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Artificial magnetic fields (AMFs) created for ultracold systems depend sensitively on the internal
structure of the atoms. In a mixture, each component experiences a different AMF depending on its internal
state. This enables the study of Bardeen-Cooper-Schrieffer pairing of fermions with unequal effective
charges. In this Letter, we investigate the superconducting (SC) transition of a system formed by such pairs
as a function of field strength. We consider a homogeneous two-component Fermi gas of unequal effective
charges but equal densities with attractive interactions. We find that the phase diagram is altered drastically
compared to the usual balanced charge case. First, for some AMFs there is no SC transition and isolated SC
phases are formed, reflecting the discrete Landau level (LL) structure. SC phases become reentrant both in
AMF and temperature. For extremely high fields where both components are confined to their lowest LLs,
the effect of the charge imbalance is suppressed. Charge asymmetry reduces the critical temperature even
in the low-field semiclassical regime. We discuss a pair breaking mechanism due to the unequal Lorentz
forces acting on the components of the Cooper pairs to identify the underlying physics.
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Cold-atom experiments have realized novel many-
particle systems, challenging some of the most fundamental
models of condensed matter theory. In particular, Bardeen-
Cooper-Schrieffer (BCS) theory of fermion pairing, which
has successfully explained superconducting (SC) and
superfluid (SF) behavior in a large number of systems,
had to be extended to cover new regimes. Pairing due to
resonant interactions has been explored both theoretically
and experimentally, uncovering the BEC-BCS crossover in
detail. Density imbalance between components forming the
Cooper pairs and resulting unconventional SC states were
first considered for condensed matter systems, but, exper-
imental observation of polarized SFs [1,2] with cold atoms
required significant improvements upon prior approaches.
Similarly, Cooper pairs made up of fermions with unequal
masses have been explored theoretically [3,4].
The constituents of cold-atom experiments are neutral

atoms. The dominant interaction between these atoms are
through s-wave scattering that can be tuned via Feshbach
resonances between the atoms. While the absence of
Coulomb interactions facilitated the realization of some
fundamental condensed matter models, the neutrality of the
particles prevented the observation of the effects of an
external magnetic field on these systems. Initial efforts in
this direction used rotation to mimic the magnetic field
which brings further constraints on the confining potential
of the ultracold system [5].
Over the last five years, a significant development,

namely the creation of Raman laser-assisted artificial
magnetic fields (AMFs) for neutral atoms [6], has extended
the capabilities of cold-atom experiments. These AMFs are
realized by coupling the internal states of the atoms to light

to imprint a Berry phase on the motion. While a number of
different schemes have been used to manufacture these
synthetic Hamiltonians, all of them sensitively depend on
the internal excitation structure [7]. Hence, for a mixture of
two different atom species or even a mixture composed of
atoms in different hyperfine states, the effective magnetic
field acting on each component can be different. For
example, the g factors for 87Rb 5S1=2 F ¼ 1 and 85Rb
5S1=2 F ¼ 2 have a 3=2 ratio. If the scheme in Ref. [6] is
applied to a mixture of these atoms, position dependent
detunings, consequently the AMFs, would reflect this ratio.
Although the Zeeman shifts due to the real magnetic field
are utilized to create the AMF, this artificial field only
couples to the spatial motion of the atoms and does not
cause an artificial Zeeman effect [7].
In this Letter, we explore the consequences of an AMF

that couples unequally to the fermions forming a Cooper
pair. Essentially, we consider the pairing of fermions with
different cyclotron frequencies, which we regard as unequal
effective charges coupling to the same AMF. We discuss
the conditions for pairing and the response of the paired
state to the external AMF. We show that this system
displays reentrant SC in temperature, i.e., a normal sample
at zero temperature can become SC as temperature is
increased. Oscillatory dependence of TC on the AMF,
which is a direct consequence of the Landau level (LL)
structure of single-particle excitations, is observed.
However, for some AMFs, the SC state is not preferred
even at zero temperature. We calculate the phase diagram of
the system for various representative cyclotron frequency
ratios and present physical mechanisms to elucidate the
fundamental changes in the SC transition.
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We consider a mixture of two fermion species of equal
mass and equal density. The system is assumed to be spatially
homogeneous, as in most cold-atom experiments the effects
of the confining potential can be taken into account through
the local density approximation. An AMF of arbitrary
strength is acting on the system by coupling only to the
orbital motion of the fermions but causing no Zeeman shift.
The coupling of the AMF to each component is different,
defining the effective charges q1 and q2. Corresponding
cyclotron frequenciesω1 ¼ q1B=m andω2 ¼ q2B=m define
the respective LL separations. We introduce the relative
frequency ωr ¼ ω2=ω1 and the effective frequency

ω ¼ ffiffiffiffiffiffiffiffiffiffiffi
ω1ω2

p
. Within the Landau gauge ~A ¼ ð0; Bx; 0Þ,

the noninteracting Hamiltonian can be written as

H0ðω1;ω2Þ ¼
X
ν

ε1νf
†
1νf1ν þ ε2νf

†
2νf2ν; ð1Þ

where the index ν ¼ ðn; ky; kzÞ incorporates the LL index n,
momentum along the z direction kz, and the momentum ky
which also labels the LL degeneracy. The associated kinetic
energy is εiν ¼ ϵiν − μi ¼ ℏ2k2z=2mþ ℏωiðnþ 1

2
Þ− μi, with

i ¼ 1, 2. The chemical potentials μi are not equal
but are chosen to fix the density of both species to
be the same at each AMF value, N1 ¼ N2 ¼ N=2 ¼
Bqi=2πh

P
n

R
dkzFðεiνÞ with the Fermi-Dirac distribution

function FðεiνÞ. The particle densities are then scaled
with the effective magnetic length l ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=mω
p

, i.e.,
n1 ¼ Nπ2l3. We numerically solve the number equations
for chemical potentials at eachAMF. Thus, for a fixed charge
ratio ωr and total real-space density N, changing the AMF
strength alters only the effective density n1.
This single particle spectrum is unique as the LLs of up

and down spins do not match in energy. Since their zero
point energy and the separation between the LLs are
different, two LLs can have equal energy only if the charge
ratio ωr is a rational number. When the chemical potentials
are adjusted to equate the densities, low energy single-
particle excitation spectra for up and down spins are
asymmetric. This mismatch has drastic consequences on
pairing when the interactions are introduced.
The two species interact resonantly through s-wave scatt-

ering which we model using the two-channel Hamiltonian
following Refs. [8,9] studying the balanced magnetic field
case, ωr ¼ 1. We write the interacting Hamiltonian,

Hðω1;ω2Þ ¼
X
ν

ε1νf
†
1νf1ν þ ε2νf

†
2νf2ν þ εBb†b

þ α
X
νν0

Q�
νν0b†f1νf2ν0 þ H:c: ð2Þ

The open channel fermions interact to form the closed
channel bosonwith energy εB ¼ γ þ ðℏω1 þ ℏω2Þ=2 − μ1−
μ2 þ C, where γ is the unrenormalized detuning between
the closed channel boson and the open channel fermions.

C is the counterterm, which is set to compensate the
divergence of the boson self-energy due to the infinite
number of LLs of the closed channel fermions,

C ¼ −
α2m
4πℏ2

X
n;n0

ðnþ n0Þ!
n!n0!

l2nþ1
1 l2n0

2

ðl2
1 þ l2

2Þnþn0þ1

×
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nþ 1
2
þ ωrðn0 þ 1

2
Þ

q : ð3Þ

The closed channel boson eigenstates have the same form as
the fermion single particle states, however, the effective
charge of the boson is qB ¼ q1 þ q2, and its mass 2m.
Consequently, the boson magnetic length is lB ¼
l1l2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
1 þ l2

2

p
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=mðω1 þ ω2Þ
p

. Two fermions with
up and down spin in different LLs can interact to form a
boson through the coupling constant α and the overlap
integral Qνν0 which has the form

Qνν0 ¼ δðkz þ kz0 Þ
ð−1Þnln

1l
n0
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π
p

2nþn0n!n0!ðl2
1 þ l2

2Þnþn0þ1=2
q

× e−ðk2y=2Þðl21þl2
2
ÞHnþn0 ðky

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
1 þ l2

2

q
Þ; ð4Þ

where Hnð:Þ is the nth Hermite polynomial. The dominant
pairing mechanism is through the closed channel boson with
the lowest possible energy. Hence, the wave function of the
boson is in general a superposition over all the states in the
bosonic lowest LL (LLL) with zero kz. The distribution of
the boson wave function over the degenerate LLL states
with different ky does not affect the physical properties after
the bosons are integrated out [8,9]. Thus, we calculate the
overlap integral only for the LLL state with ky ¼ 0. The
renormalization parameters γ and α are chosen in such a way
that the system produces low energy scattering properties
for ðω1;ω2Þ → 0. Hence, they are related to the physical
parameters as-scattering length and r0-effective range as
follows:

−
γ

α2
¼ m

asℏ24π
;

1

α2
¼ −

r0m2

8πℏ4
: ð5Þ

In order to analyze the pairing of unequal charges, we
examine this Hamiltonian around the SC transition.
Following mean-field theory, we introduce αhbi ¼ Δ
which is the average amplitude of the bosonic wave
function defining the order parameter. Near the transition,
Δ is small and we expand the free energy

F ¼ F 0 þ
εB
α2

jΔj2 − 1

2

X
n;n0
ky;kz

jΔj2jQnn0 j2
tanh ε1n

2kBT
þ tanh ε2n0

2kBT

ε1n þ ε2n0
:

ð6Þ
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Pairing is favorable if the coefficient of the second order
term is negative. The critical temperature for pairing is
obtained by setting this coefficient to zero

−
1

as
¼ ℏ2

m

X∞
n;n0

ðnþ n0Þ!
n!n0!

l2n
1 l2n0

2

ðl2
1 þ l2

2Þnþn0þ1

×
Z

∞

−∞

dkz
2π

�tanh ε1n
2kBT

þ tanh ε2n0
2kBT

ε1n þ ε2n0
−

2

ϵ1n þ ϵ2n0

�
:

ð7Þ

The chemical potentials μi are chosen so that the real-space
densities of the two components are the same. The right-
hand side of Eq. (7), the pairing susceptibility, determines
the behavior of TC and can be used to understand the
underlying physical picture for its evolution.
We solve Eq. (7) numerically by calculating the pairing

susceptibility for a given value of T and n1. The phase
diagram of the system is then obtained by comparing this
value with −1=as. For the numerical solution we scale all
energies by the effective magnetic energy ℏω. Similarly,
the dimensionless scattering length is ~as ¼ asðNπ2Þ1=3.
Our equations are symmetric for ωr → 1=ωr, which is
equivalent to switching the indices of the components.
We checked this symmetry numerically and concentrate
on 0 < ωr ≤ 1 in the following.
In Fig. 1 we present the phase diagram of ωr ¼ 1, which

is in agreement with Ref. [8]. For the balanced charge case,

there is always a critical temperature below which the SC
state is preferred within the mean-field approximation.
The critical temperature is nonmonotonic with the applied
field. It first decreases and becomes exponentially small as
smaller numbers of LLs are involved in the pairing, but,
then increases when only the LLL contributes. This high-
field SC has been studied for both solid state [10,11] and
cold-atom systems [8]. The oscillatory behavior of TC with
the applied field is a direct result of the underlying LL
spectrum. When the LLs of the two components coincide in
energy, the pairing susceptibility diverges as 1=

ffiffiffiffi
T

p
at the

peaks and as lnðTÞ at the rest in Fig. 2, always guaranteeing
a SC state.
We also display the phase diagram for ωr ¼ 0.95 in

Fig. 1. First of all, unlike the balanced case, there are AMF
values for which a SC state is never favored. Oscillatory
behavior in pairing due to the LL structure causes stable
islands of SC in the phase diagram isolated from the zero
field SC phase. Although the low field SC is not affected
from unequal frequencies as can be expected, the high-field
SC proves to be surprisingly resilient too. The destruction
of the low temperature SC in the presence of a small
misalignment between LLs has been predicted [12], how-
ever, this misalignment also leads to a third effect, reentrant
SC. For some AMFs, at low temperatures the sample is in
the normal state while at higher temperatures it becomes
SC. Consequently, even for a slight asymmetry between the
charges of the components, the phase diagram undergoes
fundamental changes. These changes are most pronounced
in the regime where only a few LLs are populated for both
components and we display representative phase diagrams
in Fig. 2. In the following, we discuss the physical reason
for each of these three features.
Figure 2(c) displays the pairing susceptibility for

ωr ¼ 0.95 by focusing on intermediate field strength.
The most striking feature of this phase diagram is the
emergence of isolated islands of SC Fig. 2(d), which come
about because Eq. (7) does not have a solution at some
AMF strengths. The absence of solutions even for a minute
amount of charge imbalance is best understood by
considering the single-particle spectra. The one-particle
density of states (DOS) for each component has sharp
peaks at each LL threshold. For the balanced case, the DOS
and the chemical potentials of the components are always
equal. If the temperature is low enough, only the DOS near
the chemical potential is relevant. At low temperatures, the
pairing susceptibility diverges as T−1=2 at each LL thresh-
old and the peaks in TC follow from the one-particle DOS.
When ωr ≠ 1, LLs of different components do not have the
same energy or total degeneracy. In general, chemical
potentials of both components must be chosen differently
to give equal real-space densities. If the mismatch between
the chemical potentials and the LLs is large, the energy cost
of exciting particles may not be redeemed by attractive
interactions even at zero temperature.

FIG. 1. Phase diagram of the system as a function of dimension-
less temperature ~T ¼ kBT=ℏω and effective density n1 ¼ Nπ2l3,
where N is the real-space density and l ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=mω
p

. Notice that
increasingAMF,B ¼ mω=

ffiffiffiffiffiffiffiffiffiffi
q1q2

p
, corresponds to lowern1 values.

Two frequency ratios ωr ¼ 1 and ωr ¼ 0.95 are displayed for the
same interaction strength ~as ¼ asðNπ2Þ1=3 ¼ 0.53. For ωr ¼ 1,
there is SC transition at any field, the oscillations in TC (stars)
originate from the LL structure. For ωr ¼ 0.95, these oscillations
evolve into bubble SC regions (shaded areas). The system is not
SC even at zero temperature between the bubbles and the transition
becomes weakly reentrant in temperature. At the low (many LLs)
and high field (only LLL) regimes, TC is not affected significantly
by a small charge imbalance.
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The pockets of SC phases roughly correspond to
population of a new LL. Whenever a chemical potential
crosses a LL threshold, there is a new set of states at the
Fermi surface which become suddenly available to con-
tribute to the pairing. The most favorable case for pairing is
when both chemical potentials simultaneously cross a new
LL. For small charge imbalance, these threshold crossings
happen within a small difference in AMF, which essentially
turns the TC oscillations of the balanced case into bubble
SC phases in Fig. 2(d). For a general ωr ratio, the picture is
much more complicated. For chemical potentials to give
equal densities and cross LL thresholds simultaneously, ωr
must be close to a simple fraction. This complicated

behavior is evident in the pairing susceptibilities displayed
in Fig. 2 where simple peaks of balanced LLs are split into
smaller structures. For very strong attractive interactions,
these bubble phases are not resolved as TC becomes
comparable to the LL separation. A similar effect was
predicted for the balanced case [8].
As the AMF is increased further, we observe that TC

increases and reaches the same value with the equal charge
limit. This surprising revival happens only when both compo-
nents populate their LLLs. Although the degeneracies of the
two LLLs are not equal, they both increase with increasing
AMF.Thechemicalpotentialsofbothcomponentsthenlievery
close to the corresponding LLL thresholds. Hence, the exci-
tation cost for pairing decreases at such high fields. We can
estimate the AMF for which the effect of charge imbalance
vanishes by requiring all the particles with smaller effective
charge to reside in their LLL. This estimate is in good
agreement with our numerical results.
Another fundamental change brought about by the

charge imbalance is SC that is reentrant with temperature.
While this effect is not clear for small imbalance as in
Fig. 2(d), we found that it is a common feature of the phase
diagrams for general ωr. A more prominent reentrant SC
phase can be observed for ωr ¼ 0.75 as in Fig. 2(f). For
some field strengths, the system prefers normal phase at
zero temperature and becomes SC only above TC1. The SC
phase subsequently disappears after a higher temperature
TC2. Similar reentrant behavior was predicted for graphene
bilayers [13] and asymmetric nuclear matter [14]. In our
system it is easy to understand the physical basis for this
reentrance. Increasing temperature generally prefers a
disordered state, however, it also excites a significant
amount of particles to higher LLs. Because of the anti-
symmetric and oscillatory nature of the DOS in the charge
imbalanced system, states which are close to not only the
chemical potential but also to LL thresholds are most
favorable for pairing. Thus, if the pairing contribution from
thermally excited particles overcomes the entropy cost,
increasing the temperature can drive the SC transition. With
this scenario we expect the maximum lower critical temper-
ature TC1 to be of the order of LL mismatch between the
components which agrees with our numerical results. In
contrast to other reentrant SC phases where a competing
order precludes SC at low temperatures [15], the current
system has reentrance solely due to the nontrivial nature
of the single-particle DOS.
Although we concentrate on the interplay between

discrete LL structure and charge asymmetry, it is worth
mentioning that there is a profound effect even in the
semiclassical regime where many LLs are filled for both
components. The effect of an external magnetic field on a
Cooper pair is modeled by only considering the phase
acquired by the center-of-mass motion. This semiclassical
approximation due to orbital dephasing describes the upper
critical fieldHC2 in type-II SC successfully. However, if the

FIG. 2. Pairing susceptibility (left panel) and respective phase
diagrams (right panel) for three frequency ratios ωr ¼ 1, 0.95,
0.75. The system is made dimensionless with effective magnetic
energyℏω as in Fig. 1 and decreasing n1 corresponds to increasing
AMF at fixed real-space density N. The phase diagrams are in
linear scale in order to cover TC ¼ 0 and plotted for intermediate
field strengths, where charge imbalance effects are most promi-
nent. (a) Pairing susceptibility of equal charges diverges at low
temperature, guaranteeing SC for any field value. Divergence is
more pronounced at LL thresholds. The corresponding phase
diagram (b) is obtained by Eq. (7). The phase boundary is also
highlighted on the surface. (c) Even a slight asymmetry between
the charges, ωr ¼ 0.95, lifts the low temperature divergences and
the oscillations in (b) turn into bubble SC phases (d). Each LL
susceptibility peak is split into smaller peaks, thus, the bubble
phases branch into smaller bubbles for weaker interactions (not
displayed). (e),(f) The mismatch between LL spectra is greater for
smaller ωr, resulting in prominent reentrance with temperature.
Themaximum reentrance temperature is controlled byℏjω1 − ω2j.
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charges of the fermions forming the pairs are different, the
magnetic field couples the center-of-mass motion with
the relative coordinate. As pairing is controlled by the
relative coordinate, especially for tightly bound pairs, it is
possible for the Lorentz force due to the center-of-mass
motion to break the pairs. Classically, if the center of mass
of a bound pair with charges q1, q2 is moving with velocity
v in a perpendicular magnetic field B, Lorentz force
difference between the two particles is F≃ jq1 − q2jBv.
This real space picture can be utilized to give a rough
estimate for the strength of this pair breaking mechanism
by comparing the work done by this force over the size of
the pair to the SC gap. This effect becomes dominant
especially for large charge ratios and we estimate the
upper critical field due to this pair breaking mechanism
as HC3 ≈ ð ffiffiffiffiffi

ωr
p

=1 − ωrÞHC2, which is in agreement with
our numerical results. While competing orders, such as
charge density waves, which were not taken into account
in our approach, may complicate the physics in the high
magnetic field limit, the decease of TC with charge
imbalance is observed even when many LLs are filled
and the mean-field approximation is most reliable.
In summary, the cold-atom experiments with AMFs can

create mixtures where each component has a different
effective charge. The pairing between fermions of unequal
effective charges presents a unique extension of BCS
theory which is fundamental in diverse areas of physics.
In this Letter, we find that even for a slight asymmetry
between the charges, the phase diagram changes drastically
with the emergence of reentrant SC both in temperature
and AMF. The oscillatory behavior of TC with AMF for
the balanced case modifies into isolated SC phases. For
extremely high AMFs where both components are in their
LLLs, the transition temperature is independent of the
charge ratio. Finally, we argue that TC is reduced due to
pair breaking facilitated by unequal Lorentz forces on the
charges forming the pairs.
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