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Abstract We consider a two-dimensional system of ultracold dipolar fermions with
dipole moments aligned in the perpendicular direction. We use the static structure
factor information from Fermi-Hypernetted-Chain calculations to obtain the effective
many-body dipole–dipole interaction and calculate the many-body effective mass of
the system within the G0W approximation to the self-energy. A large cancellation
between different contributions to the self-energy results in a weak dependence of the
effective mass on the interaction strength over a large range of coupling constants.
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1 Introduction

The field of ultracold gases has opened up new opportunities to study novel states of
matter, which may have promising applications in quantum simulations and quantum
computing [1]. In particular, the examination of polar atoms or molecules, due to their
long-range and anisotropic dipole–dipole interactions is a good candidate for studying
quantum many-body states [2]. This unique interaction results in the emergence of a
rich variety of interesting quantum phases [2–4].

Aikawa et al. [5] have directly observed the deformed Fermi surface in dipolar
Fermi gases of strongly magnetic Erbium atoms, due to the anisotropic dipole–dipole
interaction. The formation of ultracold fermionic 23Na40K polar molecules [6] and
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NaLi Feshbach molecules [7] and the observation of the rovibrational ground state
in 23Na40K molecules have been reported too [8]. First quantum degenerate dipolar
Fermi gas of 161Dy atoms with a dipole moment of μ = 10μB, where μB is the Bohr
magneton, has been produced through laser cooling down to 10μK [9]. The creation
of a degenerate dipolar Fermi gas of Erbium atoms with large magnetic moment μ of
7μB by the evaporative cooling method has been reported by Aikawa et al. [10].

Low-energy dynamical properties of dipolar Fermi systems are phenomeno-
logically expressed by using Landau’s Fermi-liquid theory [11,12]. Fermi-liquid
parameters of dipolar fermions have been studied by several researchers [13–16] in a
variety of models and approaches. In these calculations bare interactions, mean-field
theory or second-order perturbation theory has been used limiting the applicability to
weakly interacting systems.

The purpose of this work is to study the effective mass of a 2D dipolar Fermi gas
within the G0W approximation to the self-energy using better effective interactions
in the strongly coupled regime. As the ultracold dipolar gases provide useful model
systems to perform standard calculations, we hope our results will shed light on similar
systems.

The rest of this paper is organized as follows. In Sect. 2 we introduce our model
and give the details of the method we use to calculate the many-body self-energy and
the effective mass. In Sect. 3 we illustrate our numeric results for the single-particle
spectrum and effective mass. Finally, in Sect. 4, we give a summary and conclude our
results.

2 Formalism

We consider a two-dimensional system of atomic or molecular gas of dipolar fermions
with their dipolemoments aligned in the perpendicular direction. The isotropic dipole–
dipole interaction between particles reads

vdd(r) = Cdd

4π

1

r3
. (1)

Here Cdd is the dipole–dipole coupling constant, which is d2/ε0 for molecules with
permanent electric dipole d and μ0μ

2 for atoms with permanent magnetic dipole μ,
where ε0 and μ0 are the permittivity and permeability of vacuum, respectively. At
zero temperature all the properties of this dipolar system will depend on a single
dimensionless coupling constant

λ = kFr0, (2)

where r0 = mCdd/(4π h̄2) is a characteristic length scale and kF = √
4πn is the Fermi

wave vector with n being the 2D density. Note that herem is the bare (non-interacting)
mass of dipoles, and the system is spin-polarized.

In this paper, we examine the physical effects contributing to the effective mass of
a 2D dipolar Fermi liquid. Technically, our approach is similar to the one of Refs. [17–
19], performed for liquid 3He. The appropriate quantity for the effective mass is the
single-particle Green’s function G(k, ω) in the vicinity of the Fermi surface. It is
expressed in terms of the proper self-energy �(k, ω) [20]
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G(k, ω) = 1

h̄ω − ε0(k) − �(k, ω)
. (3)

Here ε0(k) = h̄2k2/(2m) is the non-interacting single-particle spectrum. The physical
excitation spectrum is determined by obtaining the poles of the Green’s function in the
(k, ω) plane. We assume low-lying excitations and resort to the G0W approximation
to calculate the self-energy

�(k, E) = u(k) + i
∫

d2q d(h̄ω)

(2π)3
G0(k − q, E − h̄ω)W 2(q)χ(q, ω)

= u(k) + �(ρ)(k, E). (4)

Here the full self-energy is split into two terms: staticmean-field term, i.e., “Fock” term
u(k) and the dynamic term�(ρ)(k, E), which originates from the density fluctuations.
The Fock term is determined as

u(k) = −
∫

d2q
(2π)2

W (k − q)nFD(ε0(q)). (5)

Here nFD(ε) is the Fermi–Dirac distribution function, W (q) is the effective dipole–
dipole interaction, and χ(q, ω) is the density–density linear response function. Within
a random-phase approximation (RPA) like mean-field approximations, the density–
density response function could be expressed as

χ(q, ω) = χ0(q, ω)

1 − W (q)χ0(q, ω)
. (6)

The dynamical term of self-energy is easily calculated after Wick rotation in the
complex frequency plane. Therefore, this part is divided into two terms: a smooth line-
term, with an integral along the imaginary frequency axis, and a pole term originating
from the residue of the single-particle Green’s function, i.e.,

�(ρ)(k, E) = �
(ρ)
line(k, E) + �

(ρ)
pole(k, E), (7)

with

�
(ρ)
line(k, E) = −

∫
d2q d(h̄ω)

(2π)3
W 2(q)χ(q, iω)

E − ε0(|k − q|)
[E − ε0(|k − q|]2 + (h̄ω)2

, (8)

and

�
(ρ)
pole(k, E) =

∫
d2q

(2π)2
W 2(q)χ(q, E − ε0(|k − q|))

× [

(E − ε0(|k − q|)) − 
(EF − ε0(|k − q|)] . (9)
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Here EF is the Fermi energy, χ(q, iω) is the density–density response function along
the imaginary frequency axis, which could be obtained from Eq. (6) in terms of the
non-interacting density–density response function along the imaginary ω axis [12]

χ0(q, iω) = −ν0

(
1 −

√
2

q̃

√
a +

√
a2 + ω̃2

)
, (10)

where ν0 = m/(2π h̄2) is the density of states of a spin-polarized 2D gas, q̃ = q/kF
and ω̃ = mω/(h̄k2F) are the dimensionless wave vector and frequency, respectively,
and finally we have defined a = q̃2/4 − ω̃2/q̃2 − 1. Note that the response function
along the real ω axis χ(q, ω) [12] is used in the pole term (9). With the stated
approximations, the excitation spectrum could be written as

ε(k) = ε0(k) + �(k, ε(k)). (11)

In the numerical calculations, we will use the “on-shell approximation”, replacing
ε(k) → ε0(k) in the self-energy.

Now we need to approximate the effective dipole–dipole interaction W (q). Within
the random-phase approximation, one simply replaces W (q) with the bare interac-
tion V (q). As the Fourier transform of vdd(r) of Eq. (1) requires a short-distance
regularization, the final result will depend on this artificial cutoff parameter [22]. A
simple resolution to this problem could be achieved through Hubbard local field factor
(LFF) [12]. Within the Hubbard approximation the effective dipole–dipole interaction
reads

WH(q) = vdd(q) − vdd

(√
k2F + q2

)

= Cdd

2

[√
k2F + q2 − q

]
, (12)

where the expression in the second line is obtained after taking the vanishing cutoff
limit. A more elaborate approximation for the effective interaction would be obtained
fromusingfluctuation-dissipation theorem togetherwith the interacting static structure
factor S(q) [21]

W (q) = ε0(q)

2n

[
1

S2(q)
− 1

S2HF(q)

]
, (13)

where SHF(q) is the non-interacting static structure factor and the interacting static
structure factor S(q) could be obtained, e.g., from quantum Monte Carlo simulations
[23]. In this work we have used an accurate numerical results for S(q) obtained from
the Fermi-Hypernetted-Chain (FHNC) calculations [21].

Finally the many-body effective mass at the Fermi level could be obtained from the
slope of interacting excitation spectrum [12]

1

m∗ = 1

h̄2kF

dε(k)

dk

∣∣∣∣
k→kF

. (14)
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3 Numerical Results

Now we turn to the presentation of our numerical results for the self-energy and
many-body effective mass. Figures 1 and 2 show different contributions to the single-
particle spectrum at two values of the coupling strength λ, calculated within the above
mentioned two different approximations (i.e., Hubbard and FHNC) for the effective
inter-particle interaction. In both figures, the Fock contribution u(k) to the self-energy
has positive slope at the Fermi wave vector and, hence, decreases the effective mass,
whereas the dynamic contribution �(ρ)(k, ε0(k)) has negative slope and tends to
enhance the effective mass. Within the Hubbard approximation, the dynamical con-
tribution dominates over the Fock term at intermediate interaction strengths, while
within the FHNC scheme, both contributions to the self-energy are of the same order
up to very large coupling constants λ. In both Hubbard and FHNC approximations,
one finds a negative slope of the total single-particle spectrum at large λ.
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Fig. 1 The single-particle spectrum (in units of h̄2k2F/(2m)) and different contributions to it, calculated
within G0W approximation at λ = 4 and within Hubbard (left) and FHNC (right) approximations to the
effective dipole–dipole interaction. Note that all contributions are shifted to become zero at kF for a better
visibility (Color figure online)
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Fig. 2 The single-particle spectrum (in units of h̄2k2F/(2m)) and different contributions to it, calculated
within G0W approximation at λ = 20 and within Hubbard (left) and FHNC (right) approximations to the
effective dipole–dipole interaction. Note that all contributions are shifted to become zero at kF for a better
visibility (Color figure online)
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Fig. 3 The relative effective mass of a 2D dipolar Fermi liquid as a function of the dimensionless coupling
constant λ, calculated within the G0W approximation and with Hubbard and FHNC approximations for
the effective dipole–dipole interaction (Color figure online)

In Fig. 3 we present our numerical results for the relative effective mass m/m∗
within Hubbard and FHNC approximations for the effective interaction. Hubbard
approximation results in a strong enhancement of the effective mass. This quantity
diverges at λ ≈ 20. A more accurate treatment of the exchange-correlation holes
within the FHNC scheme results in a large cancellation between Fock and dynamical
contributions to the self-energy and the effective mass does not deviate significantly
from its bare value up to λ ≈ 20. Note that at larger coupling strengths the effective
mass calculatedwithin the FHNCapproximation diverges too (not shown in the figure).

4 Summary and Conclusion

We have calculated the many-body effective mass for a spin-polarized 2D system of
fermions interacting via dipole–dipole interaction. We have used the G0W approxi-
mation along with two models of effective dipole–dipole interactions in the system.
Our results show that the effectivemass is enhanced by interaction effects and diverges
at a critical coupling strength. The enhancement is due to the density fluctuations in
the system as there are no spin fluctuations. The divergence at large λ is similar to
the situation in 2D liquid 3He [19], and further work is needed to discern its physical
meaning. It would be interesting to have experimental results for the effective mass of
dipolar gases. Time-of-flight measurements on strongly interacting polar molecules
or magnetic atoms are naturally expected to shed light on the effects of many-body
interactions on effective mass.
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