this limit where
the exponential terms of Eqs. (79)–(81) vanish, the total
grand potential becomes independent of the polymer length.
In Fig. 8(a), we show that with the decrease the parameter
s from the DH limit (s = ∞) to the GC regime (s = 0.01),
the self-energy is transformed from repulsive to attractive
(main plot) while the MF grand potential barrier rises (inset).
Figure 8(b) shows that as a result of these effects, the grand
potential becomes more repulsive outside the interfacial region
|zt | � κb but switches at s � 0.1 from repulsive to attractive
close to the surface. Hence, like-charge attraction is also

expected for perpendicular ds-DNA molecules approaching
strongly charged membranes.

For an analytical insight into the behavior of the self-energy,
we fix the membrane permittivity to εm = 0 and Taylor
expand Eq. (78) in the DH regime s � 1 as ζ (z̃t ) = ζ

(0)
DH(z̃t ) +

s−2ζ
(1)
DH(z̃t ) + O(s−4). Figure 8(a) displays by square symbols

the DH contribution

ζ
(0)
DH(z̃t ) = e−2z̃t + 2z̃tEi(−2z̃t ) (82)

accounting for repulsive polymer-image charge interactions.
The attractive correction term reads as in turn

ζ
(1)
DH(z̃t ) = −1

2
e2z̃t Ei(−6z̃t ) +

(
1 − 1

2
e2z̃t

)
Ei(−4z̃t )

+
(

1 + 4z̃2
t − 1

2
e−2z̃t

)
Ei(−2z̃t )

− 1

2
e−2z̃t

[
2 + γ − 4z̃t + ln

(
4z̃t

3

)]
. (83)

Based on these potentials, one finds that towards the membrane
surface, the self-energy converges to

ζ (0) = 1 − 1

s2
+ O

(
s−4). (84)

In Eq. (84), the negative sign of the beyond-DH correction
characterizes the finite charge-induced reduction of the image
charge barrier (the first term) in Fig. 8(a). Far away from the
membrane surface z̃t � 1, the self-energy is exponentially
screened as

ζ (z̃t ) ≈ e−2z̃t

2z̃t

{
1 − z̃t

s2

[
γ + ln

(
4z̃t

3

)]}
+O

(
s−4

)
. (85)

In Eq. (85), the finite charge correction term is seen to be longer
ranged than the DH contribution. Thus, similar to polymers
parallel with the membrane, far enough from the membrane
surface, solvation effects take over image charge forces and
correlations bring an attractive contribution to the polymer
grand potential.

The blue curve in Fig. 8(b) corresponds to the phase
coexistence where the attractive well switches from the
metastable to the stable state. We emphasize that in the
present case of perpendicular polymers, the critical parameter
value s = 0.1 for phase coexistence is significantly lower than
the value s = 0.5 found for parallel polyelectrolytes. In the
case of polyethylene terephthalate membranes at pH = 7,
this value can be reached at the bulk salt density ρb ≈ 0.02
M. In order to better quantify the effect of the polymer
orientation, in Fig. 6, we plotted the critical line separating
the parameter regimes with binding and unbinding polymers
oriented perpendicular to the membrane surface (dashed
curve). The comparison of the solid and dashed curves shows
that at fixed polymer charge, the occurrence of the polymer
attraction in the perpendicular configuration requires indeed
two to three times larger membrane charges. One also notes
that the critical line ends at the considerably larger polymer
charge density τc = 0.55 e/Å. The weaker solvation effect for
perpendicular polyelectrolytes stems from the fact that in this
configuration, the polymer charges are only partially covered
by the interfacial counterion cloud.
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FIG. 9. Main plot: MF grand potential (81) rescaled by the char-
acteristic energy 
	∗ = �Bτ 2/(2κb) (blue) and dimensionless self-
energy (78) (black). Inset: rescaled total grand potential 
	p/
	∗.
Solid curves: L̃ = ∞. Dotted curves: L̃ = 1. The membrane per-
mittivity is εm = 2, the ds-DNA charge density τ = 0.59 e/Å, and
s = 0.1.

In the final subsection we relax the thermodynamic limit
and consider the finite-length effects on polymer adsorption to
like-charge membranes.

2. Finite-size effects

Figure 9 compares the grand potential functions at the
finite polymer length L̃ = 1 (dotted curves) and in the ther-
modynamic limit L̃ → ∞ (solid curves), at the coexistence
value s = 0.1 of Fig. 8. One sees that the finiteness of the
polymer length lowers the repulsive MF grand potential (blue
curves) but rises the attractive self-energy (black curves). As a
result, with the reduction of the polymer length, the one-loop
grand potential (inset) becomes less repulsive far from the
interface but also less attractive at the interface as the attractive
minimum rises and becomes metastable. Hence, in the GC
regime considered in Fig. 9, the overall effect of the reduced
polymer length is the attenuation of the like-charge attraction
driven by the interfacial solvation force. Next, we characterize
this finite-length effect with analytical details by calculating
the surface value of the self-energy (78) in the DH regime.

The surface self-energy is relevant to translocation exper-
iments since this quantity corresponds to the contribution
from charge correlations to the work to be done in order
to drive the polymer to the membrane surface. By Taylor
expanding Eq. (78) in the DH regime s � 1, one gets ζ (0) =
ζ

(0)
DH(0) + s−2ζ

(1)
DH(0). The pure DH term is given by

ζ
(0)
DH(0) = (1 − e−L̃)2 + 2L̃[Ei(−2L̃) − Ei(−L̃)], (86)

and the finite membrane charge correction reads as

ζ
(1)
DH(0) = −(1 − e−L̃)2 +

[
2L̃ − 1

2
ln(4L̃) − γ

2

]
e−2L̃

− 2L̃ e−L̃ + 1

2
e−2L̃ Ei(L̃) − 1

2
e2L̃ Ei(−6L̃)

−
(

1

2
e2L̃ − 1

)
Ei(−4L̃) + 1

2
e2L̃ Ei(−3L̃)

1 2 3 4 5
-1

-0.5

0
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)
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FIG. 10. Surface self-energy ζ (0) = ζ
(0)
DH(0) + s−2ζ

(1)
DH(0) (black,

purple, and blue curves) at various values of s versus the polymer
length L̃ from Eqs. (86) and (87). The red curve is the finite charge
correction (87). The black curve at s = ∞ equally corresponds to the
DH self-energy (86).

+
(

4L̃2 + 1 − 1

2
e2L̃

)
Ei(−2L̃)

− (
2L̃2 + 1

)
Ei(−L̃). (87)

Equations (86) and (87) are plotted in Fig. 10. With increasing
length, the repulsive DH potential (86) of positive value (black)
and the attractive finite charge correction term (87) of negative
value (red) are amplified until they saturate at polymer lengths
L̃ � 2.

In Fig. 10, we plotted the total self-energy ζ (0) at various
values of the parameter s (black, purple, and blue curves).
Based on the functions (86) and (87), one finds that for short
polymers L̃ � 1, the self-energy rises algebraically with the
polymer length as

ζ (0) ≈ 2 ln(2)L̃ − L̃2 − 2

s2
ln(2)L̃2+O(s−4). (88)

For long polymers L̃ � 1, the self-energy converges exponen-
tially to the thermodynamic limit of Eq. (84):

ζ (0) ≈ 1 − 2

L̃
e−L̃ − 1

s2

(
1 − 16

3L̃
e−L̃

)
+O(s−4), (89)

which explains the saturation of the surface self-energy at
the particularly low value L̃ ≈ 2. We now note that below
s ≈ 2.0 where one approaches the GC regime, the surface
self-energy exhibits a peak and starts to drop beyond this
point (blue curve). The location of the peak corresponds to the
characteristic polymer length where the attractive interfacial
solvation characterized by Eq. (87) takes over the image
charge barrier of Eq. (86). From the derivative of Eq. (88),
an approximative value for the location of the bump follows
as L̃∗ ≈ s2/2. Thus, the larger is the membrane charge (or the
lower is the salt density), the shorter is the characteristic length
L̃∗ (i.e., σm ↑ L̃∗ ↓ or ρb ↓ L̃∗ ↑). To summarize, in the DH
regime s � 2, a larger polymer length means a more repulsive
grand potential. Approaching the GC regime with s � 2.0, the
increase of the polymer length beyond the value L̃∗ results
in turn in a less repulsive grand potential. This explains the
finite-length behavior of the grand potential in Fig. 9.
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FIG. 11. Phase diagram: critical values of the parameter s = κbμ

versus the polymer charge density τ separating the parameter regimes
characterized by repulsion (area above the curves) and like-charge
attraction (below the curves) at various polymer lengths given in
the legend. The inset displays the polymer length dependence of the
critical point where the critical lines of the main plot end in the GC
limit (s = 0).

In order to highlight now the main finite-size effects on the
like-charge attraction, in Fig. 11, we reported the critical lines
splitting the attraction and repulsion regimes in the thermody-
namic limit L̃ → ∞, and at the finite polymer lengths L̃ = 1
and 0.5. The phase diagram shows that at fixed polymer charge
density τ , the lower is the polymer length, the larger should
be the membrane charge required to turn the membrane from
repulsive to attractive (i.e., L ↓ σm ↑). Furthermore, at fixed
membrane charge (i.e., fixing s), the lower is the polymer
length, the higher is the polymer charge required for the
like-charge attraction to occur (L ↓ τ ↑). This is due to the fact
that the weaker interfacial solvation for a shorter polymer has
to be compensated by a higher polymer or membrane charge
for the polymer-membrane interaction to remain attractive.
In the inset of Fig. 11, we plotted the length dependence
of the critical points of the main plot (red dots) reached in
the GC limit s = 0. We note that at fixed polymer length
(charge density), the red curve yields the lowest polyelectrolyte
charge (length) where the like-charge attraction can occur.
Increasing the polymer length, the critical polymer charge
drops and saturates at τc ≈ 0.58 e/Å for L̃ � 2. This indicates
that for ds-DNA molecules approaching strongly charged
membranes in the perpendicular configuration, the similar
charge attraction can be observed exclusively for sequence
lengths larger than the characteristic value L � 2/κb. At the
physiological salt concentration ρb = 0.1 M, this lower bound
corresponds to a molecule composed of 20 bps. The predic-
tions of the phase diagram in Fig. 11 call for experimental
verification.

V. CONCLUSIONS

In this work, we investigated electrostatic many-body
effects on the interaction of polyelectrolytes with similarly
charged dielectric membranes in contact with an electrolyte
solution. Our motivation stems from the fact that this con-

figuration is frequently encountered in polymer transport
experiments where both the DNA and the translocated
membrane are negatively charged. Based on the one-loop
expansion of the SC equations where the polymer was
treated as a test charge, we calculated the polymer grand
potential including charge correlations at the one-loop level.
Our calculation generalizes previous DH-level formulations
of polymer-membrane interactions [10,11] to strongly charged
membranes.

We found that the polymer-membrane coupling is com-
posed of three contributions. The direct coupling between
the DNA and the membrane charges results in the classical
MF-level similar charge repulsion. This is enhanced by the
repulsive polymer-image charge interaction associated with
the dielectric contrast between the solvent and the low
permittivity membrane. The third effect is due to the deform-
ation of the interfacial ionic cloud by the membrane charge,
resulting in the enhanced interfacial screening of the polymer
charges with respect to the bulk electrolyte. This effect lowers
the polymer grand potential and translates into an attractive
force oriented to the membrane surface. It is important to note
that because this peculiarity originates from the nonuniform
screening of the polymer charges, it could not be taken
into account by the previous DH theories. In this work, we
considered both the parallel and the perpendicular polymer
orientations, relevant to DNA adsorption and translocation
experiments, respectively. In both cases, we found that for ds-
DNA molecules at highly charged membranes, the attractive
solvation interaction dominates the repulsive contributions
and the molecule experiences a like-charge attraction to the
membrane surface. Due to their lower charge density, this
like-charge attraction does not occur for ss-DNA molecules.
The physical conditions for the occurrence of the like-charge
attraction are fully characterized by the phase diagrams of
Figs. 6 and 11.

The present formalism is based on three approximations.
First, the polymer is modeled as a rigid line charge and
this simplified model neglects the contribution from the
conformational fluctuations of the DNA molecule. The latter
complication can be in principle taken into account by coupling
the present theory with Edward’s path integral formulation
of fluctuating polymers. The corresponding MF equations
of state were indeed derived in Ref. [5] and the extension
of this approach beyond-MF level was formally introduced.
However, it should be noted that the application of this
extended theory to the present inhomogeneous electrolyte
system is a formidable task that still remains an open challenge.
Second, the polyelectrolyte being considered as a test charge,
the theory does not account for the influence of the polymer on
its ionic environment. The latter approximation was motivated
by the fact that if one opts for the consideration of the poly-
mer charges at the full one-loop level, one loses the plane
symmetry. As a result, the analytical solution of the one-
loop kernel equation (15) becomes impossible. One could
approximately overcome this limitation by introducing a nu-
merical charge renormalization procedure as in Refs. [25,26].
Because this will bring additional numerical complication and
shadow the analytical transparency of this work, we leave
this improvement to a future work. In addition, this work
focused exclusively on the parallel and perpendicular polymer
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configurations. This constraint can be relaxed in the future by
considering the rotational angle of the molecule as an internal
degree of freedom of the system. Finally, it should be noted
that the 1l-level evaluation of the polymer grand potential is
expected to be valid up to the intermediate coupling regime.
In the presence of high membrane charges and polyvalent ions
that drive the system to the strong-coupling regime, it would
be appropriate to introduce strong-coupling corrections or
seminumerical approaches able to cover this regime [27–30].
The experimental observation of our prediction [12] indicates
that despite these approximations, our theory can already
capture the essential physics of like-charge adsorption. More-
over, the numerous predictions of our work can be tested by
additional experiments, or in simulations.
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APPENDIX: CALCULATING THE POLYMER
FREE ENERGY

In this appendix, we calculate the electrostatic grand
potential of a test polyelectrolyte immersed in an electrolyte
solution. Our starting point is the electrostatic variational
grand potential of a charged liquid, derived in Ref. [25] in the
form

	v = −1

2
Tr ln [v] +

∫
dr σ (r)ψ(r)

+ kBT

2e2

∫
dr ε(r){∇r · ∇r′v(r,r′)|r′→r − [∇ψ(r)]2}

−
∑

i

�i

∫
dr e−Vi (r)e−qiψ(r)e− q2

i
2 v(r,r). (A1)

In Eq. (A1), the potential v(r,r′) stands for the variational
Green’s function, σ (r) is the density of fixed charges, ψ(r)
the average electrostatic potential induced by the latter, kB

the Boltzmann constant, T the liquid temperature, and e the
electron charge. Furthermore, the function ε(r) corresponds to
the dielectric permittivity profile, �i and qi are, respectively,
the fugacity and the valency of an ion of species i. Finally, the
function Vi(r) is the ionic steric potential accounting for the
rigid boundaries in the system.

1. Rescaling the electrostatic grand potential

We consider now a symmetric electrolyte composed of two
oppositely charged ionic species, each with valency q and bulk
density ρb. The self-consistent (SC) equations obtained from
the extremization of the grand potential (A1) with respect to
the average potential ψ(r) and Green’s function v(r,r′) read
as [25,31]

∇ε(r) · ∇ψ(r) − 2ρbqe2

kBT
e−Vi (r)− q2

2 δv(r) sinh [qψ(r)]

= − e2

kBT
σ (r), (A2)

∇ε(r) · ∇v(r,r′)

−2ρbq
2e2

kBT
e−Vi (r)− q2

2 δv(r) cosh [qψ(r)]v(r,r′)

= − e2

kBT
δ(r − r′), (A3)

with the ionic self-energy defined as

δv(r) = lim
r′→r

{v(r,r′) − vb(r − r′)}. (A4)

In Eq. (A4), we introduced the bulk Debye-Hückel poten-
tial vb(r − r′) = �Be−κb |r−r′|/|r − r′|, with the DH screening
parameter κ2

b = 8πq2�Bρb and the Bjerrum length �B =
e2/(4πεwkBT ) where εw = 80 is the dielectric permittivity

of water. Furthermore, we used the relation ρb = �i e− q2
i
2 vb(0)

between the ionic fugacity and bulk density.
We consider now a simple symmetric electrolyte without

DNA. The electrolyte is in contact with a charged plane of
infinite thickness, with the interface located at z = 0 and
carrying the smeared charge distribution σ (z) = −σsδ(z). We
also assume that the membrane has the same permittivity as
the solvent, i.e., ε(r) = εw. For the one-loop (1l) expansion
that will be carried out next, we introduce the new average
potential φ(z) = qψ(z) and Green’s function u(r) = q2v(r,r′).
Defining as well the adimensional parameter s = κbμ and the
electrostatic coupling parameter � = q2κb�B [17], rescaling
all lengths according to r̃ = κr, and using Eq. (A4), the
variational grand potential (A1) takes the adimensional form

	v = −1

2
Tr ln[u/q2] − 1

2πs�

∫
d r̃ δ(z̃a)φ(r̃)

+ 1

8π�

∫
d r̃{∇r̃ · ∇r̃′u(r̃,r̃′)|r̃→r̃′ − [∇φ(r̃)]2}

− 1

4π�

∫
d r̃ cosh[φ(r̃)]e− 1

2 δu(r̃). (A5)

In the same dimensionless variables, the SC equations (A2)
and (A3) read as in turn

∇2φ(r̃) − sinh [φ(r̃)]e− 1
2 δu(r̃) = 2

s
δ(z̃a), (A6)

∇2u(r̃,r̃′) − cosh [φ(r̃)]e− 1
2 δu(r̃)u(r̃,r̃′) = −4π�δ(r̃ − r̃′).

(A7)

One can verify that Eqs. (A6) and (A7) follow directly from
the extremization of the grand potential (A5) with respect to
the rescaled potentials φ(r̃) and u(r̃,r̃′).

2. 1l expansion of the SC equations

We will now expand the rescaled grand potential (A5) and
the SC equations (A6) and (A7) at 1l order. This corresponds
to a Taylor expansion of these equations at the linear order
in the coupling parameter � [17]. Equation (A7) shows that
at leading order, the propagator u(r̃,r̃′) is proportional to
the electrostatic coupling parameter �. Thus, we expand the
electrostatic potentials as

φ(r̃) = φ0(r̃) + �φ1(r̃) + O(�2), (A8)

u(r̃,r̃′) = �u1(r̃,r̃′) + O(�2). (A9)
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Inserting Eqs. (A8) and (A9) into the SC equations (A6) and
(A7) and Taylor expanding the latter at the order O(�), one
finds

∇2φ0(r̃) − sinh [φ0(r̃)] = 2

s
δ(z̃a), (A10)

∇2φ1(r̃) − cosh [φ0(r̃)]φ1(r̃) = −1

2
sinh [φ0(r̃)]δu1(r̃),

(A11)

∇2u1(r̃,r̃′) − cosh [φ0(r̃)]u1(r̃,r̃′) = −4πδ(r̃ − r̃′).

(A12)

Equation (A10) is the MF-level equation of state, i.e., the PB
equation for the MF potential φ0(r̃). The solution of Eq. (A11)
φ1(r̃) yields in turn the 1l-level correlation corrections to
the MF average potential. Finally, the solution of Eq. (A12)
corresponds to the 1l-level electrostatic propagator accounting
for ionic correlations.

Inserting now the expanded potentials (A8) and (A9) into
the variational grand potential (A5), expanding the latter in the
coupling parameter � up to the order O(�), the 1l-level grand
potential follows as

	1l = 1

�
	MF + 	u + �	φ1 . (A13)

In Eq. (A13), the rescaled MF grand potential reads as

	MF = − 1

2πs

∫
d r̃ δ(z̃a)φ0(r̃) − 1

8π

∫
d r̃[∇φ0(r̃)]2

− 1

4π

∫
d r̃ cosh [φ0(r̃)], (A14)

and the correction terms associated with the Green’s function
and the average potential correction are

	u = −1

2
Tr ln[u/q2]

+ 1

8π

∫
d r̃ d r̃′δ(r̃ − r̃′)∇r̃ · ∇r̃′u1(r̃,r̃′)

+ 1

8π

∫
d r̃ cosh [φ0(r̃)]δu1(r̃), (A15)

	φ1 = − 1

8π

∫
d r̃[∇φ1(r̃)]2 − 1

8π

∫
d r̃{cosh [φ0(r̃)]φ2

1(r̃)

− sinh [φ0(r̃)]δu1(r̃)φ1(r̃)}. (A16)

One can verify that the extremization of the functionals (A14),
(A15), and (A16) with respect to the potentials φ0(r̃), u1(r̃,r̃′),
and φ1(r̃), respectively, yields the equations (A10)–(A12)
solved by these potentials.

3. Computing the polymer free energy

In this work, we will compute the polymer grand potential
by restricting ourselves to the lowest order contribution (A14)
to (A13). To this aim, we restore the physical parameters via the
inverse transformations r̃ → r = r̃/κb and ψ0(r) = φ0(r̃)/q.

The MF-level grand potential (A14) reads as

	MF = −kBT

2e2

∫
dr ε(r)[∇ψ0(r)]2 +

∫
dr σ (r)ψ0(r)

− 2ρb

∫
dr e−Vi (r) cosh [qψ0(r)]. (A17)

The MF-level equation of state (A10) and the kernel Eq. (A12)
are

∇ε(r) · ∇ψ0(r) − 2ρbqe2

kBT
e−Vi (r) sinh [qψ0(r)]

= − e2

kBT
σ (r), (A18)

∇ε(r) · ∇v(r,r′) − 2ρbq
2e2

kBT
e−Vi (r) cosh [qψ0(r)]v(r,r′)

= − e2

kBT
δ(r − r′). (A19)

For the calculation that follows, the 1l correction to the PB
equation (A16) will not be needed.

We include now the charged polymer located close to the
single charged membrane (see Fig. 2). The total charge density
is composed of the polymer and the membrane charges

σ (r) = σm(r) + σp(r). (A20)

In the following derivation of the polymer grand potential,
the potential induced by the membrane charge σm(r) will
be considered at the full nonlinear level while the potential
associated with the polymer charge σp(r) will be taken into
account at the linear level (i.e., DH level). The theory will
be thus valid for weakly charged polymers but there is no
restriction on the strength of the membrane charge. Next, based
on the superposition principle, we express the total potential
as the sum of the polymer and membrane charge contributions

ψ0(r) = ψ0m(r) + ψ0p(r). (A21)

Inserting the decomposition (A21) into Eqs. (A18) and (A19)
and expanding them at the linear order in the polymer potential
ψp(r), one finds

∇ε(r) · ∇ψ0m(r) − 2ρbqe2

kBT
e−Vi (r) sinh [qψ0m(r)]

= − e2

kBT
σm(r), (A22)

{
∇ε(r) · ∇ − 2ρbq

2e2

kBT
e−Vi (r) cosh [qψ0m(r)]

}
ψ0p(r)

= − e2

kBT
σp(r), (A23)

∇ε(r) · ∇v(r,r′) − 2ρbq
2e2

kBT
e−Vi (r) cosh [qψ0m(r)]v(r,r′)

= − e2

kBT
δ(r − r′). (A24)

The need for this decomposition will become clear below.
One notes that Eq. (A22) is the nonlinear PB equation for
the potential ψ0m(r) induced exclusively by the membrane
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charge. Equation (A23) is in turn the linearized PB equation
for the potential ψ0p(r) associated with the polymer charge.
The essential point is that in Eq. (A23), the screening term
behind the polymer potential is nonuniform. Indeed, the
latter corresponds to the local screening of the polymer
potential in the ionic environment shaped by ion-membrane
charge interactions. This is the point where the kernel (A24)
becomes useful. By defining the kernel operator associated
with Eq. (A24)

v−1(r,r′) =
{
−kBT

e2
∇ε(r) · ∇ + 2ρbq

2 cosh [qψ0m(r)]

}

× δ(r − r′), (A25)

one can express Eq. (A23) as∫
dr′v−1(r,r′)ψ0p(r′) = σp(r). (A26)

By using the definition of the Green’s function∫
dr′′v−1(r,r′′)v(r′′,r′) = δ(r − r′), (A27)

one can invert Eq. (A26) and express the potential induced by
the polymer charge in terms of the Green’s function solving
Eq. (A24):

ψ0p(r) =
∫

dr′v(r,r′)σp(r′). (A28)

We insert now the decomposition (A21) into the grand
potential (A17) and expand the latter in the polymer potential
ψ0p(r). By using as well the PB equation (A22) for the
membrane potential, after some algebra, one finds

	MF = 	m + 	p, (A29)

with the membrane and polymer grand potentials

	m = −kBT

2e2

∫
dr ε(r)[∇ψ0m(r)]2 +

∫
dr σm(r)ψ0m(r)

− 2ρb

∫
dr e−Vi (r) cosh [qψ0m(r)], (A30)

	p = −kBT

2e2

∫
dr ε(r)[∇ψ0p(r)]2

− ρbq
2
∫

dr e−Vi (r) cosh[qψ0m(r)]ψ2
0p(r)

+
∫

dr σp(r)[ψ0m(r) + ψ0p(r)]. (A31)

By using the kernel (A25), one can express Eq. (A31) as

	p = −1

2

∫
dr dr′ψ0p(r)v−1(r,r′)ψ0p(r′)

+
∫

dr σp(r)[ψ0p(r) + ψ0m(r)]. (A32)

Inserting into Eq. (A32) the expression (A28) for the electro-
static potential induced by the polymer charge, the polymer
grand potential finally takes the form

	p = 1

2

∫
dr dr′σp(r)v(r,r′)σp(r′) +

∫
dr σp(r)ψ0m(r).

(A33)

Equation (A33) indicates that the evaluation of the polymer
grand potential necessitates the solution of the PB equation
(A22) associated with the membrane charge and the 1l-level
kernel equation (A24).
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Shklovskii, and A. Meller, Phys. Rev. Lett. 97, 128104 (2006).
[22] R. F. Purnell, K. K. Mehta, and J. J. Schmidt, Nano Lett. 8, 3029

(2008).
[23] J. Clarke, H.-C. Wu, L. Jayasinghe, A. Patel, S. Reid, and

H. Bayley, Nat. Nanotechnol. 4, 265 (2009).
[24] S. Qiu, Y. Wang, B. Cao, Z. Guo, Y. Chen, and G. Yang, Soft

Matter 11, 4099 (2015).

042502-16

http://dx.doi.org/10.1103/PhysRevE.85.051804
http://dx.doi.org/10.1103/PhysRevE.85.051804
http://dx.doi.org/10.1103/PhysRevE.85.051804
http://dx.doi.org/10.1103/PhysRevE.85.051804
http://dx.doi.org/10.1103/RevModPhys.80.141
http://dx.doi.org/10.1103/RevModPhys.80.141
http://dx.doi.org/10.1103/RevModPhys.80.141
http://dx.doi.org/10.1103/RevModPhys.80.141
http://dx.doi.org/10.1016/0009-2614(90)80105-M
http://dx.doi.org/10.1016/0009-2614(90)80105-M
http://dx.doi.org/10.1016/0009-2614(90)80105-M
http://dx.doi.org/10.1016/0009-2614(90)80105-M
http://dx.doi.org/10.1021/j100166a061
http://dx.doi.org/10.1021/j100166a061
http://dx.doi.org/10.1021/j100166a061
http://dx.doi.org/10.1021/j100166a061
http://dx.doi.org/10.1103/PhysRevE.60.4257
http://dx.doi.org/10.1103/PhysRevE.60.4257
http://dx.doi.org/10.1103/PhysRevE.60.4257
http://dx.doi.org/10.1103/PhysRevE.60.4257
http://dx.doi.org/10.1143/JPSJ.76.104601
http://dx.doi.org/10.1143/JPSJ.76.104601
http://dx.doi.org/10.1143/JPSJ.76.104601
http://dx.doi.org/10.1143/JPSJ.76.104601
http://dx.doi.org/10.1063/1.3264632
http://dx.doi.org/10.1063/1.3264632
http://dx.doi.org/10.1063/1.3264632
http://dx.doi.org/10.1063/1.3264632
http://dx.doi.org/10.1016/j.cocis.2013.10.001
http://dx.doi.org/10.1016/j.cocis.2013.10.001
http://dx.doi.org/10.1016/j.cocis.2013.10.001
http://dx.doi.org/10.1016/j.cocis.2013.10.001
http://dx.doi.org/10.1103/PhysRevLett.84.4862
http://dx.doi.org/10.1103/PhysRevLett.84.4862
http://dx.doi.org/10.1103/PhysRevLett.84.4862
http://dx.doi.org/10.1103/PhysRevLett.84.4862
http://dx.doi.org/10.1007/s101890050023
http://dx.doi.org/10.1007/s101890050023
http://dx.doi.org/10.1007/s101890050023
http://dx.doi.org/10.1007/s101890050023
http://dx.doi.org/10.1063/1.4942177
http://dx.doi.org/10.1063/1.4942177
http://dx.doi.org/10.1063/1.4942177
http://dx.doi.org/10.1063/1.4942177
http://dx.doi.org/10.1039/c3sm52428k
http://dx.doi.org/10.1039/c3sm52428k
http://dx.doi.org/10.1039/c3sm52428k
http://dx.doi.org/10.1039/c3sm52428k
http://dx.doi.org/10.1103/PhysRevE.77.011502
http://dx.doi.org/10.1103/PhysRevE.77.011502
http://dx.doi.org/10.1103/PhysRevE.77.011502
http://dx.doi.org/10.1103/PhysRevE.77.011502
http://dx.doi.org/10.1063/1.4750044
http://dx.doi.org/10.1063/1.4750044
http://dx.doi.org/10.1063/1.4750044
http://dx.doi.org/10.1063/1.4750044
http://dx.doi.org/10.1103/PhysRevE.60.3174
http://dx.doi.org/10.1103/PhysRevE.60.3174
http://dx.doi.org/10.1103/PhysRevE.60.3174
http://dx.doi.org/10.1103/PhysRevE.60.3174
http://dx.doi.org/10.1073/pnas.93.24.13770
http://dx.doi.org/10.1073/pnas.93.24.13770
http://dx.doi.org/10.1073/pnas.93.24.13770
http://dx.doi.org/10.1073/pnas.93.24.13770
http://dx.doi.org/10.1103/PhysRevLett.86.3435
http://dx.doi.org/10.1103/PhysRevLett.86.3435
http://dx.doi.org/10.1103/PhysRevLett.86.3435
http://dx.doi.org/10.1103/PhysRevLett.86.3435
http://dx.doi.org/10.1103/PhysRevLett.97.128104
http://dx.doi.org/10.1103/PhysRevLett.97.128104
http://dx.doi.org/10.1103/PhysRevLett.97.128104
http://dx.doi.org/10.1103/PhysRevLett.97.128104
http://dx.doi.org/10.1021/nl802312f
http://dx.doi.org/10.1021/nl802312f
http://dx.doi.org/10.1021/nl802312f
http://dx.doi.org/10.1021/nl802312f
http://dx.doi.org/10.1038/nnano.2009.12
http://dx.doi.org/10.1038/nnano.2009.12
http://dx.doi.org/10.1038/nnano.2009.12
http://dx.doi.org/10.1038/nnano.2009.12
http://dx.doi.org/10.1039/C5SM00326A
http://dx.doi.org/10.1039/C5SM00326A
http://dx.doi.org/10.1039/C5SM00326A
http://dx.doi.org/10.1039/C5SM00326A


CORRELATION-INDUCED DNA ADSORPTION ON LIKE- . . . PHYSICAL REVIEW E 94, 042502 (2016)

[25] R. R. Netz and H. Orland, Eur. Phys. J. E 11, 301 (2003).
[26] S. Buyukdagli and T. Ala-Nissila, J. Chem. Phys. 145, 014902

(2016).
[27] R. Kjellander and S. Marcelja, Chem. Phys. Lett. 112, 49 (1984).
[28] R. Kjellander and S. Marcelja, J. Chem. Phys. 82, 2122 (1985).

[29] J. W. Zwanikkena and M. O. de la Cruz, Proc. Natl. Acad. Sci.
USA 110, 5301 (2013).

[30] M. M. Hatlo and L. Lue, Europhys. Lett. 89, 25002 (2010).
[31] S. Buyukdagli, M. Manghi, and J. Palmeri, Phys. Rev. E 81,

041601 (2010).

042502-17

http://dx.doi.org/10.1140/epje/i2002-10159-0
http://dx.doi.org/10.1140/epje/i2002-10159-0
http://dx.doi.org/10.1140/epje/i2002-10159-0
http://dx.doi.org/10.1140/epje/i2002-10159-0
http://dx.doi.org/10.1063/1.4954919
http://dx.doi.org/10.1063/1.4954919
http://dx.doi.org/10.1063/1.4954919
http://dx.doi.org/10.1063/1.4954919
http://dx.doi.org/10.1016/0009-2614(84)87039-6
http://dx.doi.org/10.1016/0009-2614(84)87039-6
http://dx.doi.org/10.1016/0009-2614(84)87039-6
http://dx.doi.org/10.1016/0009-2614(84)87039-6
http://dx.doi.org/10.1063/1.448350
http://dx.doi.org/10.1063/1.448350
http://dx.doi.org/10.1063/1.448350
http://dx.doi.org/10.1063/1.448350
http://dx.doi.org/10.1073/pnas.1302406110
http://dx.doi.org/10.1073/pnas.1302406110
http://dx.doi.org/10.1073/pnas.1302406110
http://dx.doi.org/10.1073/pnas.1302406110
http://dx.doi.org/10.1209/0295-5075/89/25002
http://dx.doi.org/10.1209/0295-5075/89/25002
http://dx.doi.org/10.1209/0295-5075/89/25002
http://dx.doi.org/10.1209/0295-5075/89/25002
http://dx.doi.org/10.1103/PhysRevE.81.041601
http://dx.doi.org/10.1103/PhysRevE.81.041601
http://dx.doi.org/10.1103/PhysRevE.81.041601
http://dx.doi.org/10.1103/PhysRevE.81.041601



