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Heat transfer through dipolar coupling: Sympathetic cooling without contact
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We consider two parallel layers of dipolar ultracold Fermi gases at different temperatures and calculate the
heat transfer between them. The effective interactions describing screening and correlation effects between
the dipoles in a single layer are modeled within the Euler-Lagrange Fermi-hypernetted-chain approximation.
The random-phase approximation is used for the interactions across the layers. We investigate the amount
of transferred power between the layers as a function of the temperature difference. Energy transfer arises due to
the long-range dipole-dipole interactions. A simple thermal model is established to investigate the feasibility of
using the contactless sympathetic cooling of the ultracold polar atoms and molecules. Our calculations indicate
that dipolar heat transfer is effective for typical polar molecule experiments and may be utilized as a cooling
process.
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I. INTRODUCTION

In recent years, ultracold gases of polar atoms [1–7] and
molecules [8–12] with their long-range anisotropic inter-
actions have attracted a great deal of interest for applica-
tions ranging from quantum information science [13–15] to
condensed-matter physics [16–21].

Dipolar interaction is the dominant long-range interaction
in ultracold systems if the constituent particles carry permanent
electrical or magnetic dipoles. Both atomic species with
magnetic dipoles and, more recently, molecular gases with
electrical dipoles have been realized experimentally. The
presence of a long-range and anisotropic interaction has a
profound effect on the physics of the systems, leading to novel
phases and previously unexplored regimes [22–26].

In most ultracold gases, the dipolar interaction is present
together with the short-range interactions arising from low
angular momentum scattering [18,27]. Usually the latter is
dominant and a Feshbach resonance is needed to probe the
regimes where dipolar effects are prominent [18,27]. For
bosons, thermalization proceeds through S-wave scattering
and most cooling methods rely on short-range interactions.
Cooling of spin-polarized fermions is more challenging as they
do not interact in the S-wave channel. To obtain degenerate
spin-polarized Fermi gas, either spin mixtures or a mixture
with another species is required during cooling. Dipolar
interactions offer novel cooling methods due to their long-
range and anisotropic nature. Cooling schemes which rely
on the anisotropic nature of dipolar interaction have been
experimentally demonstrated for both bosons and fermions.
Dipolar anisotropy connects different angular momentum
channels, resulting in coupling between translational and
spin degrees of freedom which has been used for depo-
larization cooling [28], demagnetization cooling [29], and,
more recently, spin distillation [30] for bosons. In addition,
universal dipolar scattering which relies both on the anisotropy
and the long range of interaction has been used to cool a
single-component Fermi gas to degeneracy [31].
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In this paper, we investigate the heat transfer between
components of a system purely due to the long-range nature of
dipolar interactions. Specifically, we identify the parameter
regime for which dipolar forces provide effective thermal
contact between two, otherwise isolated, parts of the system.
For this purpose, we use a model system which consists of
two parallel layers of dipolar fermions separated by a distance
d. The S-wave interactions between spin-polarized fermions
is zero and all of the energy transfer between the layers is due
to dipolar interactions. We calculate the rate of energy transfer
between the layers when there is a temperature difference
between them. Furthermore, we also estimate the time scale
to reach the thermal equilibrium between the layers. This
time scale determines whether a cooling procedure applied to
only one layer can effectively cool the other layer, providing
sympathetic cooling without the adverse effects of contact.

To identify the relevant parameter regimes, we first inves-
tigate the length scales of the problem. The first length scale
is provided by the geometry we consider, i.e., the distance
between the layers d. The density of the fermions in each layer
n or, equivalently, the average distance between two particles
inside the same layer k−1

F , determines the inner dynamics
of each layer through the Fermi energy, EF = �

2k2
F /2m. A

third length scale a0 measures the importance of the dipolar
interaction. The interaction potential between two dipolar par-
ticles has the form V (�r) = [Cdd (1 − 3cos2θ )]/(4πr3), where
θ is the angle between the intermolecular displacement �r
and the dipole orientation, and Cdd is the dipolar coupling
constant [18]. The corresponding length scale a0 is defined
as a0 = Cddm/4π�

2. The system is characterized by two
dimensionless parameters (λ and d̃), derived from the above
length scales. The coupling strength between the dipoles is
governed across the layers by d̃ = d/a0 and, within a layer,
by λ = a0kF , where kF = √

4πn is the Fermi wave number.
We consider two parallel layers of ultracold dipolar

Fermi gases without any tunneling between the layers. We
describe the correlation effects between the dipoles in a single
layer (intralayer) using the fluctuation-dissipation theorem
and the static structure factor S(q) data obtained from the
Euler-Lagrange Fermi-hypernetted-chain (FHNC) approxima-
tion [32]. We adapt the random-phase approximation (RPA) to
account for the interactions across the layers (interlayer). The
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energy transfer is calculated as a function of the temperature
difference between the layers and the other parameters
characterizing the system. We express our results in terms of a
thermal conductivity between the layers for small temperature
differences.

To gauge the effectiveness of thermal coupling between the
layers, we calculate the time scale to reach equilibrium for
small temperature difference. Our calculations indicate that
the layers are strongly coupled when the distance between the
layers d is within a few dipolar length scales a0. The amount
of transferred power decreases rapidly as the layer separation
distance increases.

We study the system for a wide range of λ and d̃ at
temperatures near the Fermi temperature TF and at lower
temperatures close to T = 0.1TF . In the low-temperature
regime, although the heat conductivity decreases significantly,
the equilibration lifetime remains unaffected as the specific
heat in each layer also decreases.

Our calculations indicate that for dipolar thermal coupling
to be significant, the two layers in the system must be placed
within a few a0 of each other. This length scale is of the
order of tens of nanometers for magnetic dipolar atoms. For
instance, dysprosium (Dy), the most magnetic atom in nature
with a magnetic moment of 10μB , the value of the length scale
is equal to a0 = 20.8 nm. This value is much smaller than
the typical trapping features in ultracold-atom experiments.
However, the length scale (a0) for ultracold polar molecules
are of the order of 10−6 m, which is easily attainable in current
experiments.

Ultracold polar molecules can be cooled by focusing the
cooling effort onto a subsystem which is isolated from the rest
of the cloud except for dipolar coupling. Such a sympathetic
cooling mechanism would avoid contact between the actively
cooled part of the system and the rest of the gas. For example,
if one of the layers in our model is cooled evaporatively, the
other layer will also be cooled without losing any particles.
We also studied our system with a layer density difference to
account for such a scenario.

The paper is organized as follows: In the next section, we
introduce our model in detail and describe our approach. In
Sec. III, we present the results of our calculations in various
parameter regimes. Section IV contains the discussion and
relevant parameters for experiments. We conclude with a brief
summary.

II. THE MODEL AND METHOD

In this study, two parallel layers of an ultracold dipolar
Fermi gas, separated by a distance d, are considered, as shown
in Fig. 1. The intralayer interaction V11 within a single layer
and the interlayer interaction V12 across the layers are given
by

V11(r) = V22(r) = Cdd

4π

1

r3
, (1)

and

V12(r) = Cdd

4π

r2 − 2d2

(r2 + d2)5/2
, (2)

FIG. 1. Schematic view of the system. We consider two dipolar
Fermi gas layers with different densities at different temperatures.
Dipoles are oriented perpendicular to the layers which are separated
by a distance d .

where the indices 1 and 2 denote different layers and r

indicates the in-plane distance between dipoles. Cdd is the
dipole-dipole coupling constant, which is Cdd = μ0μ

2 for
magnetic dipole moments μ, and Cdd = p2/ε0 for electric
dipole moments p. Here, μ0 is the vacuum permeability and ε0

is the permittivity of free space. Note that V11(r) and V12(r) are
the bare (unscreened) dipole-dipole interactions, respectively.

The Hamiltonian of the system is

H = − �
2

2m

∑
i

(∇2
1i + ∇2

2i

)

+ 1

2

∑
i,j

[V11(|r1i − r1j |) + V22(|r2i − r2j |)]

+
∑
i,j

V12(|r2i − r1j |) , (3)

where m is the mass of the particles and the sums are carried
out over the particles in each respective layer.

In order to describe the correlations and the resulting
screened dipolar interaction within a layer, we follow Abe-
dinpour et al. [32]. The effective intralayer interaction is
obtained by using the fluctuation-dissipation theorem and
static approximation as

V11(q) = ε(q)

2n

[
1

S2(q)
− 1

S2
0 (q)

]
, (4)

where ε(q) = �
2q2/2m is the single-particle energy. Here,

S(q) is the static structure factor obtained from the Euler-
Lagrange Fermi-hypernetted-chain (FHNC) approximation
method [33,34]. In addition, S0(q) is the static structure
factor for a noninteracting system of two-dimensional (spin-
polarized) fermions. Neglecting the correlation effects, we use
the Fourier transform of the bare interlayer interaction,

V12(q) = −Cdd

2
q exp(−qd) . (5)

Energy transfer rate

The energy transfer rate between two Fermi systems
has been studied in the context of electron systems within
the balance equation approach [35], the quantum ki-
netic equation [36], and the nonequilibrium Green-function
method [37]. Calculations for one- and two-dimensional
electron gases [38,39] and graphene [40] have appeared. We
adapt the energy transfer rate formulation to our double-layer
dipolar system characterized by layer temperatures Ti and drift
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velocities υi , and express it as

P12 = −�

∑
q

∫ ∞

−∞

dω

π
ω |W12(q,ω,T1,T2)|2

×
{
nB

(
�ω

kBT1

)
− nB

[
�(ω − ω12)

kBT2

]}
× Im χ1(q,ω,T1) Im χ2(q,ω − ω12,T2) , (6)

where nB(x) = 1/[exp(x) − 1] is the Bose-Einstein distribu-
tion function and ω12 = q(υ1 − υ2). In our calculations, the
drift velocities are taken to be υ1 = υ2 = 0 considering the
linear regime. Here, P12 is the amount of power transferred to
layer 1 from layer 2 per unit area.

In the above, χi(q,ω) is the finite-temperature two-
dimensional Lindhard polarization function [41] for the ith
layer. W12 is the dynamically screened effective interaction,
defined by

W12(q,ω,T1,T2) = V12(q)

ε(q,ω,T1,T2)
, (7)

in which the total dielectric function ε(q,ω,T1,T2) is given by
the random-phase approximation [41] as

ε(q,ω,T1,T2) = [1 − V11(q)χ1(q,ω,T1)]

× [1 − V22(q)χ2(q,ω,T2)]

− [V12(q)]2χ1(q,ω,T1)χ2(q,ω,T2) . (8)

Note that our choice for V11(q) amounts to including intralayer
correlation effects.

The dimensionless interaction strength parameter is defined
as λ = kF a0, where a0 indicates the characteristic length scale
obtained by a0 = Cddm/(4π�

2). Here, m is the mass of a
dipole, kF = √

4πn is the Fermi wave number, and n is the
2D density of a single layer.

In the sequel, we calculate the energy transfer rate under two
separate conditions: (a) symmetric case where the densities of
the layers are equal (n1 = n2) and (b) asymmetric case where
the densities are different (n1 �= n2). In the symmetric case,
dipolar gases confined to both layers of the system have the
same Fermi levels (EF1 = EF2 = EF and kF1 = kF2 = kF ).
As a result, the polarization functions, effective potential
interactions, and the interaction strengths of the layers become
equal to each other, as χ1 = χ2, V11 = V22, and λ1 = λ2,
respectively.

In our discussions, we use the following dimensionless
quantities for the symmetric case:

Q = q

kF

, 
 = �ω

EF

, d̃ = d/a0,

t = kBT

EF

, μ̃ = μ

EF

, χ̃ =
(

π�
2

m

)
χ,

where EF = �
2k2

F /(2m) is the Fermi energy. Using these
dimensionless quantities, the intralayer and the interlayer
interactions can be written as

V11(Q) = V22(Q) =
( m

π�2

)
Q2

[
1

S(Q)2
− 1

S0(Q)2

]
, (9)

and

V12(Q) = −
( m

π�2

)
2λQ exp(−λd̃Q). (10)

The dimensionless energy transfer rate P12 is

P12 = P12[ (kF EF )2

�

]
= −2

∫ ∞

0
dQ Q

∫ ∞

−∞
d
 
 |W12(Q,
,t1,t2)|2

×
[
nB

(



t1

)
− nB

(



t2

)]
Im χ1(Q,
,t1)

× Im χ2(Q,
,t2). (11)

With this scaling, unity dimensionless heat transfer P12 = 1
means [(kF EF )2/�] watts of power are flowing per square
meter of the system.

In the asymmetric case, the densities of the layers are
different from each other (n1 �= n2), and ultracold dipolar
Fermi gases within the layers have distinct Fermi levels.
Accordingly, the interaction strengths are not equal, λ1 �= λ2.
The relation between the interaction strengths and the densities
of the layers is given by

r =
√

n1

n2
= λ1

λ2
. (12)

We scale all of the parameters by the Fermi energy and
Fermi wave number of the first layer, and use the following
relations in order to obtain the dimensionless forms of the
corresponding quantities:

Q2 = r
q

kF1
, 
2 = r2 �ω

EF1
,

t2 = r2 kBT2

EF1
, μ̃2 = r2 μ

EF1
.

III. RESULTS

We calculate the dimensionless energy transfer rate between
the layers separated by a distance d for two different cases of
the system, introduced in the previous section. The amount of
transferred energy is obtained as a function of the temperature
of one of the layers, t2 for fixed t1.

A. Symmetric case (n1 = n2)

The dimensionless energy transfer rate between the layers
is shown in Fig. 2 as a function of t2 = kBT2/EF for three
different values of interaction strength (λ = 1.0,2.0,4.0) and
three different values of t1 = 1.2,1.0,0.8. The layer separation
distance is d̃ = d/a0 = 1 for all plots.

Energy is transferred from the hot layer to the cold one, so
P12 changes sign as the temperature t2 crosses t1. At thermal
equilibrium, there is no heat flow, and furthermore, P12 is linear
in temperature difference near this point.

As we increase the interaction strength λ, the amount of
transferred power in dimensionless units decreases (see Fig. 2).
This is due to our definition of the scaled variables. For constant
density (kF ), the dimensionless interaction strength λ = a0kF

increases with increasing dipolar interaction. However, the
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FIG. 2. The absolute value of the dimensionless energy transfer
rate |P12| as a function of the temperature t2 of the second layer, while
the other temperature t1 is kept constant at three different values,
indicated by solid lines (for t1 = 1.2), dashed lines (for t1 = 1.0),
and dotted lines (for t1 = 0.8). Here, the interaction strengths λ =
1.0,2.0,4.0, respectively, while the dimensionless layer separation
distance is considered as d̃ = 1.

actual distance between the layers d = d̃a0 increases with
increasing dipolar interaction as well. To sum up, although the
dimensionless layer-separation distance remains constant, the
actual distance d varies for different values of the interaction
strength λ. Note that in Fig. 2 as we increase the interaction
strength (λ = 1.0,2.0,4.0) between the dipoles, we use a fixed
value of (d̃ = 1); hence the actual distance between the layers
increases.

In order to isolate the effects of the dipole-dipole inter-
action, we investigate the system for two different values
of the interaction strength a0 as the actual distance d is
kept constant, presented in Fig. 3. The systems we compare
have the following parameters: (λ,d̃) = (1.0,1.0) and (λ,d̃) =
(2.0,0.5). Here, in spite of having different scaled distances,
the actual distance between the layers is the same. The energy
transfer rate increases for stronger dipole-dipole interactions,
as expected. The increase is not quadratic in dipolar interaction
(Cdd ) as might be expected from a simple interpretation of
Eq. (6). While the rate due to the bare interaction would
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0

2
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6

0 0.5 1 1.5 2
0

1
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3
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|P
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|

0 0.5 1 1.5 2
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2.5

t2

(c)   t
1
=1.2

(b)   t
1
=1.0

(a)   t
1
=0.8

FIG. 3. The interaction strength λ dependence of the dimension-
less energy transfer rate |P12| when the actual distance between
the layers is kept constant. Here, the dashed and solid lines denote
the systems with (λ,d̃) = (1.0,1.0) and (2.0,0.5), respectively. The
graphs are obtained for different temperature values of the first layer
as t1 = 0.8,1.0,1.2, respectively.

increase quadratically, the dynamically screened interaction
and the polarization functions reduce this dependence.

We also evaluate the layer-separation distance dependence
of the energy transfer rate for a constant value of the interaction
strength, as shown in Fig. 4. Here, the first layer is at the Fermi
temperature. When the distance between the layers increases,
the amount of transferred energy decreases. Once again, the
decrease is slower than the bare interaction expectation due to
screening effects.

Fermion cooling gets progressively hard due to Pauli
blocking as the temperature decreases. We investigated the
heat transfer in our model for lower temperatures close to
0.1TF . The results are presented in Fig. 5. Here, the interaction
strength and the layer separation distance are λ = 1 and d =
a0, respectively. As the temperature is lowered, the amount
of transferred power between the layers decreases. Energy
transfer between the dipoles in the opposite layers occurs due
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FIG. 4. The layer separation distance d dependence of the
dimensionless energy transfer rate |P12| is presented for a constant
value of interaction strength, λ = 2.0. Here, the temperature of the
first layer is kept constant at Fermi value. The dashed and solid
lines indicate the layer separation distances for d̃ = 1.0 and d̃ = 2.0,
respectively. Note that the insets show a zoomed-in view of the graphs
for d̃ = 2.

to the scattering only if there is an unoccupied final state. At
low temperatures, lack of unoccupied final states into which
atoms can scatter suppresses heat transfer. The effect of Pauli
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FIG. 5. Low-temperature limits of the system while the temper-
ature of the first layer is kept constant at t1 = 0.1. The interaction
strength of the system is considered as λ = 1 and the actual distance
between the layers is equal to the length scale. Notice that the heat
transfer |P12| is an order of magnitude smaller than heat transfer
obtained at t = 1 (Fig. 2).
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FIG. 6. The dimensionless energy transfer rate |P12| as a function
of the temperature t2 of the second layer for the different ratios of
the interaction strengths r = λ1/λ2 = 0.5,1.0,2.0. Temperature of
the first layer t1 is fixed at t1 = 1.2 (solid lines), t1 = 1.0 (dashed
lines), and t1 = 0.8 (dotted lines). In these graphs, the dimensionless
layer-separation distance of the system is considered as d̃ = 1 and
the temperature of the other layer is constant.

blocking is also observable in the other figures when one of
the layers is at very low temperatures.

B. Asymmetric case (n1 �= n2)

As mentioned in Sec. II, the dipolar gases confined in layers
with unequal densities (n1 �= n2) will have different Fermi
levels. The relation equation between the densities and the
interaction strengths of the layers can be calculated by r =√

n1/n2 = λ1/λ2, as previously defined in Eq. (12).
The dimensionless energy transfer rates |P12| as a function

of the temperature t2 of the second layer for different ratios
of the interaction strength r = 0.5,1.0,2.0 are presented in
Fig. 6. The direction of the energy flow changes at thermal
equilibrium points where t1 = t2 for each plot. The graph
[Fig. 6(b)] obtained for r = 1 indicates the symmetric case
of the system.

Here, as we decrease the density of the second layer which is
the source of the heat flow in the (t2 > t1) regime, the amount of
transferred power decreases as expected. This effect is apparent
in the graphs obtained for r = 0.5 and r = 2. For the low-
temperature values of t2, once again the energy transfer is
suppressed as a result of Pauli blocking.
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IV. DISCUSSION AND CONCLUSION

We calculate the power transferred per unit area between
two parallel layers of ultracold dipolar gases which are at
different temperatures. The system is characterized by two
different dimensionless parameters: (i) the interaction strength
λ and (ii) the layer-separation distance d̃ . In the previous
section, we calculate the transferred power as a function of
layer temperatures for a wide range of parameters. In this
section, we aim to ascertain if this contactless power transfer
is an efficient cooling method.

When the two layers have the same temperature, the
transferred power is zero. We can expand the transferred power
P12(T1,T2) around this thermal equilibrium point (T1 = T2).
As can be noticed in all of the plots, for a large range of
temperatures, P12 is well approximated by a linear fit around
this point,

P12 � κ(T2 − T1)

d
. (13)

If the temperature difference between the layers is small
enough for this approximation to be valid, heat transfer
is characterized by the slope κ which is an effective heat
conductivity. If the vacuum between the layers were filled with
a material of heat conductivity κ , the transferred power per unit
area would be given by Eq. (13). The heat conductivity will
depend on the thermal equilibrium temperature around which
the linear fit is carried out as well as the other parameters of
the system.

We obtained the numerical values for the effective thermal
conductivity for typical experimental parameters. However,
the amount of heat transferred does not singlehandedly
determine the effectiveness of the cooling. A more transparent
quantity can be obtained by a simple model of thermal
dynamics between the layers.

We assume that one of the layers is kept at a constant
temperature (T1) by an efficient coupling to a reservoir, and
investigate the temperature of the second layer as a function
of time [T2 = T2(t)]. Energy flow from the first layer to
the second one changes the internal energy of the second

layer,

dE2

dt
= −P12. (14)

Relating this change to the specific heat per unit area of the
Fermi gas, we obtain

dE2

dt
= CV

d

dt
T2(t) = CV

d

dt
[T2(t) − T1]. (15)

If the temperature difference is small enough, the heat flow
can be replaced by the linear approximation given by Eq. (13),
yielding

CV

d

dt
[T2(t) − T1] = −κ[T2(t) − T1]

d
. (16)

In this linear regime, equilibrium is approached with a time
constant,

τ = d CV

κ
. (17)

For a cooling method to be effective, the time constant τ must
be smaller than the typical trap lifetimes.

There are two distinct classes of dipolar ultracold systems,
i.e., atoms with magnetic dipoles and molecules with electric
dipoles. The relevant length scales for atoms with magnetic
dipoles and polar molecules are substantially different. We
investigate the feasibility of using the contactless sympathetic
cooling method separately for both systems.

Our calculations show that the transferred power decays
rapidly with the distance between the layers. For an effective
thermal coupling, the interlayer distance should be within an
order of magnitude of the dipolar length scale a0. For atomic
species with magnetic moments μ, the dipolar length scale is
a0 = μ2μ0m/(4π�

2). The length scales of three typical atoms
with strong magnetic moments such as Cr, Er, and Dy are
calculated as 2.4, 10.5, 20.8 nm, respectively. A dipolar length
scale a0 ∼ 10 nm means that dipolar heat transfer is effective
up to, at most, ∼100 nm. The typical feature size of the
potential in ultracold-atom experiments is determined by the
wavelength of the dominant transition and is generally a few-
hundred nanometers. Thus the cooling scenario considered

TABLE I. Quantitative results for some ultracold polar molecules. Here, the dimensionless separation distance between the layers is
considered as d̃ = 1. The dipole moments of the molecules are taken from Refs. [8,9,42,43]. Note that 1D = 3.34 × 10−30 C m. Here, the
thermal conductivity κ and the time constant τ are obtained near the thermal equilibrium with (t1,t2 � 1.0).

KRb RbCs NaK LiCs

p (D) 0.57 1.3 2.72 5.5
a0 (μm) 0.6 5.5 7.0 63.4

λ = 1 n (m−2) 2.21 × 1011 2.63 × 109 1.62 × 109 1.98 × 107

κ (W/m K) 1.58 × 10−14 1.17 × 10−17 2.0 × 10−17 1.19 × 10−20

τ (ms) 0.116 17.07 7.86 1452
λ = 2 n (m−2) 8.84 × 1011 1.05 × 1010 6.50 × 109 7.92 × 107

κ (W/m K) 5.73 × 10−14 4.25 × 10−17 7.24 × 10−17 4.33 × 10−20

τ (ms) 0.128 18.81 8.66 1600
λ = 4 n (m−2) 3.54 × 1012 4.21 × 1010 2.60 × 1010 3.17 × 108

κ (W/m K) 1.17 × 10−13 8.65 × 10−17 1.47 × 10−16 8.81 × 10−20

τ (ms) 0.251 36.95 17.02 3144
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TABLE II. Heat transfer of some ultracold polar molecules at low temperatures (t1,t2 � 0.1). The quantitative results are obtained for the
dimensionless system parameters λ = 1 and d̃ = 1.

KRb RbCs NaK LiCs

n (m−2) 2.21 × 1011 2.63 × 109 1.62 × 109 1.98 × 107

κ (W/m K) 9.61 × 10−15 7.12 × 10−18 1.21 × 10−17 7.25 × 10−21

τ (ms) 0.063 9.23 4.25 785.5

here is not directly applicable to magnetic atomic systems. It
may still be possible to measure a perturbative heat transfer
between very close layers.

For typical polar molecules, with electric dipole moment p,
the dipolar length scale a0 = p2m/(4πε0�

2) is much larger,
i.e., close to a few micrometers. Thus, the creation of two
layers with separation of the order of a0 does not present a
significant experimental difficulty.

We calculate the dipolar length scale a0, the thermal
conductivity κ , and the time constant τ for experimentally
realized, long-lived, chemically stable Feshbach molecules,
KRb [8], RbCs [9], NaK [10], and LiCs [12]. Our results are
presented in Table I for d = a0 and temperatures close to the
Fermi temperature for three typical densities.

The most striking result in Table I is that the time constants
for reaching the thermal equilibrium between the layers sepa-
rated by a few micrometers is as short as tens of milliseconds.
The heat transfer due to dipolar coupling is efficient for polar
molecules within typical experimental distances. The cooling
of ultracold polar molecules is challenging because of the
extra degrees of freedom related to the rotation and vibration
of the molecules. We believe the efficiency of long-range heat
transfer can be used to partially overcome this challenge. In
particular, any cooling method can be used on only one of the
layers of our model and the other layer will follow within a
time scale τ .

We also calculate the thermal conductivity κ and the time
constant τ at lower temperatures (T � 0.1TF ), as shown in
Table II. While the thermal conductivity decreases, the specific
heat of the system also decreases and time constants are
not significantly affected. Dipolar thermal coupling is also
effective in this low-temperature regime.

The sympathetic cooling method fundamentally depends on
mixing two gases at different temperatures and encouraging
the two to thermalize by collisions. This method is used for
the cooling of neutral atoms [44–46], atomic ions [47], and
molecular ions [48,49]. Our calculations show that material
contact between the components of the system is not necessary
for sympathetic cooling, if the dipole-dipole coupling is strong
enough. Although we study heat transfer between two layers
of fermions here, our calculations can be generalized to more
complex systems. The heat transfer between the layers will
be mediated by the dipolar coupling regardless of the internal
dynamics of each layer. Our results provide a foundation for
the future studies of cooling of ultracold dipolar gases by using
heat transfer through dipolar coupling.
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B. RENKLIOGLU, B. TANATAR, AND M. Ö. OKTEL PHYSICAL REVIEW A 93, 023620 (2016)

[20] S. Ospelkaus, A. Pe’er, K.-K. Ni, J. J. Zirbel, B. Neyenhuis, S.
Kotochigova, P. S. Julienne, J. Ye, and D. S. Jin, Nat. Phys. 4,
622 (2008).

[21] K.-K. Ni, S. Ospelkaus, D. Wang, G. Quéméner, B. Neyenhuis,
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[22] K. Góral, L. Santos, and M. Lewenstein, Phys. Rev. Lett. 88,
170406 (2002).
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