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We consider a bilayer system of two-dimensional spin-polarized
dipolar Fermi gas without any tunneling between the layers. We
calculate the energy transfer rate between the layers in the non-
linear regime where the layers have a relative velocity, as a
function of temperature and drift velocities of the particles of
the system in each layer. The effective interactions describing
the correlation effects and screening between the dipoles are
obtained by the Hubbard approximation in a single layer (intra-
layer), and the random-phase approximation (RPA) across the

layers (inter-layer). The energy transfer arises from the long-
range nature of dipolar interactions between the particles of the
system. As a result of the increasing drift velocities, the non-
linear heat transfer between the layers remarkably increases and
the system reaches its equilibrium at lower temperatures. Our
calculations show that cooling with dipolar interactions without
any material contact can be utilized to cool the ultracold dipolar
systems.

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction The properties of dipolar systems at
low temperatures have attracted considerable attention in
recent years after the realization of atomic species with
magnetic dipole moments (e.g., chromium (Cr) atoms [1–4],
erbium (Er), atoms [5–8] and Dysprosium (Dy) atoms
[8–11]) and successful studies on trapping and cooling of
polar molecules with electrical dipole moments [12–16]. In
these systems, the dipolar interaction dominates the system
with its long-range and anisotropic character. The studies
on dipolar systems reveal novel phases and previously
unexplored regimes as a result of the unique nature of the
dipolar interactions [17–21].

In most experimental studies on ultracold systems, the
physical properties of the system are defined by the compe-
tition between the dipolar (long-range) and short-range in-
teractions. The short-range interactions originate from the
S-wave scattering [22, 23]. As a result of Feshbach reso-
nance [1], the S-wave scattering length may be tuned to zero.
Thus, the short-range interaction vanishes and a pure dipolar
system appears [3, 4].

Generally, the cooling process of bosons depends on
the short-range interactions because their thermalization is
achieved by S-wave scattering. However, for spin-polarized
Fermi gases, using spin mixtures or a mixture with another
species is necessary in order to cool the system and this pro-

cess is much more difficult. On the other hand, the anisotropic
nature of the dipolar Bose or Fermi systems allows the mix-
ing of different angular momentum channels. Depolarization
cooling [24], demagnetization cooling [25], and spin distilla-
tion [26] are some techniques in which anisotropy and long-
ranged behavior of the dipolar interaction are utilized.

In this paper, we consider the energy transfer phe-
nomenon for a bilayer of purely dipolar spin-polarized Fermi
system and investigate the effect of the dipolar interactions
as a cooling scheme. The energy transfer is similar to the
Coulomb drag effect which is a result of the momentum trans-
fer between the layers, generated when an external field is ap-
plied to one of the layers. In the literature, the Coulomb drag
effect as a transport method for electronic bilayer systems
has extensively been reviewed [27–29]. When the transport
properties do not depend on the external field (electric field
in the case of charged systems, velocity field in the case of
neutral systems) the bilayer system is said to be in the linear
regime. We had earlier studied the energy transfer between
dipolar Fermi gases in the linear regime [30]. Here, we fo-
cus on the non-linear regime in which the energy transfer
depends on the flow velocities in the layers.

Energy transfer rate in bilayer systems depends on the
temperature difference between the adjacent layers while
there is no tunneling between them [31]. This energy
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transfer arises with (without) an external field applied to
the system [32, 33], and it is termed as the non-linear (lin-
ear) regime. The energy transfer was investigated for the
double-layer graphene and double-quantum well (DQW)
systems using the balance equation approach in the linear
regime [34–36]. The results show that the obtained amount
of transferred power for these systems is qualitatively similar
to that achieved for the two-dimensional electron gas. In addi-
tion, non-linear energy transfer was investigated for the DQW
systems through the balance equation approach [37, 38].

In our previous study, the intra-layer interactions were
modeled by the Euler–Lagrange Fermi-hypernetted chain ap-
proximation (FHNC) [30]. In that work, we presented re-
sults for energy transfer in double layer dipolar ultracold
Fermi gases in the linear regime at different temperatures
and showed that this mechanism could be utilized as an effec-
tive cooling process due to the strong dipolar couplings [30].
Here, our calculations show that strong dipolar interactions
might also be used as a cooling technique for ultracold polar
molecules in the non-linear regime.

2 The model We investigate the energy transfer be-
tween two parallel layers of two-dimensional spin-polarized
dipolar Fermi gas, separated by a distance d. We assume
that there is no tunneling between the layers. The bare (un-
screened) dipole–dipole interactions within a single layerV11

(intra-layer) and across the layers V12 (inter-layer) are given
by

V11(r) = V22(r) = Cdd

4π

1

r3
, (1)

and

V12(r) = Cdd

4π

r2 − 2d2

(r2 + d2)5/2
, (2)

where the indices 1 and 2 show the corresponding layers
and r indicates the in-plane distance between dipoles. Here,
Cdd indicates the dipole–dipole coupling constant, which is
Cdd = p2/ε0 for electric dipole moments p, and Cdd = μ0μ

2

for magnetic dipole moments μ. In addition, μ0 is the vacuum
permeability, ε0 is the permittivity of free space.

The Fourier transform of the intra-layer interaction is
V11(q) = V0 − Cddq/2 which includes a cut-off parameter V0

related to the width of the layers [33, 39, 40]. Here, we adapt
the Hubbard approximation for our calculations in order to
obtain an effective intra-layer interaction in Fourier space
without any cut-off parameter. For this purpose, a local-field
factor GH(q) = V11(

√
q2 + k2

F)/V11(q) is used in the sense
V11(q) → V11(q)[1 − GH(q)], yielding [41]

V11(q) = Cdd

2

[√
q2 + k2

F − q
]

. (3)

Thus, our V11(q) contains intra-layer correlation effects to a
certain degree. The approximation scheme we use here has

been routinely employed in electronic systems [42]. For the
inter-layer interaction, we use the Fourier transform of the
bare interaction given by

V12(q) = −Cdd

2
q exp(−qd) . (4)

The inter-layer interaction thus is treated at the level of
random-phase approximation (RPA).

3 Energy transfer rate The rate of energy transfer as
a result of interaction between two separate Fermi systems
has been the subject of various investigations in recent years.
These studies employed the balance equation approach [43],
the quantum kinetic equation [44], and the non-equilibrium
Green function method [31] for electron systems. Addition-
ally, studies for one- and two-dimensional electron gases
[38, 45] and graphene [34, 46] have been reported. In the
present work, we mainly focus on neutral, ultracold dipolar
gases, in contrast to the previous studies based on electronic
systems.

The transferred power (P12) per unit area from layer 2 to
layer 1 can be calculated within the Fermi’s Golden Rule by
considering the energy transfer rate [34, 46] much like the
case in drag effect where the momentum transfer rate [27]
is calculated. Here, we use the Lei and Ting non-linear en-
ergy balance transport equation [46–49] as functions of layer
temperatures Ti and drift velocities υi, given by

P12 = −�
∑

q

∞∫
−∞

dω

π
ω

∣∣∣∣ V12(q)

ε(q, ω, T1, T2)

∣∣∣∣
2

×
[
nB

(
�ω

kBT1

)
− nB

(
�(ω − ω12)

kBT2

)]
(5)

× Im χ1(q, ω, T1) Im χ2(q, ω − ω12, T2),

where χi(q, ω) is the finite temperature two-dimensional
Lindhard polarization function [50] for the ith layer and
ω12 = q(υ1 − υ2). The term ω − ω12 appearing in χ2 may
be regarded as the Galilean shift when an excitation q is
exchanged between two clouds with relative velocity. In
the linear regime, the drift velocities are taken to be υ1 =
υ2 = 0, whereas in the non-linear regime they are finite.
Here, nB(x) = 1/(exp(x) − 1) is the Bose–Einstein distribu-
tion function. In addition, the temperature dependent dielec-
tric function ε(q, ω, T1, T2) is given by the generalized ran-
dom phase approximation [50] as

ε(q, ω, T1, T2) = [1 − V11(q)χ1(q, ω, T1)]

× [1 − V22(q)χ2(q, ω, T2)] (6)

− [V12(q)]2χ1(q, ω, T1)χ2(q, ω, T2).

To characterize the system, we define two dimension-
less parameters: (i) the dimensionless interaction strength

= a0kF where a0 indicates the characteristic length scale,
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obtained by a0 = Cddm/(4π�2). Here, m is the mass of a
dipole, kF = √

4πn the Fermi wave number, n is the 2D
density of a single layer. (ii) The dimensionless separa-
tion distance d̃ = dkF, where d is the distance between the
layers.

In this work, the transferred power is calculated for
the system in which the densities of the layers are
equal (n1 = n2). In this symmetric case, dipolar gases
confined to both layers of the system, have the same
Fermi levels (EF1 = EF2 = EF and kF1 = kF2 = kF). As a
result, the interaction strengths, the polarization functions
and the effective potential interactions of the layers be-
come equal to each other, as 1 = 2, χ1 = χ2, V11 = V22,
respectively.

4 Results The system in consideration consists of two-
dimensional spin-polarized dipolar Fermi gases separately
confined into two parallel layers at which particles are driven
by different drift velocities. In this study, we assume that par-
ticles in one of the layers (layer 1) with the temperature T1,
move with a drift velocity ν1. The other layer is supposed to
be an open circuit, so ν2 = 0. We calculate the dimensionless
energy transfer rate between the layers, separated by a dis-
tance d at the non-linear regime. The dimensionless form of
the energy transfer rate is defined as P12 = P12

[
�/(kFEF)2

]
.

The dimensionless energy transfer rate P12 between the
layers is shown in Fig. 1 as function of t2 = kBT2/EF for
three different values of the drift velocities of the first layer
(ν̃1 = (�kF/EF)ν1 = 0.0, 0.5, 1.0) while the temperature of
the first layer is kept constant at Fermi value TF. The layer
separation distance is d̃ = 1.0 and the interaction strength is

= 2.0 in all of the calculations.
Energy is transferred from the hot layer to the cold one,

so when the temperature t2 surpasses t1, the energy transfer
rate P12 changes sign. Consequently, at thermal equilibrium
heat flow cannot be observed and the behavior of the energy
transfer rate becomes linear in the temperature difference
near this point, as shown in Fig. 1.

When the drift velocities are equal, so that ω12 = 0 in
Eq. (6) (vanishingly small relative velocity between the lay-
ers), the energy transfer takes place in the linear regime. In
this case, the thermal equilibrium occurs at T1 = T2, as ex-
pected. The green-dotted line in Fig. 1 indicates the linear
regime of the energy transfer in the system. As we increase
the drift velocity in layer 1, the interaction between the layers
increases. Therefore, the equilibrium temperature occurs at
lower temperatures.

We also investigate the drift velocity dependence of the
energy transfer rate for different values of the interaction
strength while the distance between the layers is kept con-
stant (d̃ = 1.0), as shown in Fig. 2. Here, the temperature
of the layers is considered constant at t1 = 0.5 and t2 = 1.0.
Once again, the second layer is assumed to be in an open
circuit condition, ν̃2 = 0. In Fig. 2, as we increase the drift
velocity of the first layer, the amount of transferred power
increases.

0 0.5 1.0 1.5 2.0
0

0.25

0.5

0.75

1.0

Figure 1 The absolute value of the dimensionless energy transfer
rate |P12| as a function of the temperature t2 of the second layer
for three different values of drift velocities, ν1 of the Fermi gas
confined in the first layer, indicated by green-dotted line (for ν̃1 =
0), blue-dashed line (for ν̃1 = 0.5), and red-solid line (for ν̃1 = 1.0).
The green-dotted line which indicates that the system has equal
drift velocities ν̃1 = ν̃2 = 0, corresponds to the linear regime of the
energy transfer process. The second layer is assumed to be an open
circuit, so we set ν̃2 = 0.0. Here, the temperature of the first layer
t1 is kept constant at Fermi value. The dimensionless separation
distance and the interaction strength parameter are considered as
d̃ = 1.0 and = 2, respectively.

0 0.5 1.0 1.5 2.0
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Figure 2 The absolute value of the dimensionless energy transfer
rate |P12| as a function of the drift velocity ν1 of the first layer for
three different values of interaction strength , indicated by green-
dotted line (for = 1.0), blue-solid line (for = 2.0), and red-
dashed line (for = 4.0). Here, the separation distance between the
layers and the drift velocity of the second layer are kept constant at
d̃ = 1.0 andν2 = 0.0, respectively. The dimensionless temperatures
of the layers are determined as t1 = 0.5 and t2 = 1.0.
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5 Conclusions In summary, we have calculated the
transferred power between two parallel layers of two-
dimensional spin-polarized dipolar Fermi gases. We have
shown that thermal equilibrium of the system may be reached
at low temperatures as the drift velocity of one of the layers
increases. In addition, the energy transfer rate also depends
on the dipole–dipole interactions, and increases for larger
values of the interaction strength, as expected.

Sympathetic cooling is achieved by the collisions be-
tween the components of two different gases in a mixture
and this process terminates when the system reaches thermal
equilibrium. Our calculations show that if the dipolar cou-
pling is strong enough, it is not required to have a material
contact between the components of the system. The dipo-
lar coupling determines the heat transfer between the layers
without taking into account the internal dynamics of each
layer.

In order to demonstrate the feasibility of energy transfer
in a bilayer as a cooling method for ultracold atoms and
polar molecules, we examine three experimentally relevant
parameters: (i) the length scale a0; (ii) the density n; and
(iii) the time constant τ for reaching thermal equilibrium.
In our previous study, we expanded the energy transfer rate
around the equilibrium point (T1 = T2) and linearized P12

assuming a small temperature difference between the layers,
i.e. P12 = κ(T2 − T1)/d, where κ is thermal conductivity [30].
The time constant is expressed as τ = dCV/κ, where CV is the
heat capacity at constant volume of the 2D Fermi system [30].

Our calculations show that the length scales a0 for some
typical ultracold polar atoms with magnetic moments μ are
much smaller than the size of the potential (around few-
hundred nanometers) in the ultracold experiments. For in-
stance, the length scales of the chromium (Cr), erbium (Er),
and dysprosium (Dy) are calculated to be 2.4, 10.5, and
20.8 nm, respectively. Therefore, the contactless sympathetic
cooling method is not suitable for atomic systems with mag-
netic dipole moments.

On the other hand, as shown in Table 1, the ultracold po-
lar molecules which require experimentally applicable length
scales and moderate densities, have effective time constants

Table 1 Quantitative results for some ultracold polar molecules.
Here, the interaction strength parameter and the dimensionless well
separation distance are taken as d̃ = 1 and = 2, respectively. The
estimated values of the time constant τ are obtained around the
thermal equilibrium with (t1 � t2) while one of the layers is assumed
to be an open circuit, ν2 = 0. Note that 1 D = 3.34 ×10−30 C m.

KRb RbCs NaK LiCs

p (D) 0.57 1.3 2.72 5.5
a0 (�m) 0.6 5.5 7.0 63.4
n (m−2) 8.84 × 1011 1.05 × 1010 6.50 × 109 7.92 × 107

τ (ms):
ν1 = 0.0 0.126 18.52 8.53 1575
ν1 = 0.5 0.117 17.20 8.00 1465
ν1 = 1.0 0.088 13.01 6.00 1107

which are smaller than the typical trap lifetimes. In addition,
as the drift velocity of the first layer increases, a shorter time
period will be required for the system to reach equilibrium
which occurs at gradually decreasing temperatures, as pre-
sented in Table 1.

On the basis of the promising findings presented in this
paper, the ultracold polar molecules can be sympathetically
cooled without contact by utilizing strong dipolar interac-
tions in the non-linear regime where the energy transfer takes
place with an applied external field.

Acknowledgements We would like to thank the Scientific
and Technological Research Council of Turkey (TÜBİTAK) (Grant
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